loading

Problem-Solving in Science and Technology Education

  • First Online: 25 February 2023

Cite this chapter

materi scientific problem solving

  • Bulent Çavaş 13 ,
  • Pınar Çavaş 14 &
  • Yasemin Özdem Yılmaz 15  

Part of the book series: Contemporary Trends and Issues in Science Education ((CTISE,volume 56))

545 Accesses

1 Citations

This chapter focuses on problem-solving, which involves describing a problem, figuring out its root cause, locating, ranking and choosing potential solutions, as well as putting those solutions into action in science and technology education. This chapter covers (1) what problem-solving means for science and technology education; (2) what the problem-solving processes are and how these processes can be used step-by-step for effective problem-solving and (3) the use of problem-solving in citizen science projects supported by the European Union. The chapter also includes discussion of and recommendations for future scientific research in the field of science and technology education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

materi scientific problem solving

Designing Problem-Solving for Meaningful Learning: A Discussion of Asia-Pacific Research

materi scientific problem solving

The Place of Problems in Problem Based Learning: A Case of Mathematics and Teacher Education

materi scientific problem solving

An Alternative Method to Promote Pupils’ Mathematical Understanding via Problem Solving

Anderson, H. O. (1967). Problem-solving and science teaching. School Science and Mathematics, 67 (3), 243–251. https://doi.org/10.1111/j.1949-8594.1967.tb15151.x

Article   Google Scholar  

Ausubel, D. P. (1968). Educational psychology: A cognitive view . Holt, Rinehart and Winston.

Google Scholar  

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twentyfirst century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17–66). Springer.

Bransford, J. D., & Stein, B. S. (1984). The IDEAL problem solver: A guide to improving thinking . W.H. Freeman & Co.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5 , 121–152.

Chin, C., & Chia, L. G. (2006). Problem-based learning: Using ill-structured problems in biology project work. Science Education, 90 (1), 44–67.

Egger, A. E., & Carpi, A. (2008). Data analysis and interpretation. Visionlearning, POS-1 , (1).

Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly, 36 (4), 195–200.

Gallagher, S. A., Sher, B. T., Stepien, W. J., & Workman, D. (1995). Implementing problem-based learning in science classrooms. School Science and Mathematics, 95 (3), 136–146.

Garrett, R. M. (1986). Problem-solving in science education. Studies in Science Education, 13 , 70–95.

Glaser, R. (1992). Expert knowledge and processes of thinking. In D. F. Halpern (Ed.), Enhancing thinking skills in the sciences and mathematics (pp. 63–76). Erlbaum.

Greenwald, N. L. (2000). Learning from problems. The Science Teacher, 67 (4), 28–32.

Hobden, P. (1998). The role of routine problem tasks in science teaching. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education, Vol. 1 (pp. 219–231).

Chapter   Google Scholar  

Ioannidou, O., & Erduran, S. (2021). Beyond hypothesis testing. Science & Education, 30 , 345–364. https://doi.org/10.1007/s11191-020-00185-9

Jonassen, D. H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes. Educational Technology Research and Development, 45 (1), 65–94.

Koberg, D., & Bagnall, J. (1981). The design process is a problem-solving journey. In D. Koberg & J. Bagnall (Eds.), The all new universal Traveler: A soft-systems guide to creativity, problem-solving, and the process of reaching goals (pp. 16–17). William Kaufmann Inc.

Lawson, M. J. (2003). Problem solving. In J. P. Keeves et al. (Eds.), International handbook of educational research in the Asia-Pacific region ( Springer International Handbooks of Education, vol 11 ). Springer. https://doi.org/10.1007/978-94-017-3368-7_35

Mahanal, S., Zubaidah, S., Setiawan, D., Maghfiroh, H., & Muhaimin, F. G. (2022). ‘Empowering college students’ Problem-solving skills through RICOSRE’. Education Sciences, 12 (3), 196.

McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education (pp. 53–70). Springer.

Milopoulos, G., & Cerri, L. (2020). Recommendation for future use . EPINOIA S.A.

Murphy, P., & McCormick, R. (1997). Problem solving in science and technology education. Research in Science Education, 27 (3), 461–481.

Nezu, A. M. (2004). Problem solving and behavior therapy revisited. Behavior Therapy, 35 (1), 1–33. https://doi.org/10.1016/s0005-7894(04)80002-9

OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, Reading, science, problem solving and financial literacy . OECD. https://doi.org/10.1787/9789264190511-en

Book   Google Scholar  

Osborn, A. (1953). Applied imagination . Charles Scribner.

Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections . Nuffield Foundation.

Pérez, D. G., & Torregrosa, J. M. (1983). A model for problem-solving in accordance with scientific methodology. European Journal of Science Education, 5 (4), 447–455. https://doi.org/10.1080/0140528830050408

Pizzini, E. L. (1989). A rationale for and the development of a problem-solving model of instruction in science education. Science Education, 73 (5), 523–534.

Presseisen, B. Z. (1985). Thinking skills throughout the curriculum: A conceptual design . Research for Better Schools, Inc.

Sampson, V., Enderle, P., & Grooms, J. (2013). Argumentation in science education. The Science Teacher, 80 (5), 30.

Simon, H. A. (1973). The structure of ill-structured problems. Artificial Intelligence, 4 (3–4), 181–201.

Taconis, R. (1995). Understanding based problem solving . [Unpuplished PhD thesis],. University of Eindhoven.

Taconis, R., Ferguson-Hessler, M. G. M., & Broekkamp, H. (2001). Teaching science problem solving: An overview of experimental work. Journal of Research in Science Teaching, 38 (4), 442–468.

von Hippel, E., & von Kroch, G. (2016). Identifying viable “need-solution pairs”: Problem solving without problem formulation. Organization Science, 27 (1), 207–221. https://doi.org/10.1287/orsc.2015.1023

Woods, D. R. (1987). How might I teach problem solving? New Directions for Teaching and Learning, 30 , 55–71.

Download references

Author information

Authors and affiliations.

Faculty of Education, Dokuz Eylül University, Buca, Izmir, Türkiye

Bulent Çavaş

Faculty of Education, Ege University, Bornova, Izmir, Türkiye

Pınar Çavaş

Muğla Sıtkı Koçman University, Faculty of Education, Muğla, Türkiye

Yasemin Özdem Yılmaz

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Bulent Çavaş .

Editor information

Editors and affiliations.

The STAN Place, Science Teachers Association of Nigeria, Abuja, Nigeria

Faculty of Education, Dokuz Eylul Universitesi, Buca, Turkey

Bulent Cavas

SOE, BEP 229F, University of Texas at Tyler, Tyler, TX, USA

Teresa Kennedy

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Çavaş, B., Çavaş, P., Yılmaz, Y.Ö. (2023). Problem-Solving in Science and Technology Education. In: Akpan, B., Cavas, B., Kennedy, T. (eds) Contemporary Issues in Science and Technology Education. Contemporary Trends and Issues in Science Education, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-031-24259-5_18

Download citation

DOI : https://doi.org/10.1007/978-3-031-24259-5_18

Published : 25 February 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-24258-8

Online ISBN : 978-3-031-24259-5

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

What is the Scientific Method: How does it work and why is it important?

The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA. This ongoing approach promotes reason, evidence, and the pursuit of truth in science.

Updated on November 18, 2023

What is the Scientific Method: How does it work and why is it important?

Beginning in elementary school, we are exposed to the scientific method and taught how to put it into practice. As a tool for learning, it prepares children to think logically and use reasoning when seeking answers to questions.

Rather than jumping to conclusions, the scientific method gives us a recipe for exploring the world through observation and trial and error. We use it regularly, sometimes knowingly in academics or research, and sometimes subconsciously in our daily lives.

In this article we will refresh our memories on the particulars of the scientific method, discussing where it comes from, which elements comprise it, and how it is put into practice. Then, we will consider the importance of the scientific method, who uses it and under what circumstances.

What is the scientific method?

The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation . Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.

The following representations of the scientific method illustrate how it can be both condensed into broad categories and also expanded to reveal more and more details of the process. These graphics capture the adaptability that makes this concept universally valuable as it is relevant and accessible not only across age groups and educational levels but also within various contexts.

a graph of the scientific method

Steps in the scientific method

While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving:

  • Define a question : Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must lend itself to experimentation by posing a question that is both testable and measurable.
  • Gather information and resources : Researching the topic in question to find out what is already known and what types of related questions others are asking is the next step in this process. This background information is vital to gaining a full understanding of the subject and in determining the best design for experiments. 
  • Form a hypothesis : Composing a concise statement that identifies specific variables and potential results, which can then be tested, is a crucial step that must be completed before any experimentation. An imperfection in the composition of a hypothesis can result in weaknesses to the entire design of an experiment.
  • Perform the experiments : Testing the hypothesis by performing replicable experiments and collecting resultant data is another fundamental step of the scientific method. By controlling some elements of an experiment while purposely manipulating others, cause and effect relationships are established.
  • Analyze the data : Interpreting the experimental process and results by recognizing trends in the data is a necessary step for comprehending its meaning and supporting the conclusions. Drawing inferences through this systematic process lends substantive evidence for either supporting or rejecting the hypothesis.
  • Report the results : Sharing the outcomes of an experiment, through an essay, presentation, graphic, or journal article, is often regarded as a final step in this process. Detailing the project's design, methods, and results not only promotes transparency and replicability but also adds to the body of knowledge for future research.
  • Retest the hypothesis : Repeating experiments to see if a hypothesis holds up in all cases is a step that is manifested through varying scenarios. Sometimes a researcher immediately checks their own work or replicates it at a future time, or another researcher will repeat the experiments to further test the hypothesis.

a chart of the scientific method

Where did the scientific method come from?

