Weekly dose of self-improvement

The easy 4 step problem-solving process (+ examples)

This is the 4 step problem-solving process that I taught to my students for math problems, but it works for academic and social problems as well.

Ed Latimore

Every problem may be different, but effective problem solving asks the same four questions and follows the same method.

  • What’s the problem? If you don’t know exactly what the problem is, you can’t come up with possible solutions. Something is wrong. What are we going to do about this? This is the foundation and the motivation.
  • What do you need to know? This is the most important part of the problem. If you don’t know exactly what the problem is, you can’t come up with possible solutions.
  • What do you already know? You already know something related to the problem that will help you solve the problem. It’s not always obvious (especially in the real world), but you know (or can research) something that will help.
  • What’s the relationship between the two? Here is where the heavy brainstorming happens. This is where your skills and abilities come into play. The previous steps set you up to find many potential solutions to your problem, regardless of its type.

When I used to tutor kids in math and physics , I would drill this problem-solving process into their heads. This methodology works for any problem, regardless of its complexity or difficulty. In fact, if you look at the various advances in society, you’ll see they all follow some variation of this problem-solving technique.

“The gap between understanding and misunderstanding can best be bridged by thought!” ― Ernest Agyemang Yeboah

Generally speaking, if you can’t solve the problem then your issue is step 3 or step 4; you either don’t know enough or you’re missing the connection.

Good problem solvers always believe step 3 is the issue. In this case, it’s a simple matter of learning more. Less skilled problem solvers believe step 4 is the root cause of their difficulties. In this instance, they simply believe they have limited problem-solving skills.

This is a fixed versus growth mindset and it makes a huge difference in the effort you put forth and the belief you have in yourself to make use of this step-by-step process. These two mindsets make a big difference in your learning because, at its core, learning is problem-solving.

Let’s dig deeper into the 4 steps. In this way, you can better see how to apply them to your learning journey.

Step 1: What’s the problem?

The ability to recognize a specific problem is extremely valuable.

Most people only focus on finding solutions. While a “solutions-oriented” mindset is a good thing, sometimes it pays to focus on the problem. When you focus on the problem, you often make it easier to find a viable solution to it.

When you know the exact nature of the problem, you shorten the time frame needed to find a solution. This reminds me of a story I was once told.

When does the problem-solving process start?

The process starts after you’ve identified the exact nature of the problem.

Homeowners love a well-kept lawn but hate mowing the grass.

Many companies and inventors raced to figure out a more time-efficient way to mow the lawn. Some even tried to design robots that would do the mowing. They all were chasing the solution, but only one inventor took the time to understand the root cause of the problem.

Most people figured that the problem was the labor required to maintain a lawn. The actual problem was just the opposite: maintaining a lawn was labor-intensive. The rearrangement seems trivial, but it reveals the true desire: a well-maintained lawn.

The best solution? Remove maintenance from the equation. A lawn made of artificial grass solved the problem . Hence, an application of Astroturf was discovered.

This way, the law always looked its best. Taking a few moments to apply critical thinking identified the true nature of the problem and yielded a powerful solution.

An example of choosing the right problem to work the problem-solving process on

One thing I’ve learned from tutoring high school students in math : they hate word problems.

This is because they make the student figure out the problem. Finding the solution to a math problem is already stressful. Forcing the student to also figure out what problem needs solving is another level of hell.

Word problems are not always clear about what needs to be solved. They also have the annoying habit of adding extraneous information. An ordinary math problem does not do this. For example, compare the following two problems:

What’s the height of h?

solving simple trig problem

A radio station tower was built in two sections. From a point 87 feet from the base of the tower, the angle of elevation of the top of the first section is 25º, and the angle of elevation of the top of the second section is 40º. To the nearest foot, what is the height of the top section of the tower?

solving complex trig problem

The first is a simple problem. The second is a complex problem. The end goal in both is the same.

The questions require the same knowledge (trigonometric functions), but the second is more difficult for students. Why? The second problem does not make it clear what the exact problem is. Before mathematics can even begin, you must know the problem, or else you risk solving the wrong one.

If you understand the problem, finding the solution is much easier. Understanding this, ironically, is the biggest problem for people.

Problem-solving is a universal language

Speaking of people, this method also helps settle disagreements.

When we disagree, we rarely take the time to figure out the exact issue. This happens for many reasons, but it always results in a misunderstanding. When each party is clear with their intentions, they can generate the best response.

Education systems fail when they don’t consider the problem they’re supposed to solve. Foreign language education in America is one of the best examples.

The problem is that students can’t speak the target language. It seems obvious that the solution is to have students spend most of their time speaking. Unfortunately, language classes spend a ridiculous amount of time learning grammar rules and memorizing vocabulary.

The problem is not that the students don’t know the imperfect past tense verb conjugations in Spanish. The problem is that they can’t use the language to accomplish anything. Every year, kids graduate from American high schools without the ability to speak another language, despite studying one for 4 years.

Well begun is half done

Before you begin to learn something, be sure that you understand the exact nature of the problem. This will make clear what you need to know and what you can discard. When you know the exact problem you’re tasked with solving, you save precious time and energy. Doing this increases the likelihood that you’ll succeed.

Step 2: What do you need to know?

All problems are the result of insufficient knowledge. To solve the problem, you must identify what you need to know. You must understand the cause of the problem. If you get this wrong, you won’t arrive at the correct solution.

Either you’ll solve what you thought was the problem, only to find out this wasn’t the real issue and now you’ve still got trouble or you won’t and you still have trouble. Either way, the problem persists.

If you solve a different problem than the correct one, you’ll get a solution that you can’t use. The only thing that wastes more time than an unsolved problem is solving the wrong one.

Imagine that your car won’t start. You replace the alternator, the starter, and the ignition switch. The car still doesn’t start. You’ve explored all the main solutions, so now you consider some different solutions.

Now you replace the engine, but you still can’t get it to start. Your replacements and repairs solved other problems, but not the main one: the car won’t start.

Then it turns out that all you needed was gas.

This example is a little extreme, but I hope it makes the point. For something more relatable, let’s return to the problem with language learning.

You need basic communication to navigate a foreign country you’re visiting; let’s say Mexico. When you enroll in a Spanish course, they teach you a bunch of unimportant words and phrases. You stick with it, believing it will eventually click.

When you land, you can tell everyone your name and ask for the location of the bathroom. This does not help when you need to ask for directions or tell the driver which airport terminal to drop you off at.

Finding the solution to chess problems works the same way

The book “The Amateur Mind” by IM Jeremy Silman improved my chess by teaching me how to analyze the board.

It’s only with a proper analysis of imbalances that you can make the best move. Though you may not always choose the correct line of play, the book teaches you how to recognize what you need to know . It teaches you how to identify the problem—before you create an action plan to solve it.

Chess book to help learn problem solving

The problem-solving method always starts with identifying the problem or asking “What do you need to know?”. It’s only after you brainstorm this that you can move on to the next step.

Learn the method I used to earn a physics degree, learn Spanish, and win a national boxing title

  • I was a terrible math student in high school who wrote off mathematics. I eventually overcame my difficulties and went on to earn a B.A. Physics with a minor in math
  • I pieced together the best works on the internet to teach myself Spanish as an adult
  • *I didn’t start boxing until the very old age of 22, yet I went on to win a national championship, get a high-paying amateur sponsorship, and get signed by Roc Nation Sports as a profession.

I’ve used this method to progress in mentally and physically demanding domains.

While the specifics may differ, I believe that the general methods for learning are the same in all domains.

This free e-book breaks down the most important techniques I’ve used for learning.

4 step process for problem solving

Step 3: What do you already know?

The only way to know if you lack knowledge is by gaining some in the first place. All advances and solutions arise from the accumulation and implementation of prior information. You must first consider what it is that you already know in the context of the problem at hand.

Isaac Newton once said, “If I have seen further, it is by standing on the shoulders of giants.” This is Newton’s way of explaining that his advancements in physics and mathematics would be impossible if it were not for previous discoveries.