Oftentimes, ancient peoples attempted to answer questions about the unknown by:

  • Making simple observations
  • Discussing the possibilities with others deemed worthy of a debate
  • Drawing conclusions based on dominant opinions and preexisting beliefs

For example, take Greek and Roman mythology. Myths were used to explain everything from the seasons and stars to the sun and death itself.

However, as societies began to grow through advancements in agriculture and language, ancient civilizations like Egypt and Babylonia shifted to a more rational analysis for understanding the natural world. They increasingly employed empirical methods of observation and experimentation that would one day evolve into the scientific method . 

In the 4th century, Aristotle, considered the Father of Science by many, suggested these elements , which closely resemble the contemporary scientific method, as part of his approach for conducting science:

  • Study what others have written about the subject.
  • Look for the general consensus about the subject.
  • Perform a systematic study of everything even partially related to the topic.

a pyramid of the scientific method

By continuing to emphasize systematic observation and controlled experiments, scholars such as Al-Kindi and Ibn al-Haytham helped expand this concept throughout the Islamic Golden Age . 

In his 1620 treatise, Novum Organum , Sir Francis Bacon codified the scientific method, arguing not only that hypotheses must be tested through experiments but also that the results must be replicated to establish a truth. Coming at the height of the Scientific Revolution, this text made the scientific method accessible to European thinkers like Galileo and Isaac Newton who then put the method into practice.

As science modernized in the 19th century, the scientific method became more formalized, leading to significant breakthroughs in fields such as evolution and germ theory. Today, it continues to evolve, underpinning scientific progress in diverse areas like quantum mechanics, genetics, and artificial intelligence.

Why is the scientific method important?

The history of the scientific method illustrates how the concept developed out of a need to find objective answers to scientific questions by overcoming biases based on fear, religion, power, and cultural norms. This still holds true today.

By implementing this standardized approach to conducting experiments, the impacts of researchers’ personal opinions and preconceived notions are minimized. The organized manner of the scientific method prevents these and other mistakes while promoting the replicability and transparency necessary for solid scientific research.

The importance of the scientific method is best observed through its successes, for example: 

  • “ Albert Einstein stands out among modern physicists as the scientist who not only formulated a theory of revolutionary significance but also had the genius to reflect in a conscious and technical way on the scientific method he was using.” Devising a hypothesis based on the prevailing understanding of Newtonian physics eventually led Einstein to devise the theory of general relativity .
  • Howard Florey “Perhaps the most useful lesson which has come out of the work on penicillin has been the demonstration that success in this field depends on the development and coordinated use of technical methods.” After discovering a mold that prevented the growth of Staphylococcus bacteria, Dr. Alexander Flemimg designed experiments to identify and reproduce it in the lab, thus leading to the development of penicillin .
  • James D. Watson “Every time you understand something, religion becomes less likely. Only with the discovery of the double helix and the ensuing genetic revolution have we had grounds for thinking that the powers held traditionally to be the exclusive property of the gods might one day be ours. . . .” By using wire models to conceive a structure for DNA, Watson and Crick crafted a hypothesis for testing combinations of amino acids, X-ray diffraction images, and the current research in atomic physics, resulting in the discovery of DNA’s double helix structure .

Final thoughts

As the cases exemplify, the scientific method is never truly completed, but rather started and restarted. It gave these researchers a structured process that was easily replicated, modified, and built upon. 

While the scientific method may “end” in one context, it never literally ends. When a hypothesis, design, methods, and experiments are revisited, the scientific method simply picks up where it left off. Each time a researcher builds upon previous knowledge, the scientific method is restored with the pieces of past efforts.

By guiding researchers towards objective results based on transparency and reproducibility, the scientific method acts as a defense against bias, superstition, and preconceived notions. As we embrace the scientific method's enduring principles, we ensure that our quest for knowledge remains firmly rooted in reason, evidence, and the pursuit of truth.

The AJE Team

The AJE Team

See our "Privacy Policy"

AIP Publishing Logo

  • Previous Article
  • Next Article

The achieving of students’ mathematical problem solving abilities in scientific learning

[email protected]

[email protected]

[email protected]

  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Reprints and Permissions
  • Cite Icon Cite
  • Search Site

Agung Putra Wijaya , W. Widyastuti , Sri Suryanti , Muhammad Noor Kholid; The achieving of students’ mathematical problem solving abilities in scientific learning. AIP Conf. Proc. 12 October 2023; 2824 (1): 060008. https://doi.org/10.1063/5.0158951

Download citation file:

  • Ris (Zotero)
  • Reference Manager

This quasi experimental research was aimed to analyze the achieving of students’ mathematical problem solving abilities in scientific learning compared to direct learning. The population of this research was students of grade 7 of junior high school in South Lampung as many as 224 students that were distributed into 7 classes. The sample was chosen by cluster random sampling technique. 29 students of 7A were as experimental class which taught by scientific learning and 29 students of 7B were as control class which was taught by direct learning. This research used the randomized pre-test and post-test control group design. The data were obtained by essay test of mathematical problem solving abilities in proportion topic. The data analysis was done by Mann-Whitney U and proportion test. It was gotten that (1) gain of students’ mathematical problem solving abilities taught by scientific learning was not higher than direct learning, (2) proportion of students who have good categorized of mathematical problem solving abilities in scientific learning was not higher than direct learning, and (3) the scientific learning was better than direct learning in achieving of indicator of devising a plan and looking back. Also, the direct learning was better than scientific learning in achieving of indicator of understanding the problem and carrying out the plan. Thus, the scientific learning was not better than direct learning in facilitating the achievement of mathematical problem solving abilities. The recommendation was reasoning and communicating should be the focus on scientific learning.

Citing articles via

Publish with us - request a quote.

materi scientific problem solving

Sign up for alerts

  • Online ISSN 1551-7616
  • Print ISSN 0094-243X
  • For Researchers
  • For Librarians
  • For Advertisers
  • Our Publishing Partners  
  • Physics Today
  • Conference Proceedings
  • Special Topics

pubs.aip.org

  • Privacy Policy
  • Terms of Use

Connect with AIP Publishing

This feature is available to subscribers only.

Sign In or Create an Account

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

The 6 Scientific Method Steps and How to Use Them

author image

General Education

feature_microscope-1

When you’re faced with a scientific problem, solving it can seem like an impossible prospect. There are so many possible explanations for everything we see and experience—how can you possibly make sense of them all? Science has a simple answer: the scientific method.

The scientific method is a method of asking and answering questions about the world. These guiding principles give scientists a model to work through when trying to understand the world, but where did that model come from, and how does it work?

In this article, we’ll define the scientific method, discuss its long history, and cover each of the scientific method steps in detail.

What Is the Scientific Method?

At its most basic, the scientific method is a procedure for conducting scientific experiments. It’s a set model that scientists in a variety of fields can follow, going from initial observation to conclusion in a loose but concrete format.

The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation, as well as examining your thinking through rigorous study.

There are in fact multiple scientific methods, as the basic structure can be easily modified.  The one we typically learn about in school is the basic method, based in logic and problem solving, typically used in “hard” science fields like biology, chemistry, and physics. It may vary in other fields, such as psychology, but the basic premise of making observations, testing, and continuing to improve a theory from the results remain the same.

body_history

The History of the Scientific Method

The scientific method as we know it today is based on thousands of years of scientific study. Its development goes all the way back to ancient Mesopotamia, Greece, and India.

The Ancient World

In ancient Greece, Aristotle devised an inductive-deductive process , which weighs broad generalizations from data against conclusions reached by narrowing down possibilities from a general statement. However, he favored deductive reasoning, as it identifies causes, which he saw as more important.

Aristotle wrote a great deal about logic and many of his ideas about reasoning echo those found in the modern scientific method, such as ignoring circular evidence and limiting the number of middle terms between the beginning of an experiment and the end. Though his model isn’t the one that we use today, the reliance on logic and thorough testing are still key parts of science today.