Mathematics is a great place to see this idea at work. Consider the following problem:

What is the domain and range of y=(x^2)+6?

This simple algebra problem relies on you knowing a few things already. You must know:

  • The definition of “domain” and “range”
  • That you can never square any real number and get a negative

Once you know those things, this becomes easy to solve. This is also how we learn languages.

An example of the problem-solving process with a foreign language

Anyone interested in serious foreign language study (as opposed to a “crash course” or “survival course”) should learn the infinitive form of verbs in their target language. You can’t make progress without them because they’re the root of all conjugations. It’s only once you have a grasp of the infinitives that you can completely express yourself. Consider the problem-solving steps applied in the following example.

I know that I want to say “I don’t eat eggs” to my Mexican waiter. That’s the problem.

I don’t know how to say that, but last night I told my date “No bebo alcohol” (“I don’t drink alcohol”). I also know the infinitive for “eat” in Spanish (comer). This is what I already know.

Now I can execute the final step of problem-solving.

Step 4: What’s the relationship between the two?

I see the connection. I can use all of my problem-solving strategies and methods to solve my particular problem.

I know the infinitive for the Spanish word “drink” is “beber” . Last night, I changed it to “bebo” to express a similar idea. I should be able to do the same thing to the word for “eat”.

“No como huevos” is a pretty accurate guess.

In the math example, the same process occurs. You don’t know the answer to “What is the domain and range of y=(x^2)+6?” You only know what “domain” and “range” mean and that negatives aren’t possible when you square a real number.

A domain of all real numbers and a range of all numbers equal to and greater than six is the answer.

This is relating what you don’t know to what you already do know. The solutions appear simple, but walking through them is an excellent demonstration of the process of problem-solving.

In most cases, the solution won’t be this simple, but the process or finding it is the same. This may seem trivial, but this is a model for thinking that has served the greatest minds in history.

A recap of the 4 steps of the simple problem-solving process

  • What’s the problem? There’s something wrong. There’s something amiss.
  • What do you need to know? This is how to fix what’s wrong.
  • What do you already know? You already know something useful that will help you find an effective solution.
  • What’s the relationship between the previous two? When you use what you know to help figure out what you don’t know, there is no problem that won’t yield.

Learning is simply problem-solving. You’ll learn faster if you view it this way.

What was once complicated will become simple.

What was once convoluted will become clear.

Ed Latimore

Ed Latimore

I’m a writer, competitive chess player, Army veteran, physicist, and former professional heavyweight boxer. My work focuses on self-development, realizing your potential, and sobriety—speaking from personal experience, having overcome both poverty and addiction.

Follow me on Twitter.

Developing foreign language skills

Developing foreign language skills

What follows are methods I’ve discovered and used to improve in all of these areas, which have, in turn, made it even easier to use and learn the language.

Pimsleur language system review—old but still good

Pimsleur language system review—old but still good

The Pimsleur language program offers a framework you can use to learn a language. I’ve used the program. Here are my experiences.

Pimsleur vs Duolingo— Choosing the best language learning app

Pimsleur vs Duolingo: Choosing the best language learning app

Pimsleur and Duolingo are two popular language-learning apps to help you learn a new language. This guide will help you decide which app will work best for you.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

lls-logo-main

The Art of Effective Problem Solving: A Step-by-Step Guide

Author's Avatar

Author: Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Problem Solving Methodologies

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

8D Problem Solving2 - Learnleansigma

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Brainstorming - Learnleansigma

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

Communication the missing peice from Lean Six Sigma - Learnleansigma

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Was this helpful?

Picture of Daniel Croft

Daniel Croft

Hi im Daniel continuous improvement manager with a Black Belt in Lean Six Sigma and over 10 years of real-world experience across a range sectors, I have a passion for optimizing processes and creating a culture of efficiency. I wanted to create Learn Lean Siigma to be a platform dedicated to Lean Six Sigma and process improvement insights and provide all the guides, tools, techniques and templates I looked for in one place as someone new to the world of Lean Six Sigma and Continuous improvement.

Project scoping 5 common mistakes - Feature Image - Learn Lean Sigma

5 Common Mistakes When Scoping your Project and Solutions!

5S Implement across the business - Feature Image - Learn Lean Sigma

Best Method to Implement 5S Across an Entire Business

Free lean six sigma templates.

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Practice Exams-Sidebar

Understanding Process Performance: Pp and Ppk

Understand Process Performance (Pp) and Process Performance Index (Ppk) to assess and improve manufacturing processes.…

LIFO or FIFO for Stock Management?

Choosing between LIFO and FIFO for stock management depends on factors like product nature, market…

Are There Any Official Standards for Six Sigma?

Are there any official standards for Six Sigma? While Six Sigma is a well-defined methodology…

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

Advisory boards aren’t only for executives. Join the LogRocket Content Advisory Board today →

LogRocket blog logo

  • Product Management
  • Solve User-Reported Issues
  • Find Issues Faster
  • Optimize Conversion and Adoption

A guide to problem-solving techniques, steps, and skills

4 step process for problem solving

You might associate problem-solving with the math exercises that a seven-year-old would do at school. But problem-solving isn’t just about math — it’s a crucial skill that helps everyone make better decisions in everyday life or work.

A guide to problem-solving techniques, steps, and skills

Problem-solving involves finding effective solutions to address complex challenges, in any context they may arise.

Unfortunately, structured and systematic problem-solving methods aren’t commonly taught. Instead, when solving a problem, PMs tend to rely heavily on intuition. While for simple issues this might work well, solving a complex problem with a straightforward solution is often ineffective and can even create more problems.

In this article, you’ll learn a framework for approaching problem-solving, alongside how you can improve your problem-solving skills.

The 7 steps to problem-solving

When it comes to problem-solving there are seven key steps that you should follow: define the problem, disaggregate, prioritize problem branches, create an analysis plan, conduct analysis, synthesis, and communication.

1. Define the problem

Problem-solving begins with a clear understanding of the issue at hand. Without a well-defined problem statement, confusion and misunderstandings can hinder progress. It’s crucial to ensure that the problem statement is outcome-focused, specific, measurable whenever possible, and time-bound.

Additionally, aligning the problem definition with relevant stakeholders and decision-makers is essential to ensure efforts are directed towards addressing the actual problem rather than side issues.

2. Disaggregate

Complex issues often require deeper analysis. Instead of tackling the entire problem at once, the next step is to break it down into smaller, more manageable components.

Various types of logic trees (also known as issue trees or decision trees) can be used to break down the problem. At each stage where new branches are created, it’s important for them to be “MECE” – mutually exclusive and collectively exhaustive. This process of breaking down continues until manageable components are identified, allowing for individual examination.

The decomposition of the problem demands looking at the problem from various perspectives. That is why collaboration within a team often yields more valuable results, as diverse viewpoints lead to a richer pool of ideas and solutions.

3. Prioritize problem branches

The next step involves prioritization. Not all branches of the problem tree have the same impact, so it’s important to understand the significance of each and focus attention on the most impactful areas. Prioritizing helps streamline efforts and minimize the time required to solve the problem.

4 step process for problem solving

Over 200k developers and product managers use LogRocket to create better digital experiences

4 step process for problem solving

4. Create an analysis plan

For prioritized components, you may need to conduct in-depth analysis. Before proceeding, a work plan is created for data gathering and analysis. If work is conducted within a team, having a plan provides guidance on what needs to be achieved, who is responsible for which tasks, and the timelines involved.

5. Conduct analysis

Data gathering and analysis are central to the problem-solving process. It’s a good practice to set time limits for this phase to prevent excessive time spent on perfecting details. You can employ heuristics and rule-of-thumb reasoning to improve efficiency and direct efforts towards the most impactful work.

6. Synthesis

After each individual branch component has been researched, the problem isn’t solved yet. The next step is synthesizing the data logically to address the initial question. The synthesis process and the logical relationship between the individual branch results depend on the logic tree used.

7. Communication

The last step is communicating the story and the solution of the problem to the stakeholders and decision-makers. Clear effective communication is necessary to build trust in the solution and facilitates understanding among all parties involved. It ensures that stakeholders grasp the intricacies of the problem and the proposed solution, leading to informed decision-making.