The Middle Ages

The next big step toward the development of the modern scientific method came in the Middle Ages, particularly in the Islamic world. Ibn al-Haytham, a physicist from what we now know as Iraq, developed a method of testing, observing, and deducing for his research on vision. al-Haytham was critical of Aristotle’s lack of inductive reasoning, which played an important role in his own research.

Other scientists, including Abū Rayhān al-Bīrūnī, Ibn Sina, and Robert Grosseteste also developed models of scientific reasoning to test their own theories. Though they frequently disagreed with one another and Aristotle, those disagreements and refinements of their methods led to the scientific method we have today.

Following those major developments, particularly Grosseteste’s work, Roger Bacon developed his own cycle of observation (seeing that something occurs), hypothesis (making a guess about why that thing occurs), experimentation (testing that the thing occurs), and verification (an outside person ensuring that the result of the experiment is consistent).

After joining the Franciscan Order, Bacon was granted a special commission to write about science; typically, Friars were not allowed to write books or pamphlets. With this commission, Bacon outlined important tenets of the scientific method, including causes of error, methods of knowledge, and the differences between speculative and experimental science. He also used his own principles to investigate the causes of a rainbow, demonstrating the method’s effectiveness.

Scientific Revolution

Throughout the Renaissance, more great thinkers became involved in devising a thorough, rigorous method of scientific study. Francis Bacon brought inductive reasoning further into the method, whereas Descartes argued that the laws of the universe meant that deductive reasoning was sufficient. Galileo’s research was also inductive reasoning-heavy, as he believed that researchers could not account for every possible variable; therefore, repetition was necessary to eliminate faulty hypotheses and experiments.

All of this led to the birth of the Scientific Revolution , which took place during the sixteenth and seventeenth centuries. In 1660, a group of philosophers and physicians joined together to work on scientific advancement. After approval from England’s crown , the group became known as the Royal Society, which helped create a thriving scientific community and an early academic journal to help introduce rigorous study and peer review.

Previous generations of scientists had touched on the importance of induction and deduction, but Sir Isaac Newton proposed that both were equally important. This contribution helped establish the importance of multiple kinds of reasoning, leading to more rigorous study.

As science began to splinter into separate areas of study, it became necessary to define different methods for different fields. Karl Popper was a leader in this area—he established that science could be subject to error, sometimes intentionally. This was particularly tricky for “soft” sciences like psychology and social sciences, which require different methods. Popper’s theories furthered the divide between sciences like psychology and “hard” sciences like chemistry or physics.

Paul Feyerabend argued that Popper’s methods were too restrictive for certain fields, and followed a less restrictive method hinged on “anything goes,” as great scientists had made discoveries without the Scientific Method. Feyerabend suggested that throughout history scientists had adapted their methods as necessary, and that sometimes it would be necessary to break the rules. This approach suited social and behavioral scientists particularly well, leading to a more diverse range of models for scientists in multiple fields to use.

body_experiment-3

The Scientific Method Steps

Though different fields may have variations on the model, the basic scientific method is as follows:

#1: Make Observations 

Notice something, such as the air temperature during the winter, what happens when ice cream melts, or how your plants behave when you forget to water them.

#2: Ask a Question

Turn your observation into a question. Why is the temperature lower during the winter? Why does my ice cream melt? Why does my toast always fall butter-side down?

This step can also include doing some research. You may be able to find answers to these questions already, but you can still test them!

#3: Make a Hypothesis

A hypothesis is an educated guess of the answer to your question. Why does your toast always fall butter-side down? Maybe it’s because the butter makes that side of the bread heavier.

A good hypothesis leads to a prediction that you can test, phrased as an if/then statement. In this case, we can pick something like, “If toast is buttered, then it will hit the ground butter-first.”

#4: Experiment

Your experiment is designed to test whether your predication about what will happen is true. A good experiment will test one variable at a time —for example, we’re trying to test whether butter weighs down one side of toast, making it more likely to hit the ground first.

The unbuttered toast is our control variable. If we determine the chance that a slice of unbuttered toast, marked with a dot, will hit the ground on a particular side, we can compare those results to our buttered toast to see if there’s a correlation between the presence of butter and which way the toast falls.

If we decided not to toast the bread, that would be introducing a new question—whether or not toasting the bread has any impact on how it falls. Since that’s not part of our test, we’ll stick with determining whether the presence of butter has any impact on which side hits the ground first.

#5: Analyze Data

After our experiment, we discover that both buttered toast and unbuttered toast have a 50/50 chance of hitting the ground on the buttered or marked side when dropped from a consistent height, straight down. It looks like our hypothesis was incorrect—it’s not the butter that makes the toast hit the ground in a particular way, so it must be something else.

Since we didn’t get the desired result, it’s back to the drawing board. Our hypothesis wasn’t correct, so we’ll need to start fresh. Now that you think about it, your toast seems to hit the ground butter-first when it slides off your plate, not when you drop it from a consistent height. That can be the basis for your new experiment.

#6: Communicate Your Results

Good science needs verification. Your experiment should be replicable by other people, so you can put together a report about how you ran your experiment to see if other peoples’ findings are consistent with yours.

This may be useful for class or a science fair. Professional scientists may publish their findings in scientific journals, where other scientists can read and attempt their own versions of the same experiments. Being part of a scientific community helps your experiments be stronger because other people can see if there are flaws in your approach—such as if you tested with different kinds of bread, or sometimes used peanut butter instead of butter—that can lead you closer to a good answer.

body_toast-1

A Scientific Method Example: Falling Toast

We’ve run through a quick recap of the scientific method steps, but let’s look a little deeper by trying again to figure out why toast so often falls butter side down.

#1: Make Observations

At the end of our last experiment, where we learned that butter doesn’t actually make toast more likely to hit the ground on that side, we remembered that the times when our toast hits the ground butter side first are usually when it’s falling off a plate.

The easiest question we can ask is, “Why is that?”

We can actually search this online and find a pretty detailed answer as to why this is true. But we’re budding scientists—we want to see it in action and verify it for ourselves! After all, good science should be replicable, and we have all the tools we need to test out what’s really going on.

Why do we think that buttered toast hits the ground butter-first? We know it’s not because it’s heavier, so we can strike that out. Maybe it’s because of the shape of our plate?

That’s something we can test. We’ll phrase our hypothesis as, “If my toast slides off my plate, then it will fall butter-side down.”

Just seeing that toast falls off a plate butter-side down isn’t enough for us. We want to know why, so we’re going to take things a step further—we’ll set up a slow-motion camera to capture what happens as the toast slides off the plate.

We’ll run the test ten times, each time tilting the same plate until the toast slides off. We’ll make note of each time the butter side lands first and see what’s happening on the video so we can see what’s going on.

When we review the footage, we’ll likely notice that the bread starts to flip when it slides off the edge, changing how it falls in a way that didn’t happen when we dropped it ourselves.

That answers our question, but it’s not the complete picture —how do other plates affect how often toast hits the ground butter-first? What if the toast is already butter-side down when it falls? These are things we can test in further experiments with new hypotheses!

Now that we have results, we can share them with others who can verify our results. As mentioned above, being part of the scientific community can lead to better results. If your results were wildly different from the established thinking about buttered toast, that might be cause for reevaluation. If they’re the same, they might lead others to make new discoveries about buttered toast. At the very least, you have a cool experiment you can share with your friends!

Key Scientific Method Tips

Though science can be complex, the benefit of the scientific method is that it gives you an easy-to-follow means of thinking about why and how things happen. To use it effectively, keep these things in mind!

Don’t Worry About Proving Your Hypothesis

One of the important things to remember about the scientific method is that it’s not necessarily meant to prove your hypothesis right. It’s great if you do manage to guess the reason for something right the first time, but the ultimate goal of an experiment is to find the true reason for your observation to occur, not to prove your hypothesis right.

Good science sometimes means that you’re wrong. That’s not a bad thing—a well-designed experiment with an unanticipated result can be just as revealing, if not more, than an experiment that confirms your hypothesis.

Be Prepared to Try Again

If the data from your experiment doesn’t match your hypothesis, that’s not a bad thing. You’ve eliminated one possible explanation, which brings you one step closer to discovering the truth.

The scientific method isn’t something you’re meant to do exactly once to prove a point. It’s meant to be repeated and adapted to bring you closer to a solution. Even if you can demonstrate truth in your hypothesis, a good scientist will run an experiment again to be sure that the results are replicable. You can even tweak a successful hypothesis to test another factor, such as if we redid our buttered toast experiment to find out whether different kinds of plates affect whether or not the toast falls butter-first. The more we test our hypothesis, the stronger it becomes!

What’s Next?

Want to learn more about the scientific method? These important high school science classes will no doubt cover it in a variety of different contexts.

Test your ability to follow the scientific method using these at-home science experiments for kids !