Exploring problem-solving in various contexts

While problem-solving has traditionally been associated with fields like engineering and science, today it has become a fundamental skill for individuals across all professions. In fact, problem-solving consistently ranks as one of the top skills required by employers.

Problem-solving techniques can be applied in diverse contexts:

  • Individuals — What career path should I choose? Where should I live? These are examples of simple and common personal challenges that require effective problem-solving skills
  • Organizations — Businesses also face many decisions that are not trivial to answer. Should we expand into new markets this year? How can we enhance the quality of our product development? Will our office accommodate the upcoming year’s growth in terms of capacity?
  • Societal issues — The biggest world challenges are also complex problems that can be addressed with the same technique. How can we minimize the impact of climate change? How do we fight cancer?

Despite the variation in domains and contexts, the fundamental approach to solving these questions remains the same. It starts with gaining a clear understanding of the problem, followed by decomposition, conducting analysis of the decomposed branches, and synthesizing it into a result that answers the initial problem.

Real-world examples of problem-solving

Let’s now explore some examples where we can apply the problem solving framework.

Problem: In the production of electronic devices, you observe an increasing number of defects. How can you reduce the error rate and improve the quality?

Electric Devices

Before delving into analysis, you can deprioritize branches that you already have information for or ones you deem less important. For instance, while transportation delays may occur, the resulting material degradation is likely negligible. For other branches, additional research and data gathering may be necessary.

Once results are obtained, synthesis is crucial to address the core question: How can you decrease the defect rate?

While all factors listed may play a role, their significance varies. Your task is to prioritize effectively. Through data analysis, you may discover that altering the equipment would bring the most substantial positive outcome. However, executing a solution isn’t always straightforward. In prioritizing, you should consider both the potential impact and the level of effort needed for implementation.

By evaluating impact and effort, you can systematically prioritize areas for improvement, focusing on those with high impact and requiring minimal effort to address. This approach ensures efficient allocation of resources towards improvements that offer the greatest return on investment.

Problem : What should be my next job role?

Next Job

When breaking down this problem, you need to consider various factors that are important for your future happiness in the role. This includes aspects like the company culture, our interest in the work itself, and the lifestyle that you can afford with the role.

However, not all factors carry the same weight for us. To make sense of the results, we can assign a weight factor to each branch. For instance, passion for the job role may have a weight factor of 1, while interest in the industry may have a weight factor of 0.5, because that is less important for you.

By applying these weights to a specific role and summing the values, you can have an estimate of how suitable that role is for you. Moreover, you can compare two roles and make an informed decision based on these weighted indicators.

Key problem-solving skills

This framework provides the foundation and guidance needed to effectively solve problems. However, successfully applying this framework requires the following:

  • Creativity — During the decomposition phase, it’s essential to approach the problem from various perspectives and think outside the box to generate innovative ideas for breaking down the problem tree
  • Decision-making — Throughout the process, decisions must be made, even when full confidence is lacking. Employing rules of thumb to simplify analysis or selecting one tree cut over another requires decisiveness and comfort with choices made
  • Analytical skills — Analytical and research skills are necessary for the phase following decomposition, involving data gathering and analysis on selected tree branches
  • Teamwork — Collaboration and teamwork are crucial when working within a team setting. Solving problems effectively often requires collective effort and shared responsibility
  • Communication — Clear and structured communication is essential to convey the problem solution to stakeholders and decision-makers and build trust

How to enhance your problem-solving skills

Problem-solving requires practice and a certain mindset. The more you practice, the easier it becomes. Here are some strategies to enhance your skills:

  • Practice structured thinking in your daily life — Break down problems or questions into manageable parts. You don’t need to go through the entire problem-solving process and conduct detailed analysis. When conveying a message, simplify the conversation by breaking the message into smaller, more understandable segments
  • Regularly challenging yourself with games and puzzles — Solving puzzles, riddles, or strategy games can boost your problem-solving skills and cognitive agility.
  • Engage with individuals from diverse backgrounds and viewpoints — Conversing with people who offer different perspectives provides fresh insights and alternative solutions to problems. This boosts creativity and helps in approaching challenges from new angles

Final thoughts

Problem-solving extends far beyond mathematics or scientific fields; it’s a critical skill for making informed decisions in every area of life and work. The seven-step framework presented here provides a systematic approach to problem-solving, relevant across various domains.

Now, consider this: What’s one question currently on your mind? Grab a piece of paper and try to apply the problem-solving framework. You might uncover fresh insights you hadn’t considered before.

Featured image source: IconScout

LogRocket generates product insights that lead to meaningful action

Get your teams on the same page — try LogRocket today.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • #career development
  • #tools and resources

4 step process for problem solving

Stop guessing about your digital experience with LogRocket

Recent posts:.

Understanding Subscriber Acquisition Cost

Understanding subscriber acquisition cost

Subscriber acquisition cost (SAC) refers to the total expense incurred by the business to acquire a new customer or subscriber.

4 step process for problem solving

How simplifying our sales funnel led to a 30 percent lift in conversion to paid users

Although we did a good job moving people to the checkout page, we had problems converting checkout visitors to paying customers.

4 step process for problem solving

Will ‘founder mode’ take the product management world by storm?

What exactly is founder mode, and is it really better than manager mode? Let’s discuss what this phenomenon could mean for the PM world.

4 step process for problem solving

A guide to chaos engineering

Chaos engineering is the practice of deliberately introducing failures into a system to test its resilience and identify hidden weaknesses.

4 step process for problem solving

Leave a Reply Cancel reply

LifeHack

Brain Power

5 steps (and 4 techniques) for effective problem solving.

' src=

Problem solving is the process of reviewing every element of an issue so you can get to a solution or fix it. Problem solving steps cover multiple aspects of a problem that you can bring together to find a solution. Whether that’s in a group collaboratively or independently, the process remains the same, but the approach and the steps can differ.

To find a problem solving approach that works for you, your team, or your company, you have to take into consideration the environment you’re in and the personalities around you.

Knowing the characters in the room will help you decide on the best approach to try and ultimately get to the best solution.

Table of Contents

5 problem solving steps, 4 techniques to encourage problem solving, the bottom line.

No matter what the problem is, to solve it, you nearly always have to follow these problem solving steps. Missing any of these steps can cause the problem to either resurface or the solution to not be implemented correctly.

Once you know these steps, you can then get creative with the approach you take to find the solutions you need.

1. Define the Problem

You must define and understand the problem before you start, whether you’re solving it independently or as a group. If you don’t have a single view of what the problem is, you could be fixing something that doesn’t need fixing, or you’ll fix the wrong problem.

Spend time elaborating on the problem, write it down, and discuss everything, so you’re clear on why the problem is occurring and who it is impacting.

Once you have clarity on the problem, you then need to start thinking about every possible solution . This is where you go big and broad, as you want to come up with as many alternative solutions as possible. Don’t just take the first idea; build out as many as you can through active listening, as the more you create, the more likely you’ll find a solution that has the best impact on the team.

3. Decide on a Solution

Whichever solution you pick individually or as a team, make sure you think about the impact on others if you implement this solution. Ask questions like:

  • How will they react to this change?
  • Will they need to change anything?
  • Who do we need to inform of this change?

4. Implement the Solution

At this stage of problem solving, be prepared for feedback, and plan for this. When you roll out the solution, request feedback on the success of the change made.

5. Review, Iterate, and Improve

Making a change shouldn’t be a one time action. Spend time reviewing the results of the change to make sure it’s made the required impact and met the desired outcomes.

Make changes where needed so you can further improve the solution implemented.

Each individual or team is going to have different needs and may need a different technique to encourage each of the problem solving steps. Try one of these to stimulate the process.

1-2-4 All Approach + Voting

The 1-2-4-All is a good problem solving approach that can work no matter how large the group is. Everyone is involved, and you can generate a vast amount of ideas quickly.