Need some proof that science is fun? Try making slime

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Melissa Brinks graduated from the University of Washington in 2014 with a Bachelor's in English with a creative writing emphasis. She has spent several years tutoring K-12 students in many subjects, including in SAT prep, to help them prepare for their college education.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

SlidePlayer

  • My presentations

Auth with social network:

Download presentation

We think you have liked this presentation. If you wish to download it, please recommend it to your friends in any social system. Share buttons are a little bit lower. Thank you!

Presentation is loading. Please wait.

Scientific Problem Solving

Published by Byron Cooper Modified over 8 years ago

Similar presentations

Presentation on theme: "Scientific Problem Solving"— Presentation transcript:

Scientific Problem Solving

The Scientific Method: DR HERC

materi scientific problem solving

Scientific Method.

materi scientific problem solving

Scientific Method Practice

materi scientific problem solving

November 14, 2014 Objectives: ◦ Differentiate between independent variables, dependent variables, and constants ◦ Explain how to carry out a scientific.

materi scientific problem solving

Introduction to Science: The Scientific Method

materi scientific problem solving

Physical Science CP Chapter 1

materi scientific problem solving

The Scientific Method Physics.

materi scientific problem solving

@earthscience92. What is Science? Science – The systematic study of natural events and condition. Anything in living or nonliving world Scientific knowledge.

materi scientific problem solving

Section 1- The Methods of Science. What is Science Science comes from Latin word scientia… which means knowledge. Science comes from Latin word scientia…

materi scientific problem solving

Aim: What are the steps to the Scientific Method?

materi scientific problem solving

The Scientific Method Organized Common Sense. Scientific Method  The scientific Method is a method of answering scientific question.

materi scientific problem solving

The Nature of Science Hello my future scientists!!!

materi scientific problem solving

Chapter: The Nature of Science

materi scientific problem solving

Chapter 1: The Nature of Science Table of Contents Section 1-2 Science in Action.

materi scientific problem solving

To return to the chapter summary click Escape or close this document. Chapter Resources Click on one of the following icons to go to that resource. Image.

materi scientific problem solving

The Scientific Method. What is the scientific method? A process of gathering facts through observation and formulating scientific hypotheses. A process.

materi scientific problem solving

The scientific method is a series of steps that scientists use to answer questions or solve problems. Steps: 1.Make observations 2. Ask a question 3.Form.

materi scientific problem solving

Scientific Method Chapter 1, pgs

materi scientific problem solving

About project

© 2024 SlidePlayer.com Inc. All rights reserved.

serupa.id

seni belajar untuk hidup

Problem Solving (Pemecahan Masalah) : Pengertian, Indikator, Faktor, dsb

materi scientific problem solving

Daftar Isi ⇅ show

Salah satu keterampilan yang digaungkan untuk menghadapi era pendidikan abad 21 adalah problem solving atau pemecahan masalah. Pemecahan masalah merupakan salah satu skill set penting untuk menghadapi tuntutan hidup di zaman yang serba cepat ini. Mengapa? Karena kecepatan dan ketelitian merupakan hal yang amat berbenturan, dan ketika kita ingin mewujudkannya, maka akan timbul banyak permasalahan, yakni kesenjangan antara harapan dan kenyataan. Dengan demikian keterampilan problem solving amatlah dibutuhkan di masa ini.

Namun demikian tidak usah menyalahkan kebutuhan abad 21, revolusi industri 4.0, atau pengaruh globalisasi juga pada dasarnya setiap orang akan menghadapi masalah. Kita semua akan selalu menemui masalah dalam kehidupan sehari-hari dan akan selalu berusaha untuk memecahkannya. Tentunya tingkat kesulitannya amatlah beragam, mulai dari yang sudah memiliki langkah untuk menyelesaikannya, hingga masalah baru yang lebih sulit untuk dipecahkan.

Oleh karena itu problem solving serta kemampuan memecahkan masalah merupakan konsep dan keterampilan penting yang harus dipahami dan dikuasai. Berikut adalah berbagai uraian mengenai problem solving atau pemecahan masalah mulai dari pengertian, indikator, hingga faktor-faktor yang memengaruhinya.

Pengertian Problem Solving

Menurut Uno (2014, hlm. 134) problem solving adalah kemampuan untuk menggunakan proses berpikir dalam memecahkan masalah dengan mengumpulkan fakta, menganalisis informasi, penyusunan alternatif solusi, serta memilih solusi masalah yang lebih efektif. Artinya problem solving merupakan pencarian solusi melalui proses berpikir yang sistematis.

Sementara itu menurut Lucenario dkk (dalam Khoiriyah & Husana, 2018, hlm. 151) problem solving adalah aktivitas yang membutuhkan seseorang antuk memilih jalan keluar yang dapat dilakukan berdasarkan kemampuan yang dimilikinya yang berarti melakukan pergerakan antara keadaan sekarang dengan kondisi yang diharapkan. Hal ini berkaitan dengan definisi masalah yang berarti kenyataan yang tidak sesuai dengan kenyataan, dan problem solving berusaha untuk memperbaiki kenyataan tersebut menjadi sesuai dengan harapan.

Selanjutnya, menurut Solso (dalam Mawaddah, 2015) pemecahan masalah adalah suatu pemikiran yang terarah secara langsung untuk menentukan solusi atau jalan keluar untuk suatu masalah yang spesifik. Tentunya solusi spesifik berarti solusi yang sesuai dengan masalah yang terjadi. Selain itu, Gagne dalam (Made, 2016, hlm. 52) mengemukakan bahwa problem solving dapat dipandang sebagai suatu proses untuk menemukan kombinasi dari sejumlah aturan yang dapat diterapkan dalam upaya mengatasi situasi yang baru. Kombinasi dari sejumlah aturan dapat dipahami sebagai algoritma atau langkah-langkah yang dapat menyelesaikan suatu permasalahan.

Berdasarkan pendapat-pendapat ahli di atas dapat disimpulkan bahwa problem solving adalah aktivitas proses berpikir untuk mencari solusi berupa suatu prosedur atau langkah yang spesifik dalam menyelesaikan suatu permasalahan secara sistematis berdasarkan kemampuan yang dimilikinya.

Jenis Masalah

Terdapat beberapa jenis masalah, yaitu:

  • Masalah yang prosedur pemecahannya sudah ada dan telah diketahui siswa;
  • Masalah yang prosedur pemecahannya belum diketahui oleh siswa;
  • Masalah yang sama sekali belum diketahui prosedur pemecahannya dan atau belum diketahui data yang diperlukan untuk mencari solusinya.

Tentunya dalam pendidikan abad 21, kemampuan pemecahan masalah yang diharapkan dapat dikuasai adalah penyelesaian masalah terhadap masalah yang belum diketahui prosedur pemecahannya dan atau belum diketahui data yang diperlukan untuk mencari solusinya.

Indikator Problem Solving

Bagaimana caranya kita mengetahui bahwa seseorang atau dalam bidang pendidikan spesifiknya peserta didik telah mampu menggunakan kemampuan problem solvingnya? Terdapat indikator yang dapat mencirikan bahwa seseorang tengah mempraktikan kemampuan pemecahan masalah. Menurut Johnson & Johnson (Tawil & Liliasari, 2013, hlm. 93) indikator-indikator penyelesaian masalah adalah sebagai berikut.

  • “Mampu mendefinisikan masalah, yaitu merumuskan masalah dari peristiwa tertentu yang mengandung isu konflik, sehingga peserta didik mengerti masalah apa yang akan dikaji. Dalam hal ini, peserta didik harus mampu mendefinisikan beberapa masalah mengenai isu-isu hangat yang terjadi di lingkungannya;
  • “Mampu mendiagnosis masalah, yaitu menentukan sebab-sebab terjadinya masalah, serta menganalisis berbagai faktor, baik faktor yang bisa menghambat maupun faktor yang dapat mendukung dalam penyelesaian masalah”. Jika hal yang pertama dilakukan adalah mengindentifikasi masalah, maka selanjutnya peserta didik harus dapat menyelidiki ataupun menemukan sebab atau alasan terjadi suatu permasalahan tersebut sehingga bisa mencari solusi;
  • “Mampu merumuskan alternatif strategi, yaitu menguji setiap tindakan yang telah dirumuskan melalui diskusi kelas”. Mengatasi suatu permasalahan tentunya bisa melakukan berbagai hal sesuai tingkat permasalahan yang ada. Strategi yang dilakukan pun bisa berbedabeda sehingga perlu adanya alternatif strategi yang lain jika salah satu strategi tidak dapat berhasil mengatasi suatu permasalahan tersebut;
  • “Mampu menentukan dan menerapkan strategi pilihan, yaitu pengambilan keputusan tentang strategi mana yang dapat dilakukan”. Pengambilan keputusan sangat diperlukan dalam memecahkan suatu masalah karena menentukan strategi yang paling baik dari beberapa alternatif strategi yang ada;
  • “Mampu melakukan evaluasi, baik evaluasi proses maupun evaluasi hasil”. Evaluasi dilakukan agar dapat memperbaiki hal-hal yang salah dari kegiatan proses maupun hasil yang dilakukan ketika memecahkan suatu masalah. Sehingga akan menjadi cerminan untuk selanjutnya agar melakukan strategi yang lebih baik lagi.