Ideas and solutions are discussed and organized rapidly, and what is great about this approach is the attendees own their ideas, so when it comes to implementing the solutions, you don’t have more work to gain buy-in.

As a facilitator, you first need to present the group with a question explaining the problem or situation. For example, “What actions or ideas would you recommend to solve the company’s lack of quiet working areas?”

With the question clear for all to see, the group then spends 5 minutes to reflect on the question individually. They can jot down their thoughts and ideas on Post-Its.

Now ask the participants to find one or two other people to discuss their ideas and thoughts with. Ask the group to move around to find a partner so they can mix with new people.

Ask the pairs to spend 5 minutes discussing their shared ideas and thoughts.

Next, put the group into groups of two or three pairs to make groups of 4-6. Each group shouldn’t be larger than six as the chances of everyone being able to speak reduces.

Ask the group to discuss one interesting idea they’ve heard in previous rounds, and each group member shares one each.

The group then needs to pick their preferred solution to the problem. This doesn’t have to be voted on, just one that resonated most with the group.

Then ask for three actions that could be taken to implement this change.

Bring everyone back together as a group and ask open questions like “What is the one thing you discussed that stood out for you?” or “Is there something you now see differently following these discussions?”

By the end of the session, you’ll have multiple approaches to solve the problem, and the whole group will have contributed to the future solutions and improvements.

The Lightning Decision Jam

The Lightning Decision Jam is a great way to solve problems collaboratively and agree on one solution or experiment you want to try straight away. It encourages team decision making, but at the same time, the individual can get their ideas and feedback across. [1]

If, as a team, you have a particular area you want to improve upon, like the office environment, for example, this approach is perfect to incorporate in the problem solving steps.

The approach follows a simple loop.

Make a Note – Stick It on The Wall – Vote – Prioritize

Using sticky notes, the technique identifies major problems, encourages solutions, and opens the group up for discussion. It allows each team member to play an active role in identifying both problems and ways to solve them.

Mind Mapping

Mind mapping is a fantastic visual thinking tool that allows you to bring problems to life by building out the connections and visualizing the relationships that make up the problem.

You can use a mind map to quickly expand upon the problem and give yourself the full picture of the causes of the problem, as well as solutions [2] .

Problem Solving with Mind Maps (Tutorial) - Focus

The goal of a mind map is to simplify the problem and link the causes and solutions to the problem.

To create a mind map, you must first create the central topic (level 1). In this case, that’s the problem.

Next, create the linked topics (level 2) that you place around and connect to the main central topic with a simple line.

If the central topic is “The client is always changing their mind at the last minute,” then you could have linked topics like:

  • How often does this happen?
  • Why are they doing this?
  • What are they asking for?
  • How do they ask for it?
  • What impact does this have?

Adding these linking topics allows you to start building out the main causes of the problem as you can begin to see the full picture of what you need to fix. Once you’re happy that you’ve covered the breadth of the problem and its issues, you can start to ideate on how you’re going to fix it with the problem solving steps.

Now, start adding subtopics (level 3) linking to each of the level 2 topics. This is where you can start to go big on solutions and ideas to help fix the problem.

For each of the linked topics (level 2), start to think about how you can prevent them, mitigate them, or improve them. As this is just ideas on paper, write down anything that comes to mind, even if you think the client will never agree to it!

The more you write down, the more ideas you’ll have until you find one or two that could solve the main problem.

Once you run out of ideas, take a step back and highlight your favorite solutions to take forward and implement.

The 5 Why’s

The five why’s can sound a little controversial, and you shouldn’t try this without prepping the team beforehand.

Asking “why” is a great way to go deep into the root of the problem to make the individual or team really think about the cause. When a problem arises, we often have preconceived ideas about why this problem has occurred, which is usually based on our experiences or beliefs.

Start with describing the problem, and then the facilitator can ask “Why?” fives time or more until you get to the root of the problem. It’s tough at first to keep being asked why, but it’s also satisfying when you get to the root of the problem [3] .

The 5 Whys

As a facilitator, although the basic approach is to ask why, you need to be careful not to guide the participant down a single route.

To help with this, you can use a mind map with the problem at the center. Then ask a why question that will result in multiple secondary topics around the central problem. Having this visual representation of the problem helps you build out more useful why questions around it.

Once you get to the root of the problem, don’t forget to be clear in the actions to put a fix in place to resolve it.

Learn more about how to use the five why’s here .

To fix a problem, you must first be in a position where you fully understand it. There are many ways to misinterpret a problem, and the best way to understand them is through conversation with the team or individuals who are experiencing it.

Once you’re aligned, you can then begin to work on the solutions that will have the greatest impact through effective problem solving steps.

For the more significant or difficult problems to solve, it’s often advisable to break the solution up into smaller actions or improvements.

Trial these improvements in short iterations, and then continue the conversations to review and improve the solution. Implementing all of these steps will help you root out the problems and find useful solutions each time.

[1]^UX Planet:
[2]^Focus:
[3]^Expert Program Management:

how to use a planner

How to Use a Planner Effectively

how to be a better planner

How to Be a Better Planner: Avoid the Planning Fallacy

delegation tools

5 Best Apps to Help You Delegate Tasks Easily

delegating leadership style

Delegating Leadership Style: What Is It & When To Use It?

hesitate to delegate

The Fear of Delegating Work To Others

importance of delegation in leadership

Why Is Delegation Important in Leadership?

best tools for prioritizing tasks

7 Best Tools for Prioritizing Work

how to deal with competing priorities

How to Deal with Competing Priorities Effectively

rice prioritization model

What Is the RICE Prioritization Model And How Does It Work?

exercises to improve focus

4 Exercises to Improve Your Focus

chronic procrastination

What Is Chronic Procrastination and How To Deal with It

procrastination adhd

How to Snap Out of Procrastination With ADHD

depression procrastination

Are Depression And Procrastination Connected?

procrastination and laziness

Procrastination And Laziness: Their Differences & Connections

bedtime procrastination

Bedtime Procrastination: Why You Do It And How To Break It

best books on procrastination

15 Books on Procrastination To Help You Start Taking Action

productive procrastination

Productive Procrastination: Is It Good or Bad?

how does procrastination affect productivity

The Impact of Procrastination on Productivity

anxiety and procrastination

How to Cope With Anxiety-Induced Procrastination

How to Break the Perfectionism-Procrastination Loop

How to Break the Perfectionism-Procrastination Loop

work life balance books

15 Work-Life Balance Books to Help You Take Control of Life

Work Life Balance for Women

Work Life Balance for Women: What It Means & How to Find It

career mindset

6 Essential Mindsets For Continuous Career Growth

career move

How to Discover Your Next Career Move Amid the Great Resignation

lee-cockerell

The Key to Creating a Vibrant (And Magical Life) by Lee Cockerell

how to disconnect from work

9 Tips on How To Disconnect From Work And Stay Present

work life integration VS balance

Work-Life Integration vs Work-Life Balance: Is One Better Than the Other?

self-advocacy in the workplace

How To Practice Self-Advocacy in the Workplace (Go-to Guide)

4 step process for problem solving

How to Boost Your Focus And Attention Span

4 step process for problem solving

What Are Distractions in a Nutshell?

4 step process for problem solving

What Is Procrastination And How To End It

4 step process for problem solving

Prioritization — Using Your Time & Energy Effectively

4 step process for problem solving

Delegation — Leveraging Your Time & Resources

4 step process for problem solving

Your Guide to Effective Planning & Scheduling

4 step process for problem solving

The Ultimate Guide to Achieving Goals

4 step process for problem solving

How to Find Lasting Motivation

4 step process for problem solving

Complete Guide to Getting Back Your Energy

4 step process for problem solving

How to Have a Good Life Balance

Explore the time flow system.

4 step process for problem solving

About the Time Flow System

4 step process for problem solving

Key Philosophy I: Fluid Progress, Like Water

4 step process for problem solving

Key Philosophy II: Pragmatic Priorities

4 step process for problem solving

Key Philosophy III: Sustainable Momentum

4 step process for problem solving

Key Philosophy IV: Three Goal Focus

4 step process for problem solving

How the Time Flow System Works

PS/RtI Logo

An Overview of 4-Step Problem Solving

  • Resource Topics
  • Professional Learning Modules
  • Program Evaluation
  • Fact Sheets
  • Presentations LiveBinder

This online course is intended to provide users with an understanding of the broad concepts of the 4-step problem solving process. The course includes the critical elements and guiding questions within each step, features sample data sources, and provides checks for understanding throughout.

  • Sign into your account.
  • Select All Courses at the top of the page, find An Overview of 4-Step Problem Solving , and click “Start Course” to begin.
  • From FL PS/RtI Thinkific site, click “Sign In” in the upper right-hand corner.
  • Click “Create a new account” below sign-in fields.
  • Fill in your name, email, and create a password. Click “Sign Up.”

PDF, Comprehensive Intervention Plan Template

psychology

Definition:

Problem Solving is the process of identifying, analyzing, and finding effective solutions to complex issues or challenges.

Key Steps in Problem Solving:

  • Identification of the problem: Recognizing and clearly defining the issue that needs to be resolved.
  • Analysis and research: Gathering relevant information, data, and facts to understand the problem in-depth.
  • Formulating strategies: Developing various approaches and plans to tackle the problem effectively.
  • Evaluation and selection: Assessing the viability and potential outcomes of the proposed solutions and selecting the most appropriate one.
  • Implementation: Putting the chosen solution into action and executing the necessary steps to resolve the problem.
  • Monitoring and feedback: Continuously evaluating the implemented solution and obtaining feedback to ensure its effectiveness.
  • Adaptation and improvement: Modifying and refining the solution as needed to optimize results and prevent similar problems from arising in the future.

Skills and Qualities for Effective Problem Solving:

  • Analytical thinking: The ability to break down complex problems into smaller, manageable components and analyze them thoroughly.
  • Creativity: Thinking outside the box and generating innovative solutions.
  • Decision making: Making logical and informed choices based on available data and critical thinking.
  • Communication: Clearly conveying ideas, listening actively, and collaborating with others to solve problems as a team.
  • Resilience: Maintaining a positive mindset, perseverance, and adaptability in the face of challenges.
  • Resourcefulness: Utilizing available resources and seeking new approaches when confronted with obstacles.
  • Time management: Effectively organizing and prioritizing tasks to optimize problem-solving efficiency.

4 Steps to Efficiently Solve Problems

Problems—we all have to deal with minor or major problems in our personal or professional lives. Having a consistent problem-solving approach can be very helpful, and demonstrating strong problem-solving skills can help you stand out in your career.

4 step process for problem solving

In this blog post, I’m going to cover a simple problem-solving framework. Although much of what I discuss can be applied to any type of problem, I’ll focus on using the framework from a professional standpoint.

“We cannot solve our problems with the same thinking we used when we created them.” – Albert Einstein

Categories of Problems

Work-related problems can generally be categorized by the area they impact most. That’s not to say a problem can’t impact multiple areas, but usually there is an area of primary impact. I find it useful to categorize problems into the following three categories:

  • People —These problems center around people, their expectations, and their interactions with other people.
  • Product —These problems are related to what you produce at work. The “product” can be tangible or intangible. If you’re a home builder, your product would be houses. If you’re a software developer, the product would be the application you work on. If you’re a sales professional, you produce sales. Problems in this category are often related to the “product” not meeting the expectations of the customer or stakeholder.
  • Process —These problems are related to the processes you use at work, generally in the context of producing the work product. The problem could be the process isn’t producing the desired result, the process isn’t being followed, or the process doesn’t account for enough scenarios.

Although the framework described in the sections below works with each of these categories, the specific approaches you take might vary. For example, if you’re dealing with a process-related problem, a group discussion to analyze the problem likely makes sense. If it’s a people problem, group discussions can be counterproductive, particularly in the early stages.

The Steps (and the Pre-Step)

The framework consists of four steps and a very important pre-step. The four steps are as follows:

  • Analyze —Understand the root cause.
  • Plan —Determine how to resolve the problem.
  • Implement —Put the resolution in place.
  • Evaluate —Determine if the resolution is producing the desired results.

I’ll discuss these steps further below, but first I want to discuss an important precursor—triage. In emergency medical situations, the triage process is used to prioritize patients: do they need immediate attention to survive, or do they have injuries that aren’t immediately life threatening? Sometimes, we’re faced with more problems than we can immediately solve, so it’s helpful to prioritize them. I find the following questions to be useful in this process:

  • Is there an immediate action I need to take to reduce the impact of the problem?
  • Is there a reasonable degree of likelihood I can solve this problem?
  • If I can solve the problem, can I solve it in a timely manner?
  • If I can solve the problem, will it make a significant difference?

The answers to these questions can help you prioritize the order in which you should focus on particular problems. If a problem is causing significant and immediate pain, then you need to stabilize the situation first—often by addressing the symptoms.

For example, if a customer is upset, you need to address their immediate pain before attempting to resolve the root problem. Once you’ve done so, you can move on to prioritization. If a problem is solvable, can be solved quickly, and has a significant impact, you should focus on it first. If you aren’t sure the problem can be solved, or solving it won’t have a positive impact, then it should be lower on the priority list.

Once this prioritization has been completed, you can analyze the problem.

The goal for analyzing the problem is to understand the root cause(s). (Yes, problems can have more than one root cause.) If you can address the root cause, you can prevent the problem from recurring. It’s important during this process to get multiple perspectives on why the problem occurs. If the problem is in the Product or Process categories, I like to use a group of approximately five people to discuss the root causes. If it’s a person problem, a group setting might be counterproductive and individual conversations are better. However, for Person problems, it’s critical to get multiple perspectives.

There are many techniques for getting to the root cause of problems. One popular and effective approach is the “ 5 whys .” With this approach, you iteratively ask “Why?” about the problem and then each answer until you get to a root cause. For example:

  • Why did the upgrade fail? -> The prerequisite updates weren’t installed.
  • Why weren’t the prerequisites installed? -> The person performing the install didn’t know there were prerequisites.
  • Why didn’t the person performing the install know there were prerequisites? -> They didn’t read the release notes.
  • Why didn’t they read the release notes? -> The release notes aren’t included or linked to from the installer.
  • Why aren’t the release notes included or linked to from the installer? -> Because the release notes aren’t always required reading for an upgrade.

When using the “5 whys” approach, it’s important to look for process failures as the root cause. In many cases, it’s easy to get to a why such as “There wasn’t enough time” or “We didn’t have enough people.” If you want to fix the root cause, you need to get to “Why did the process fail to alert us of the problem?”

Once you have one or more root causes, you can start looking at how to resolve them going forward. This is another great time in the process to involve multiple people. Having multiple perspectives can produce innovative approaches to address the root causes. It’s also important to remember you might need multiple solutions if you have multiple root causes.

Brainstorming is a good way to generate ideas, but it’s helpful to have a method to manage all the ideas that can be produced.  Affinity Grouping  is an approach that has been around for a long time, and for good reason—it works well. After generating ideas, you group and potentially combine the similar ones. The various ideas in each group can lead to a better, more rounded solution.

An important aspect of the solution(s) you develop is that you can measure the outcomes. I’ve seen many great ideas that simply didn’t result in the desired outcomes for reasons that couldn’t be anticipated. If you’re able to measure successful outcomes (and unsuccessful outcomes), it helps you adjust more quickly and pivot to different solutions if needed.

Now it’s time to put the solution in place. How you do so can vary significantly depending on what the solution is. However, a key consideration should be how the solution will be monitored. This is why it’s important to define what success looks like in the planning stage. Those measurements are what you will monitor.

It’s important to allow some time before moving to the next step. How much time? It depends—it can be helpful to look at how many times the new solution has been used when determining this. For the example above about release notes, imagine you decided to add an “IMPORTANT” note in a new version of an installer to link people to the release notes. If a week has passed, but only one person has downloaded the new version, then you probably don’t have a large enough sample size to evaluate the solution yet. Conversely, if it’s only been 24 hours, but 50 people have downloaded the new version, you have a much better sample to work with.