Tabel Indikator Problem Solving

Jika disusun dalam tabel indikator seperti layaknya indikator-indikator lainnya dalam bidang pendidikan, maka indikator penyelesaian masalah dapat dijabarkan sebagai berikut.

No.Indikator Kemampuan Pemecahan MasalahKeterangan
1Mendefinisikan masalahMerumuskan masalah dari peristiwa tertentu yang mengandung isu konflik, sehingga peserta didik mengerti masalah apa yang akan dikaji
2Merumuskan alternatif strategiMenguji setiap tindakan yang telah dirumuskan
3Menentukan dan menerapkan strategi pilihanPengambilan keputusan tentang strategi mana yang dapat dilakukan
4Melakukan evaluasiEvaluasi dilakukan agar dapat memperbaiki halhal yang salah dari kegiatan proses maupun hasil yang dilakukan ketika memecahkan suatu masalah

Sumber: Tawil & Liliasari, (2013, hlm. 93)

Faktor-Faktor yang Mempengaruhi Kemampuan Problem Solving

Menurut Kartika,(2017, hlm. 327) faktor-faktor yang mempengaruhi kemampuan pemecahan masalah adalah sebagai berikut.

  • Pengalaman Pengalaman terhadap tugas-tugas menyelesaikan soal wacana atau soal aplikasi. Pengalaman awal seperti ketakutan terhadap biolohi dapat menghambat kemampuan siswa dalam memecahkan masalah.
  • Motivasi Dorongan yang kuat dari dalam diri seperti menumbuhkan keyakinan bahwa dirinya bisa, maupun dorongan dari luar diri (eksternal) seperti diberikan soal-soal yang menarik, menantang dapat mempengaruhi hasil pemecahan masalah.
  • Kemampuan memahami masalah Kemampuan siswa terhadap konsep-konsep soal, tugas, atau permasalahan nyata yang berbeda-beda tingkatnya dapat memicu perbedaan kemampuan siswa dalam memecahkan masalah.
  • Keterampilan Keterampilan adalah kemampuan untuk menggunakan akal, pikiran, ide dan kreativitas dalam mengerjakan, mengubah ataupun membuat sesuatu menjadi lebih bermakna sehingga menghasilkan sebuah nilai dari hasil pekerjaan tersebut. keterampilan tersebut pada dasarnya akan lebih baik bila terus diasah dan dilatih untuk menaikkan kemampuan sehingga akan menjadi ahli atau menguasai dari salah satu bidang keterampilan yang ada.
  • Kemandirian Kemandirian adalah kemampuan seseorang untuk melakukan suatu hal apapun sendiri, tidak bergantung pada orang lain. Sikap mandiri dapat membuat seseorang mampu menghadapi masalah yang ada. Sebaliknya, seseorang yang tidak memiliki sikap mandiri, dia tidak mampu menghadapi jika ada masalah.
  • Kepercayaan diri Kepercayaan diri akan memperkuat motivasi mencapai keberhasilan, karena semakin tinggi kepercayaan terhadap kemampuan diri sendiri, semakin kuat pula semangat untuk menyelesaikan pekerjaannya.

Langkah-langkah Problem Solving

Langkah-langkah yang dapat dilakukan dalam melakukan penyelesaian masalah adalah sebagai berikut.

  • Memahami Masalah Langkah ini sangat menekankan kesuksesan memperoleh solusi masalah. Langkah ini melibatkan pendalaman situasi masalah, melakukan pemilahan fakta – fakta menentukan hubungan di antara fakta-fakta dan membuat formulasi pertanyaan masalah. Setiap masalah yang ditulis, bahkan yang paling mudah sekalipun harus dibaca berulang kali dan informasi yang terdapat dalam masalah dipelajari dengan seksama. Biasanya siswa harus menyatakan kembali masalah dalam bahasanya sendiri.
  • Membuat Rencana Pemecahan Masalahi Langkah ini perlu dilakukan dengan percaya diri ketika masalah sudah dapat dipahami. Rencana solusi dibangun dengan mempertimbangkan struktur masalah dan pertanyaan yang harus dijawab. Jika masalah tersebut adalah masalah rutin dengan tugas menulis kalimat matematika terbuka, maka perlu dilakukan penerjemah masalah menjadi bahasa matematika. Jika masalah yang dihadapi adalah masalah nonrutin, maka suatu rencana perlu dibuat, bahkan kadang strategi baru perlu digambarkan.
  • Melaksanakan Rencana Pemecahan Masalahi Untuk mencari solusi yang tepat, rencana yang sudah dibuat dalam langkah harus dilaksanakan dengan hati-hati. Untuk melalui, estimasi solusi yang dibuat sangat perlu. Diagram, tabel, atau urutan dibangun secara seksama sehingga si pemecah masalah tidak akan bingung. Tabel digunakan jika perlu. Jika solusi memerlukan komputasi, kebanyakan individu akan menggunakan kalkulator untuk menghitung daripada menghitung dengan kertas dan pensil dan mengurangi kekhawatiran yang sering terjadi dalam pemecahan masalah. Jika muncul ketidakkonsistenan ketika melaksanakan rencana, proses harus ditelaah ulang untuk mencari sumber kesulitan masalah.
  • Melihat (mengecek) Kembali Selama langkah ini berlangsung, solusi masalah harus dipertimbangkan. Perhitungan harus dicek kembali. Melakukan pengecekan dapat melibatkan pemecahan yang menentukan akurasi dari komputasi dengan menghitung ulang. Jika membuat estimasi, maka bandingkan dengan solusi. Solusi harus tetap cocok terhadap akar masalah meskipun kelihatan tidak beralasan. Bagian penting dari langkah ini adalah ekstensi. Ini melibatkan pencarian alternatif pemecahan masalah.
  • Handayani, Kartika. (2017). Analisis faktor-faktor yang mempengaruhi kemampuan pemecahan masalah soal cerita matematika. SEMNASTIKA 2017, 06 May 2017, Medan.
  • Khoiriyah, A. J., & Husamah, H. (2018). Problem-based learning: creative thinking skills, problem-solving skills, and learning outcome of seventh grade students. Jurnal Pendidikan Biologi Indonesia, 4(2), 151–160. https://doi.org/10.22219/jpbi.v4i2.5804
  • Made, W. (2016). Strategi Pembelajaran Inovatif Kontemporer. PT Bumi Aksara.
  • Mawaddah, Siti. (2015). Kemampuan pemecahan masalah matematika siswa pada pembelajaran matematika dengan menggunakan pembelajaran genaratif (generative learning ) di smp. Jurnal Pendidikan Matematika, 3 (2)
  • Tawil, M. & Liliasari. (2013). Berpikir Kompleks. Makassar: Badan Penerbit Universitas Makassar.
  • Uno, Hamzah. 2014. Model pembelajaran menciptakan proses belajar mengajar yang kreatif dan efektif. cetakan ke-10. Jakarta: Bumi Aksara.

Artikel Terkait

Leave a comment.

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Simpan nama, email, dan situs web saya pada peramban ini untuk komentar saya berikutnya.

Beritahu saya akan tindak lanjut komentar melalui surel.

Beritahu saya akan tulisan baru melalui surel.

CITATION ANALYSIS

Google Scholar

REFERENCE MANAGEMENT

            AKREDITASI

Indah Slamet Budiarti Universitas Cenderawasih Indonesia

Bonefasius Yanwar Boy Universitas Cenderawasih Indonesia

Albert Lumbu Universitas Cenderawasih Indonesia

materi scientific problem solving

  • Other Journals
  • Announcements

Students’ Scientific Problem Solving Skills in 3T Region: Using PhET Simulation to Enhance the Matter

Contextual problems in daily life are related closely with scientific problem solving skills. It is necessary to prepared when students study science comprehensively. The aim of this study was analyzing students’ scientific problem solving skills during the learning process bysimulation of PhET located in 3T region. The outermost area in the territory of Indonesia is referred as 3T region. There are three conditional aspects of 3T region; terdepan (frontier), terpencil (remote), and tertinggal (disadvantaged). A number of 122 regions in Indonesia are included in the 3T region, one of which is Nimboran, Papua. SMAN 1 Nimboran, Papua  Indonesia, was chosen as research subject. We comprehended the analysis by using descriptive qualitative method. Participants were 51 students chosen from purposive random sampling technique above all students in XI-IPA grade of SMAN 1 Nimboran. Data collecting was done through triangulation using interview, observation, and documentation (test). The research was conducted during the second term. The obtained results were as follows: students can define the problem (10.20%), students can explore the problem (3.27%), students can plan the solution (10.98%), students can implement the plan (6.54%), students can check the solution (1.70%), and students can evaluate the data (4.44%). The mean result was 38.46. It was interpreted that showed students’ scientific problem solving skills in SMAN 1 Nimboran was low. Thus, the need to improve the skills is demanded.