Evaluating the solution requires looking at the outcomes objectively and determining if they match expectations. Often, you will find the solution did improve things, but perhaps not as much as you would have liked. If that’s the case, you can refine and iterate on the solution. It might take a few iterations to get the outcomes you would like.

What if the outcomes really don’t match expectations? This scenario often indicates the root cause wasn’t fully understood, and you might need to jump back to the Analyze step. Revisiting the problem with the additional insight of what  did not  work can help you uncover other root causes.

The next time you’re faced with a problem at work, think  TAPIE :

Problem solving is a process—and it’s one we need to be able to carry out in a thoughtful and timely manner throughout our careers. Our ability to consistently and efficiently address problems can be what sets us apart.

Avatar photo

How to Futureproof IT Environments Without Going Into Technical Debt

4 step process for problem solving

5 Tips for Better Help Desk Reporting and Monitoring

You may also like.

4 step process for problem solving

We're Geekbuilt ™ .

Developed by network and systems engineers who know what it takes to manage today's dynamic IT environments, SolarWinds has a deep connection to the IT community.

The result? IT management products that are effective, accessible, and easy to use.

Legal Documents Security Information Documentation & Uninstall Information

loading

MRSC logo

  • Rosters & E-Bidding

Have a Research Question?

  • Research Tools
  • Explore Topics
  • Stay Informed
  • Publications

Easy Problem Solving Using the 4-step Method

June 7, 2017  by  Jennifer Haury Category:  Guest Author ,  Management

4 step process for problem solving

At a recent hospital town forum, hospital leaders are outlining the changes coming when a lone, brave nurse raises her hand and says, “We just can’t take any more changes. They are layered on top of each other and each one is rolled out in a different way. We are exhausted and it’s overloading us all.”  

 “Flavor of the Month” Fatigue

Change fatigue. You hear about it in every industry, from government sectors to software design to manufacturing to healthcare and more. When policy and leadership changes and process improvement overlap it’s no surprise when people complain about “flavor of the month,” and resist it just so they can keep some routine to their days.

In a time where change is required just to keep up with the shifting environment, one way to ease fatigue is to standardize HOW we change. If we use a best practice for solving problems, we can ensure that the right people are involved and problems are solved permanently, not temporarily. Better yet, HOW we change can become the habit and routine we long for.

The 4-step Problem Solving Method

The model we’ve used with clients is based on the A3 problem-solving methodology used by many “lean” production-based companies. In addition to being simpler, our 4-step method is visual, which helps remind the user what goes into each box.

The steps are as follows

  • Develop a Problem Statement
  • Determine Root Causes
  • Rank Root Causes in Order of Importance
  • Create an Action Plan

Step 1: Develop a Problem Statement

Developing a good problem statement always seems a lot easier than it generally turns out to be.  For example, this statement: “We don’t have enough staff,” frequently shows up as a problem statement. However, it suggests the solution—“GET MORE STAFF” — and fails to address the real problem that more staff might solve, such as answering phones in a timely manner.

The trick is to develop a problem statement that does not suggest a solution.  Avoiding the following words/phrases: “lack of,” “no,” “not enough,” or “too much” is key. When I start to fall into the trap of suggesting a solution, I ask: “So what problem does that cause?” This usually helps to get to a more effective problem statement.

“Haury-post_6-5-17_1.jpg"

Once you’ve developed a problem statement, you’ll need to define your target goal, measure your actual condition, then determine the gap. If we ran a restaurant and our problem was: “Customers complaining about burnt toast during morning shift,” the target goal might be: “Toast golden brown 100% of morning shift.”

Focus on a tangible, achievable target goal then measure how often that target is occurring. If our actual condition is: “Toast golden brown 50% of the time,” then our gap is: “Burnt toast 50% of the time.” That gap is now a refined problem to take to Step 2.

Step 2:  Determine Root Causes

In Step 2, we want to understand the root causes. For example, if the gap is burnt toast 50% of the time, what are all the possible reasons why?

This is when you brainstorm. It could be an inattentive cook or a broken pop-up mechanism. Cooks could be using different methods to time the toasting process or some breads toast more quickly.  During brainstorming, you’ll want to include everyone in the process since observing these interactions might also shed light on why the problem is occurring.

“Haury-post_6-5-17_2.jpg"

Once we have an idea of why, we then use the 5-why process to arrive at a root cause.  Ask “Why?” five times or until it no longer makes sense to ask. Root causes can be tricky.  For example, if the pop up mechanism is broken you could just buy a new toaster, right? But if you asked WHY it broke, you may learn cooks are pressing down too hard on the pop up mechanism, causing it to break. In this case, the problem would just reoccur if you bought a new toaster.

When you find you are fixing reoccurring problems that indicates you haven’t solved for the root cause. Through the 5-why process, you can get to the root cause and fix the problem permanently.

Step 3: Rank Root Causes

Once you know what’s causing the problem (and there may be multiple root causes), it’s time to move to Step 3 to understand which causes, if solved for, would close your gap. Here you rank the root causes in order of importance by looking at which causes would have the greatest impact in closing the gap.

Haury-post_6-5-17_3.jpg"

There may be times when you don’t want to go after your largest root cause (perhaps because it requires others to change what they are doing, will take longer, or is dependent on other things getting fixed, etc). Sometimes you’ll find it’s better to start with a solution that has a smaller impact but can be done quickly.

Step 4: Create an Action Plan

In Step 4 you create your action plan — who is going to do what and by when. Documenting all of this and making it visible helps to communicate the plan to others and helps hold them accountable during implementation.

This is where your countermeasures or experiments to fix the problem are detailed. Will we train our chefs on how to use a new “pop-up mechanism” free toaster? Will we dedicate one toaster for white bread and one for wheat?  

Haury-post_6-5-17_4.jpg

Make sure to measure your results after you’ve implemented your plan to see if your target is met. If not, that’s okay; just go through the steps again until the problem is resolved.

Final Thoughts

Using the 4-step method has been an easy way for teams to change how they solve problems. One team I was working with started challenging their “solution jumps” and found this method was a better way to avoid assumptions which led to never really solving their problems.  It was easy to use in a conference room and helped them make their thinking visual so everyone could be involved and engaged in solving the problems their team faced. 

Do you have a problem-solving method that you use at your worksite?  Let us know in the comments below. 

MRSC is a private nonprofit organization serving local governments in Washington State. Eligible government agencies in Washington State may use our free, one-on-one Ask MRSC service to get answers to legal, policy, or financial questions.

Photo of Jennifer Haury

About Jennifer Haury

Jennifer Haury is the CEO of All Angles Consulting, LLC and guest authored this post for MRSC.

Jennifer has over 28 years learning in the healthcare industry (17 in leadership positions or consulting in performance improvement and organizational anthropology) and is a Lean Six Sigma Black Belt.

She is a trusted, experienced leader with a keen interest in performance improvement and organizational anthropology. Jennifer is particularly concerned with the sustainability of continuous improvement programs and the cultural values and beliefs that translate into behaviors that either get in our own way or help us succeed in transforming our work.

The views expressed in guest columns represent the opinions of the author and do not necessarily reflect those of MRSC.

Blog Archives

Weekly e-news.

4 step process for problem solving

Get the latest local government news, analysis, and training opportunities in Washington State with MRSC’s Weekly Insights .