Abou Faour, M., & Ayoubi, Z. (2017). The effect of using virtual laboratory on grade 10 students’ conceptual understanding and their attitudes towards physics. Journal Of Education In Science Environment And HEALTH, 4(1), 54–68.

Adams, W. K. (2010). Student engagement and learning with PhET interactive simulations. Il Nuovo Cimento C, 33(3), 21–32.

Adams, W. K., & Wieman, C. E. (2015). Analyzing the many skills involved in solving complex physics problems. American Journal of Physics, 83(5), 459–467.

Alpaslan, M. M., Yalvac, B., Loving, C. C., & Willson, V. (2016). Exploring the Relationship Between High School Students’ Physics-Related Personal Epistemologies and Self-regulated Learning in Turkey. International Journal of Science and Mathematics Education, 14(2), 297–317. https://doi.org/10.1007/s10763-015-9685-7

Amin, M., Muslim, S., & Wirasti, M. K. (2020). Modul Pembelajaran Hypercontent Pengenalan Perangkat Jaringan Komputer Untuk Mahasiswa Asal Daerah 3T Di Stkip Surya. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, 9(2), 228–242.

Argaw, A. S., Haile, B. B., Ayalew, B. T., & Kuma, S. G. (2016). The effect of problem based learning (PBL) instruction on students’ motivation and problem solving skills of physics. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 857–871.

Asadollahi Kheirabadi, M., & Mirzaei, Z. (2019). Descriptive valuation pattern in education and training system: a mixed study. Journal of Humanities Insights, 3(01), 7–12.

Bagarukayo, E., Weide, T., Mbarika, V., & Kim, M. (2012). The impact of learning driven constructs on the perceived higher order cognitive skills improvement: Multimedia vs. text. International Journal of Education and Development Using ICT, 8(2).

Batuyong, C. T., & Antonio, V. V. (2018). Exploring the effect of PhET interactive simulation-based activities on students’ performance and learning experiences in electromagnetism. Asia Pacific Journal of Multidisciplinary Research, 6(2), 121–131.

Briggs, L. J. (1967). Instructional Media: A Procedure for the Design of Multi-Media Instruction, A Critical Review of Research, and Suggestions for Future Research.

Budiarti, I. S., Suparmi, A., Sarwanto, & Harjana. (2018). Heat transfer concept on Bakar Batu Papua’s culture. AIP Conference Proceedings, 2014(1), 20133.

Budiarti, I. S., & Tanta, T. (2021). Analysis On Students’ Scientific Literacy of Newton’s Law and Motion System in Living Things. Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education), 9(1), 36–51.

Correia, A.-P., Koehler, N., Thompson, A., & Phye, G. (2019). The application of PhET simulation to teach gas behavior on the submicroscopic level: Secondary school students’ perceptions. Research in Science & Technological Education, 37(2), 193–217.

Darmawan, A., Asa, B. N., Kurniawan, F., & Nukhba, R. (2020). Pengembangan Instrumen Tes Pemecahan Masalah Bagi Mahasiswa Jurusan Fisika Pada Materi Dinamika Partikel. 6(1), 55–64.

Diani, R., & Syarlisjiswan, M. R. (2018). Web-enhanced course based on problem-based learning (PBL): Development of interactive learning media for basic physics II. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(1), 105.

Dike, D. (2017). Pendidikan multikultural sekolah dasar di wilayah 3T. Jurnal Pendidikan Dasar Perkhasa: Jurnal Penelitian Pendidikan Dasar, 3(1), 277–287.

Dįnçer, S. (2018). Content analysis in for educational science research: Meta-analysis, meta-synthesis, and descriptive content analysis. Bartin Üniversitesi Egitim Fakültesi Dergisi, 7(1), 176–190.

Fernandez-Rio, J., Sanz, N., Fernandez-Cando, J., & Santos, L. (2017). Impact of a sustained Cooperative Learning intervention on student motivation. Physical Education and Sport Pedagogy, 22(1), 89–105. https://doi.org/10.1080/17408989.2015.1123238

Forum, W. E. (2015). New vision for education: Unlocking the potential of technology. British Columbia Teachers’ Federation Vancouver, BC.

Gao, C., Zuzul, T., Jones, G., & Khanna, T. (2017). Overcoming Institutional Voids: A Reputation-Based View of Long-Run Survival. Strategic Management Journal, 38(11), 2147–2167. https://doi.org/10.1002/smj.2649

Halliday, D., Resnick, R., & Walker, J. (2013). Fundamentals of physics. John Wiley & Sons.

Ince, E. (2018). An Overview of Problem Solving Studies in Physics Education. Journal of Education and Learning, 7(4), 191–200.

Kholiq, A. (2020). Development of B D F-AR 2 (Physics Digital Book Based Augmented Reality) to train students’ scientific literacy on Global Warming Material. Berkala Ilmiah Pendidikan Fisika, 8(1), 50. https://doi.org/10.20527/bipf.v8i1.7881

Kurniawan, W., Jufrida, J., Basuki, F. R., Ariani, R., & Fitaloka, O. (2019). Virtual Laboratory Based Guided Inquiry: Viscosity Exsperiments. JIPF (Jurnal Ilmu Pendidikan Fisika), 4(2), 91. https://doi.org/10.26737/jipf.v4i2.1069

Loeb, S., Dynarski, S., McFarland, D., Morris, P., Reardon, S., & Reber, S. (2017). Descriptive Analysis in Education: A Guide for Researchers. NCEE 2017-4023. National Center for Education Evaluation and Regional Assistance.

MASKHULIAH, P., & BUNGKANG, Y. (2017). Pengembangan Modul Pembelajaran IPA Berbasis Pendekatan Keterampilan Proses Sains Pada Materi Listrik Dinamis Untuk Siswa Kelas IX Mts Al Muttaqin Buper Jayapura. Jurnal Ilmu Pendidikan Indonesia, 5(1), 55–66.

Milner-Bolotin, M., Fisher, H., & MacDonald, A. (2013). Modeling active engagement pedagogy through classroom response systems in a physics teacher education course. LUMAT: International Journal on Math, Science and Technology Education, 1(5), 523–542.

Moleong, L. J. (2019). Metodologi penelitian kualitatif.

Moore, E. B., Chamberlain, J. M., Parson, R., & Perkins, K. K. (2014). PhET interactive simulations: Transformative tools for teaching chemistry. Journal of Chemical Education, 91(8), 1191–1197.

Mourtos, N. J., Okamoto, N. D., & Rhee, J. (2004). Defining, teaching, and assessing problem solving skills. 7th UICEE Annual Conference on Engineering Education, 1–5.

Naimah, J., Winarni, D. S., & Widiyawati, Y. (2019). Pengembangan Game Edukasi Science Adventure Untuk Meningkatkan Keterampilanpemecahan Masalah Siswa. Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education), 7(2), 91–100. https://doi.org/10.24815/jpsi.v7i2.14462

Nanditasari, T. (2019). Game Mophy ( Monopoly Physics ) Sebagai Alternatif Media Pembelajaran Fisika untuk Meningkatkan Penguasan Konsep Siswa. 5(2), 101–108.

Ndihokubwayo, K., Uwamahoro, J., & Ndayambaje, I. (2020). Effectiveness of PhET Simulations and YouTube Videos to Improve the Learning of Optics in Rwandan Secondary Schools. African Journal of Research in Mathematics, Science and Technology Education, 24(2), 253–265.

Nomor, P. (22 C.E.). Tahun 2016, Standar proses untuk. Satuan Pendidikan Dasar Dan Menengah, Jakarta, Kemdikbud.

Novia, N., & Riandi, R. (2017). The analysis of students scientific reasoning ability in solving the modified Lawson Classroom Test of scientific reasoning (MLCTSR) problems by applying the levels of inquiry. Jurnal Pendidikan IPA Indonesia, 6(1).

Nurhidayati, N., Fauzia, S., & Maknun, A. L. U. (2019). Arouse the Creativity of a Generation of Millenial Doctrines with the Media Learning Physics and Innovative Eco-Friendly. Proceeding International Conference on Science and Engineering, 2, 331–335.

Patton, M. Q. (2014). Qualitative Research & Evaluation Methods: Integrating Theory and Practice.

Price, A. M., Perkins, K. K., Holmes, N. G., & Wieman, C. E. (2018). How and why do high school teachers use PhET interactive simulations? Learning, 33, 37.

Price, A., Wieman, C., & Perkins, K. (2019). Teaching with simulations. The Science Teacher, 86(7), 46–52.

Putra, M. T. F., Arianti, A., & Elbadiansyah, E. (2019). ANALISIS PENERAPAN MODEL DAN METODE PEMBELAJARAN TEPAT GUNA PADA DAERAH 3T (TERDEPAN, TERPENCIL DAN TERTINGGAL) DI KABUPATEN MAHAKAM ULU. Sebatik, 23(2), 317–323.

Putranta, H., & Wilujeng, I. (2019). Physics learning by PhET simulation-assisted using problem based learning (PBL) model to improve students’ critical thinking skills in work and energy chapters in MAN 3 Sleman. Asia-Pacific Forum on Science Learning & Teaching, 20(1).

Reddy, M., & Panacharoensawad, B. (2017). Students Problem-Solving Difficulties and Implications in Physics: An Empirical Study on Influencing Factors. Journal of Education and Practice, 8(14), 59–62.

Rideout, V. (2014). Learning at home: Families’ educational media use in America. Joan Ganz Cooney Center at Sesame Workshop.

Rohani, R. (2019). Media pembelajaran.

Ryan, Q. X., Frodermann, E., Heller, K., Hsu, L., & Mason, A. (2016). Computer problem-solving coaches for introductory physics: Design and usability studies. Physical Review Physics Education Research, 12(1), 10105.

Samal, A. L. (2018). Implementasi Pendidikan Karakter di Sekolah dan Perguruan Tinggi Melalui Pembelajaran Aktif. Jurnal Ilmiah Iqra’, 11(1).

Sanoto, H., Soesanto, S., Soegito, A. T., & Kardoyo, K. (2021). Pengaruh Supervisi Akademik Terhadap Peningkatan Kompetensi Guru di Daerah 3T (Terdepan, Terpencil, Tertinggal). Scholaria: Jurnal Pendidikan Dan Kebudayaan, 11(2), 166–172.

Saputra, H., Al Auwal, T. M. R., & Mustika, D. (2017). Pembelajaran Inkuiri Berbasis Virtual Laboratory Untuk Meningkatkan Kemampuan Literasi Sains Mahasiswa Calon Guru Pendidikan Fisika Universitas Samudra. Jurnal IPA & Pembelajaran IPA, 1(2), 143–148. https://doi.org/10.24815/jipi.v1i2.9688

Serway, R. A., & Jewett, J. W. (1998). Principles of physics (Vol. 1). Saunders College Pub. Fort Worth, TX.

Syafii, A. (2018). Perluasan dan pemerataan akses kependidikan daerah 3T (terdepan, terluar, tertinggal). Dirasat: Jurnal Manajemen Dan Pendidikan Islam, 4(2), 153–171.

Trianggono, M. M. (2017). Analisis Kausalitas Pemahaman Konsep Dengan Kemampuan Berpikir Kreatif Siswa Pada Pemecahan Masalah Fisika.

Viyanti, V., Cari, C., Prasetyo, Z. K., & Maulina, H. (2020). Does the Cognitive Activity can Generate Student’s Physics Argumentation Performance Features? Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 9(1), 177–183.

Wieman, C. E., Adams, W. K., Loeblein, P., & Perkins, K. K. (2010). Teaching physics using PhET simulations. The Physics Teacher, 48(4), 225–227.

Yulianti, R., Lumbantobing, H., & Triwiyono, T. (2016). PENERAPAN METODE THINKING ALOUD PAIR PROBLEM SOLVING (TAPPS) DAN HYPNOTEACHING PADA MATERI SISTEM PERSAMAAN LINIER DUA VARIABEL (SPLDV) DI KELAS VIII UNTUK MENINGKATKAN KEMAMPUAN REPRESENTASI DAN PENGUASAAN KONSEP MATEMATIKA PESERTA DIDIK SMP NEGERI 3 NIM. JURNAL ILMIAH MATEMATIKA DAN PEMBELAJARANNYA, 1(1).

Yuliati, L., Riantoni, C., & Mufti, N. (2018). Problem Solving Skills on Direct Current Electricity through Inquiry-Based Learning with PhET Simulations. International Journal of Instruction, 11(4), 123–138.

Yusuf, I., & Widyaningsih, S. W. (2019). HOTS profile of physics education students in STEM-based classes using PhET media. Journal of Physics: Conference Series, 1157(3), 32021.

  • There are currently no refbacks.

Jurnal Pendidikan Fisika dan Keilmuan ( JPFK ) Indexed by :

Creative Commons License

Logo

The Effect of Creative Problem Solving Models with Ethnoscience on Students’ Problem Solving Ability and Scientific Attitudes

Research articles, how to cite.

  • Endnote/Zotero/Mendeley (RIS)

Crossref

Author Biographies

This research aims to analyze whether there are significant differences in problem-solving abilities and scientific attitudes between students who use the ethnoscience-based creative problem-solving learning model and students who use the Discovery learning model on colloidal materials. This research was conducted at SMA N 6 Yogyakarta and SMA N 11 Yogyakarta using a quasi-experimental method with data analysis techniques using MANOVA. Data collection techniques in this research are observation, interviews, questionnaires, and tests. The results showed that there were significant differences in problem-solving abilities and scientific attitudes between experimental class and control class students, with a significance of 0.00 < 0.05 and an effective contribution of 13.6% in the moderate category. Therefore, it can be concluded that the use of a creative problem-solving learning model based on ethnoscience has a significant influence on improving students' chemical problem-solving abilities and scientific attitudes towards colloidal materials.

Adiansyah, R. (2021). The correlation between metacognitive skills and scientific attitudes towards the retention of male and female students in South Sulawesi, Indonesia. International Journal of Evaluation and Research in Education (IJERE), 10(4), 1272–1281. https://doi.org/10.11591/ijere.vl0i4.21597

Adri, R. F. (2020). Pengaruh Pre-Test Terhadap Tingkat Pemahaman Mahasiswa Program Studi Ilmu Politik Pada Mata Kuliah Ilmu Alamiah Dasar. MENARA Ilmu, 14(1), 81–85. https://doi.org/10.31869/mi.v14i1.1742

Alberida, H., Lufri, Festiyed, & Barlian, E. (2018). Problem Solving Model for Science Learning. IOP Conference Series: Materials Science and Engineering, 335, 012084. https://doi.org/10.1088/1757-899X/335/1/012084

Arafah, S., & Hamid, A. (2016). Meningkatkan Motivasi dan Hasil Belajar Siswa pada Materi Sistem Koloid dengan Menggunakan Model Pembelajaran Arias Bersetting Model Kooperatif Tipe Jigsaw. Jurnal Inovasi Pendidikan Sains, 7(1), 83–94. https://doi.org/10.20527/quantum.v7i1.3546

Arikunto, S. (2012). Prosedur Penelitian suatu Pendekatan Praktek. Jakarta: Rineka Cipta.

Arini, A. N., Hartono, H., & Khumaedi, K. (2019). Analysis of Problem Solving Skills and Students Scientific Attitudes through the Implementation of Problem Based Learning Module. Journal of Innovative Science Education, 7(2), 68–75. https://doi.org/10.15294/jise.v7i2.24822

Delita, R. E., Rahmadhani, F., Dezi, H., & Heffi, A. (2020). Pengaruh model problem solving terhadap keterampilan proses sains peserta didik pada materi ekskresi kelas VIII SMPN 34 Padang. Jurnal Pendidikan Biologi, 5(1), 68–74. https://doi.org/10.24036/apb.v5i1.7026.g3813

Effendy, I., & Hamid, M. A. (2016). Pengaruh pemberian pretest dan posttest terhadap hasil belajar mata diklat DHW.DOV.100.2.A pada siswa SMK N2 Lubuk basung. Jurnal Ilmiah Pendidikan Teknik Elektro, 1(2), 81–88. https://doi.org/10.30870/volt.v1i2.2873

Fauziah, M., Marmoah, S., Murwaningsih, T., & Saddhono, K. (2020). The effect of thinking actively in a social context and creative problem-solving learning models on divergent-thinking skills viewed from adversity quotient. European Journal of Educational Research, 9(2), 537–568. https://doi.org/10.12973/eu-jer.9.2.537

Hake, R. R. (1999). Analyzing Change/Gain Scores. USA: Dept of Physics Indiana University.