Related Materials

4 step process for problem solving

Looking at Sustainability in Snoqualmie

4 step process for problem solving

Embracing conflict: Honing your conflict management skills

4 step process for problem solving

Strategic Planning

  • Goal-Oriented Decision Making - The APE Model
  • Generative AI and Decision Making
  • The OODA Loop
  • The RPD Model
  • Reducing the Dunning-Kruger Effect
  • Using a Premortem
  • The Planning Fallacy
  • Accelerated Expertise
  • Conduct a SWOT Analysis
  • 4D's on a To-Do-List
  • Mere Exposure Effect
  • The Trolley Problem
  • Wicked Problems
  • Reciprocity Bias
  • Motivated Change
  • Correlation vs. Causation
  • Maslow's Hierarchy and Innovation
  • Understanding Psychological Anchors
  • IDEA 4-Step Problem Solving
  • Using SMART Goals
  • How to Gain Insights
  • The Eisenhower Matrix
  • SMART Goals - 60 Seconds
  • Tactical Decision Games

How to Solve a Problem in Four Steps - The I.D.E.A. Model

Online courses

  • Product overview
  • All features
  • Latest feature release
  • App integrations
  • project icon Project management
  • Project views
  • Custom fields
  • Status updates
  • goal icon Goals and reporting
  • Reporting dashboards
  • asana-intelligence icon Asana AI
  • workflow icon Workflows and automation
  • portfolio icon Resource management
  • Capacity planning
  • Time tracking
  • my-task icon Admin and security
  • Admin console
  • Permissions
  • list icon Personal
  • premium icon Starter
  • briefcase icon Advanced
  • Goal management
  • Organizational planning
  • Project intake
  • Resource planning
  • Product launches
  • View all uses arrow-right icon

4 step process for problem solving

  • Work management resources Discover best practices, watch webinars, get insights
  • Customer stories See how the world's best organizations drive work innovation with Asana
  • Help Center Get lots of tips, tricks, and advice to get the most from Asana
  • Asana Academy Sign up for interactive courses and webinars to learn Asana
  • Developers Learn more about building apps on the Asana platform
  • Community programs Connect with and learn from Asana customers around the world
  • Events Find out about upcoming events near you
  • Partners Learn more about our partner programs
  • Asana for nonprofits Get more information on our nonprofit discount program, and apply.
  • Project plans
  • Team goals & objectives
  • Team continuity
  • Meeting agenda
  • View all templates arrow-right icon
  • Collaboration |
  • Turn your team into skilled problem sol ...

Turn your team into skilled problem solvers with these problem-solving strategies

Sarah Laoyan contributor headshot

Picture this, you're handling your daily tasks at work and your boss calls you in and says, "We have a problem." 

Unfortunately, we don't live in a world in which problems are instantly resolved with the snap of our fingers. Knowing how to effectively solve problems is an important professional skill to hone. If you have a problem that needs to be solved, what is the right process to use to ensure you get the most effective solution?

In this article we'll break down the problem-solving process and how you can find the most effective solutions for complex problems.

What is problem solving? 

Problem solving is the process of finding a resolution for a specific issue or conflict. There are many possible solutions for solving a problem, which is why it's important to go through a problem-solving process to find the best solution. You could use a flathead screwdriver to unscrew a Phillips head screw, but there is a better tool for the situation. Utilizing common problem-solving techniques helps you find the best solution to fit the needs of the specific situation, much like using the right tools.

Decision-making tools for agile businesses

In this ebook, learn how to equip employees to make better decisions—so your business can pivot, adapt, and tackle challenges more effectively than your competition.

Make good choices, fast: How decision-making processes can help businesses stay agile ebook banner image

4 steps to better problem solving

While it might be tempting to dive into a problem head first, take the time to move step by step. Here’s how you can effectively break down the problem-solving process with your team:

1. Identify the problem that needs to be solved

One of the easiest ways to identify a problem is to ask questions. A good place to start is to ask journalistic questions, like:

Who : Who is involved with this problem? Who caused the problem? Who is most affected by this issue?

What: What is happening? What is the extent of the issue? What does this problem prevent from moving forward?

Where: Where did this problem take place? Does this problem affect anything else in the immediate area? 

When: When did this problem happen? When does this problem take effect? Is this an urgent issue that needs to be solved within a certain timeframe?

Why: Why is it happening? Why does it impact workflows?

How: How did this problem occur? How is it affecting workflows and team members from being productive?

Asking journalistic questions can help you define a strong problem statement so you can highlight the current situation objectively, and create a plan around that situation.

Here’s an example of how a design team uses journalistic questions to identify their problem:

Overarching problem: Design requests are being missed

Who: Design team, digital marketing team, web development team

What: Design requests are forgotten, lost, or being created ad hoc.

Where: Email requests, design request spreadsheet

When: Missed requests on January 20th, January 31st, February 4th, February 6th

How : Email request was lost in inbox and the intake spreadsheet was not updated correctly. The digital marketing team had to delay launching ads for a few days while design requests were bottlenecked. Designers had to work extra hours to ensure all requests were completed.

In this example, there are many different aspects of this problem that can be solved. Using journalistic questions can help you identify different issues and who you should involve in the process.

2. Brainstorm multiple solutions

If at all possible, bring in a facilitator who doesn't have a major stake in the solution. Bringing an individual who has little-to-no stake in the matter can help keep your team on track and encourage good problem-solving skills.

Here are a few brainstorming techniques to encourage creative thinking:

Brainstorm alone before hand: Before you come together as a group, provide some context to your team on what exactly the issue is that you're brainstorming. This will give time for you and your teammates to have some ideas ready by the time you meet.

Say yes to everything (at first): When you first start brainstorming, don't say no to any ideas just yet—try to get as many ideas down as possible. Having as many ideas as possible ensures that you’ll get a variety of solutions. Save the trimming for the next step of the strategy. 

Talk to team members one-on-one: Some people may be less comfortable sharing their ideas in a group setting. Discuss the issue with team members individually and encourage them to share their opinions without restrictions—you might find some more detailed insights than originally anticipated.

Break out of your routine: If you're used to brainstorming in a conference room or over Zoom calls, do something a little different! Take your brainstorming meeting to a coffee shop or have your Zoom call while you're taking a walk. Getting out of your routine can force your brain out of its usual rut and increase critical thinking.

3. Define the solution

After you brainstorm with team members to get their unique perspectives on a scenario, it's time to look at the different strategies and decide which option is the best solution for the problem at hand. When defining the solution, consider these main two questions: What is the desired outcome of this solution and who stands to benefit from this solution? 

Set a deadline for when this decision needs to be made and update stakeholders accordingly. Sometimes there's too many people who need to make a decision. Use your best judgement based on the limitations provided to do great things fast.

4. Implement the solution

To implement your solution, start by working with the individuals who are as closest to the problem. This can help those most affected by the problem get unblocked. Then move farther out to those who are less affected, and so on and so forth. Some solutions are simple enough that you don’t need to work through multiple teams.

After you prioritize implementation with the right teams, assign out the ongoing work that needs to be completed by the rest of the team. This can prevent people from becoming overburdened during the implementation plan . Once your solution is in place, schedule check-ins to see how the solution is working and course-correct if necessary.

Implement common problem-solving strategies

There are a few ways to go about identifying problems (and solutions). Here are some strategies you can try, as well as common ways to apply them:

Trial and error

Trial and error problem solving doesn't usually require a whole team of people to solve. To use trial and error problem solving, identify the cause of the problem, and then rapidly test possible solutions to see if anything changes. 

This problem-solving method is often used in tech support teams through troubleshooting.

The 5 whys problem-solving method helps get to the root cause of an issue. You start by asking once, “Why did this issue happen?” After answering the first why, ask again, “Why did that happen?” You'll do this five times until you can attribute the problem to a root cause. 

This technique can help you dig in and find the human error that caused something to go wrong. More importantly, it also helps you and your team develop an actionable plan so that you can prevent the issue from happening again.

Here’s an example:

Problem: The email marketing campaign was accidentally sent to the wrong audience.

“Why did this happen?” Because the audience name was not updated in our email platform.

“Why were the audience names not changed?” Because the audience segment was not renamed after editing. 

“Why was the audience segment not renamed?” Because everybody has an individual way of creating an audience segment.

“Why does everybody have an individual way of creating an audience segment?” Because there is no standardized process for creating audience segments. 

“Why is there no standardized process for creating audience segments?” Because the team hasn't decided on a way to standardize the process as the team introduced new members. 

In this example, we can see a few areas that could be optimized to prevent this mistake from happening again. When working through these questions, make sure that everyone who was involved in the situation is present so that you can co-create next steps to avoid the same problem. 

A SWOT analysis

A SWOT analysis can help you highlight the strengths and weaknesses of a specific solution. SWOT stands for:

Strength: Why is this specific solution a good fit for this problem? 

Weaknesses: What are the weak points of this solution? Is there anything that you can do to strengthen those weaknesses?

Opportunities: What other benefits could arise from implementing this solution?

Threats: Is there anything about this decision that can detrimentally impact your team?

As you identify specific solutions, you can highlight the different strengths, weaknesses, opportunities, and threats of each solution. 

This particular problem-solving strategy is good to use when you're narrowing down the answers and need to compare and contrast the differences between different solutions. 

Even more successful problem solving

After you’ve worked through a tough problem, don't forget to celebrate how far you've come. Not only is this important for your team of problem solvers to see their work in action, but this can also help you become a more efficient, effective , and flexible team. The more problems you tackle together, the more you’ll achieve. 

Looking for a tool to help solve problems on your team? Track project implementation with a work management tool like Asana .

Related resources

4 step process for problem solving

How to streamline compliance management software with Asana

4 step process for problem solving

How to build your critical thinking skills in 7 steps (with examples)

4 step process for problem solving

10 tips to improve nonverbal communication

4 step process for problem solving

Scaling clinical trial management software with PM solutions

4 step process for problem solving

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

2.1: George Polya's Four Step Problem Solving Process

  • Last updated
  • Save as PDF
  • Page ID 132871

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Step 1: Understand the Problem

  • Do you understand all the words?
  • Can you restate the problem in your own words?
  • Do you know what is given?
  • Do you know what the goal is?
  • Is there enough information?
  • Is there extraneous information?
  • Is this problem similar to another problem you have solved?

Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.)

1. Guess and test. 11. Solve an equivalent problem.
2. Use a variable. 12. Work backwards
3. Draw a picture. 13. Use cases.
4. Look for a pattern. 14. Solve an equation.
5. Make a list. 15. Look for a formula.
6. Solve a simpler problem. 16. Do a simulation.
7. Draw a diagram. 17. Use a model
8. Use direct reasoning.  

IMAGES

  1. 4 Step Problem Solving PowerPoint and Google Slides Template

    4 step process for problem solving

  2. different stages of problem solving

    4 step process for problem solving

  3. Steps to Improve Problem Solving Skills in Customer Service

    4 step process for problem solving

  4. 4 Steps Of Problem Solving Process Good Ppt Example

    4 step process for problem solving

  5. 4 Steps Problem Solving Template

    4 step process for problem solving

  6. Elegant 4 Steps Of Problem Solving PowerPoint Presentation

    4 step process for problem solving

VIDEO

  1. Rapid Problem Solving Webinar: Discover the 4 Step Methodology

  2. The Composition Process: Problem Solving, James Hartway

  3. I Went to the ER With Crushing Chest Pain and Discovered the Most Important, Most Commonly Deficient

  4. Master Problem-Solving: Unveiling Kidlin's Law! 🔍✍️ #ProblemSolving #KidlinsLaw #Clarity

  5. Problem Solving

  6. "Mastering Derivatives: Finding dy/dx of (x^2 + 4x + 6)^2

COMMENTS

  1. The easy 4 step problem-solving process (+ examples)

    Less skilled problem solvers believe step 4 is the root cause of their difficulties. In this instance, they simply believe they have limited problem-solving skills. This is a fixed versus growth mindset and it makes a huge difference in the effort you put forth and the belief you have in yourself to make use of this step-by-step process.

  2. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  3. PDF The 4-Step Problem-Solving Process

    The 4-Step Problem-Solving Process. This document is the third in a series intended to help school and district leaders maximize the effectiveness and fluidity of their multi-tiered system of supports (MTSS) across different learning environments. Specifically, the document is designed to support the use of problem solving to improve outcomes ...

  4. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  5. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  6. The Art of Effective Problem Solving: A Step-by-Step Guide

    Step 1 - Define the Problem. The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause.

  7. PDF 4-Step Process for Problem Solving

    Choose a strategy, or combination of strategies. Make a record of false starts, and your corrections. Carry out the plan. Clearly and precisely describe verbally each step of the plan. Verify that each step has been done correctly. Provide mathematical justification for the step (a convincing argument)

  8. A guide to problem-solving techniques, steps, and skills

    When it comes to problem-solving there are seven key steps that you should follow: define the problem, disaggregate, prioritize problem branches, create an analysis plan, conduct analysis, synthesis, and communication. 1. Define the problem. Problem-solving begins with a clear understanding of the issue at hand.

  9. 10.1: George Polya's Four Step Problem Solving Process

    Is this problem similar to another problem you have solved? Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1.

  10. How to Solve a Problem in Four Steps: The IDEA Model

    A highly sought after skill, learn a simple yet effective four step problem solving process using the concept IDEA to identify the problem, develop solutions...

  11. 5 Steps (And 4 Techniques) for Effective Problem Solving

    4. Implement the Solution. At this stage of problem solving, be prepared for feedback, and plan for this. When you roll out the solution, request feedback on the success of the change made. 5. Review, Iterate, and Improve. Making a change shouldn't be a one time action.

  12. An Overview of 4-Step Problem Solving

    This online course is intended to provide users with an understanding of the broad concepts of the 4-step problem solving process. The course includes the critical elements and guiding questions within each step, features sample data sources, and provides checks for understanding throughout. If you have a Thinkific account, access An Overview ...

  13. Problem Solving

    Problem Solving is the process of identifying, analyzing, and finding effective solutions to complex issues or challenges. Key Steps in Problem Solving: Identification of the problem: Recognizing and clearly defining the issue that needs to be resolved. Analysis and research: Gathering relevant information, data, and facts to understand the ...

  14. 4 Steps to Efficiently Solve Problems

    The Steps (and the Pre-Step) The framework consists of four steps and a very important pre-step. The four steps are as follows: Analyze —Understand the root cause. Plan —Determine how to resolve the problem. Implement —Put the resolution in place. Evaluate —Determine if the resolution is producing the desired results.

  15. The Problem-Solving Process

    Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity. Some, such as the resolution of a serious ...

  16. Easy Problem Solving Using the 4-step Method

    The 4-step Problem Solving Method. The model we've used with clients is based on the A3 problem-solving methodology used by many "lean" production-based companies. ... Through the 5-why process, you can get to the root cause and fix the problem permanently. Step 3: Rank Root Causes ...

  17. IDEA Model 4-Step Problem Solving

    How to Solve a Problem in Four Steps - The I.D.E.A. Model. A highly sought after skill, learn a simple yet effective four step problem solving process using the concept IDEA to identify the problem, develop solutions, execute a plan and then assess your results.

  18. PDF What do we need to know about the 4-step problem solving process?

    process is most effective when used by teams of educators with a variety of expertise to accelerate students educational performance. Family engagement is a critical element to ensure successful outcomes of the problem-solving process. The 4-step process is a proven and well-established method of identifying, implementing and evaluating

  19. Problem Solving Strategies for the Workplace [2024] • Asana

    4 steps to better problem solving. While it might be tempting to dive into a problem head first, take the time to move step by step. Here's how you can effectively break down the problem-solving process with your team: 1. Identify the problem that needs to be solved. One of the easiest ways to identify a problem is to ask questions.

  20. PDF Polya's four-step approach to problem solving

    To begin this task, we now discuss a framework for thinking about problem solving: Polya's four-step approach to problem solving. Polya's four-step approach to problem solving 1. Preparation: Understand the problem Learn the necessary underlying mathematical concepts Consider the terminology and notation used in the problem: 1.

  21. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more.

  22. 2.1: George Polya's Four Step Problem Solving Process

    Is there enough information? Is there extraneous information? Is this problem similar to another problem you have solved? Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1.

  23. Introducing OpenAI o1

    A new series of reasoning models for solving hard problems. Available starting 9.12 ... Through training, they learn to refine their thinking process, try different strategies, and recognize their mistakes. ... This was an important first step in our partnership, helping to establish a process for research, evaluation, and testing of future ...