Hayati, A. N., Joharman, J., & Suhartono, S. (2020). Hubungan antara Sikap Ilmiah dan Hasil Belajar IPA Siswa Kelas V SDN se-Kecamatan Alian Tahun Ajaran 2019/2020. Kalam Cendekia: Jurnal Ilmiah Kependidikan, 8(2), 312–318. https://doi.org/10.20961/jkc.v8i2.42415

Juhji, J., & Nuangchalerm, P. (2020). Interaction between scientific attitudes and science process skills toward technological pedagogical content knowledge. Journal for the Education of Gifted Young Scientists, 8(1), 1–16. https://doi.org/10.17478/jegys.600979.XX

Khairani, R. N., & Prodjosantoso, A. K. (2023). Application of Discovery Learning Model Based on Blended Learning to Activities and Learning Outcomes. Jurnal Penelitian Pendidikan IPA, 9(10), 8974–8981. https://doi.org/10.29303/jppipa.v9i10.4402

Moma, L. (2017). Pengembangan Kemampuan Berpikir Kreatif Dan Pemecahan Masalah Matematis Mahasiswa Melalui Metode Diskusi. Jurnal Cakrawala Pendidikan, 36(1), 130–139. https://doi.org/10.21831/cp.v36i1.10402

Munthe, S. A., Tambunan, L. O., & Sauduran, G. N. (2023). Pengaruh Model Pembelajaran Creative Problem Solving (CPS) terhadap Kemampuan Berpikir Kreatif Siswa pada Materi SPLDV di SMP Negeri 1 Panei. Journal on Education, 5(2), 4426–4436. https://doi.org/10.31004/joe.v5i2.1163

Murningsih, I. M. T., Masykuri, M., & Mulyani, B. (2016). Penerapan model pembelajaran inkuiri terbimbing untuk meningkatkan sikap ilmiah dan prestasi belajar kimia siswa. Jurnal Inovasi Pendidikan IPA, 2(2), 177. https://doi.org/10.21831/jipi.v2i2.11196

Neni, N., Syaiful, S., & Maison, M. (2021). Pengaruh Model Creative Problem Solving Terhadap Kemampuan Pemecahan Masalah Matematis Ditinjau Dari Motivasi Belajar Siswa. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(4), 2320. https://doi.org/10.24127/ajpm.v10i4.4143

Puccio, G. J., Burnett, C., Acar, S., Yudess, J. A., Holinger, M., & Cabra, J. F. (2020). Creative Problem Solving in Small Groups: The Effects of Creativity Training on Idea Generation, Solution Creativity, and Leadership Effectiveness. The Journal of Creative Behavior, 54(2), 453–471. https://doi.org/10.1002/jocb.381

Putra, Y. P. (2018). Penggunaan model pembelajaran creative problem solving untuk meningkatkan kemampuan berpikir kreatif dan motivasi belajar matematika siswa. Jurnal Penelitian Pendidikan Dan Pengajaran Matematika, 4(2), 73–80. https://doi.org/10.37058/jp3m.v4i2.605

Rahmani, W., & Widyasari, N. (2018). Meningkatkan Kemampuan Pemecahan Masalah Matematis Siswa Melalui Media Tangram. FIBONACCI: Jurnal Pendidikan Matematika Dan Matematika, 4(1), 17. https://doi.org/10.24853/fbc.4.1.17-23

Rahmawati, F. (2023). Pengaruh Model Pembelajaran CPS (Creative Problem Solving) Terhadap Kemampuan Pemecahan Masalah Matematis Siswa Kelas V Sd Swasta Islam Terpadu Bandar Lampung. INVENTA, 7(1), 20–26. https://doi.org/10.36456/inventa.7.1.a6988

Rezkiana, Y. R., Dewi, G. K., & Erdiana, L. (2023). Pegaruh Model Pembelajaran Creative Problem Solving Terhadap Keterampilan Berpikir Kreatif Pada Siswa Kelas V SD. Pendas: Jurnal Ilmiah Pendidikan Dasar, 8(1), 4063–4074. https://doi.org/10.23969/jp.v8i1.7085

Septikasari, R., & Frasandy, R. N. (2018). Keterampilan 4C Abad 21 dalam Pembelajaran Pendidikan Dasar Resti. Jurnal Kependidikan Islam Tingkat Dasar, 8(2), 107–117. https://doi.org/10.15548/alawlad.v8i2.1597

Sumartini, T. S. (2018). Peningkatan Kemampuan Pemecahan Masalah Matematis Siswa melalui Pembelajaran Berbasis Masalah. Mosharafa: Jurnal Pendidikan Matematika, 5(2), 148–158. https://doi.org/10.31980/mosharafa.v5i2.270

Suryani, M., Jufri, L. H., & Putri, T. A. (2020). Analisis Kemampuan Pemecahan Masalah Siswa Berdasarkan Kemampuan Awal Matematika. Mosharafa: Jurnal Pendidikan Matematika, 9(1), 119–130. https://doi.org/10.31980/mosharafa.v9i1.605

Ulfa, S. W. (2018). Mentradisikan Sikap Ilmiah Dalam Pembelajaran Biologi. Jurnal Biolokus, 1(1), 1. https://doi.org/10.30821/biolokus.v1i1.314

Utariadi, N. K. D., Gunamantha, I. M., & Suastika, I. N. (2021). Pengembangan LKPD Berbasis Pendekatan Saintifik Untuk Meningkatkan Sikap Ilmiah Siswa Pada Tema 9 Subtema 1 Muatan Pelajaran IPA Kelas V. Jurnal Penelitian Dan Evaluasi Pendidikan Indonesia, 11(2), 129–137. https://doi.org/10.23887/jpepi.v11i2.671

Wahyudi, W. (2016). Analisis Kontribusi Sikap Ilmiah, Motivasi Belajar Dan Kemandirianbelajar Terhadap Prestasi Belajar Mahasiswa Prodi Pendidikan Fisika STKIP PGRI Pontianak. Jurnal Edukasi Matematika Dan Sains, 1(2), 20. https://doi.org/10.25273/jems.v1i2.123

Wijaya, S. A., Medriati, R., & Swistoro, E. (2018). Pengaruh Model Pembelajaran Berbasis Masalah terhadap Kemampuan Pemecahan Masalah Fisika dan Sikap Ilmiah Siswa di SMAN 2 Kota Bengkulu. Jurnal Kumparan Fisika, 1(3), 28–35. https://doi.org/10.33369/jkf.1.3.28-35

Wildan, W., Hakim, A., Siahaan, J., & Anwar, Y. A. S. (2019). A Stepwise Inquiry Approach to Improving Communication Skills and Scientific Attitudes on a Biochemistry Course. International Journal of Instruction, 12(4), 407–422. https://doi.org/10.29333/iji.2019.12427a

Rifki Nomizar Khairani, Universitas Negeri Yogyakarta

A.k. prodjosantoso, universitas negeri yogyakarta.

Copyright (c) 2024 Rifki Nomizar Khairani, A.K. Prodjosantoso

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License .

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  • Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License) . This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  • Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA .
  • Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access ).

Nationally Accredited

materi scientific problem solving

menueditorialteam

Journal Template

materi scientific problem solving

Journal StatCounter

Web Analytics Made Easy - Statcounter

Journals Publisher

This journals is published by Postgraduate University of Mataram. University of Mataram is a higher education institution under the Ministry of Education and Culture of Indonesia.

  •     Phone. 081936732708
  •     Mail. [email protected]
  •     Web. https://jppipa.unram.ac.id

Information

  • For Authors
  • For Readers
  • For Librarians

About This Publishing System

  • Seputar Kerja

Apa Itu Problem Solving? Ini Pengertian, Tujuan, & 5 Metodenya

Maret 20, 2024

materi scientific problem solving

Di masa ini, problem solving adalah salah satu skill yang wajib dimiliki karyawan, terutama pemimpin dan manajer. Ada banyak manfaat problem solving , mulai dari mempermudah pengambilan keputusan hingga meningkatkan efisiensi. Tapi apa itu problem solving sebenarnya? Apa saja skill problem solving yang perlu Anda kuasai?

Dalam bahasan kali ini, kita akan membahas dengan lengkap tentang problem solving , tujuan, manfaat, dan berbagai metodenya. Yuk, scroll ke bawah untuk tahu kelanjutannya!

Apa itu Problem Solving ?

Problem Solving adalah Hal Penting dalam Sebuah Tim

Memahami apa itu problem solving adalah hal fundamental yang harus dipahami siapapun, terutama yang baru masuk ke dunia kerja atau ingin naik jenjang karir. Tanpa pemahaman dan skill problem solving yang mumpuni, seseorang akan mengalami kesulitan saat bekerja, apalagi jika lingkungan kerjanya penuh tekanan.

Menurut buku The Executive Guide to Improvement and Change , pengertian problem solving adalah kemampuan mendefinisikan masalah, menentukan sumbernya, membuat skala prioritas, menyusun alternatif-alternatif solusi, dan mengimplementasikannya sesuai kebutuhan. Singkatnya, problem solving adalah kemampuan menemukan masalah dan memecahkannya dengan baik.

Agar proses pemecahan masalah terlaksana, ada beberapa karakteristik problem solving yang wajib dipenuhi, yaitu:

  • Interaksi antara pihak-pihak terlibat, misalnya antar karyawan dalam satu divisi, lintas jabatan, atau antara atasan dan bawahan.
  • Terdapat diskusi yang diselenggarakan dengan efektif, sistematis, dan menghasilkan progres, baik secara formal, semiformal, atau informal.
  • Informasi lengkap dan valid, penyampai dapat mempertanggungjawabkan kebenarannya.
  • Saling membimbing dan melatih dari pihak berpengalaman ke yang kurang berpengalaman.

Berdasarkan karakteristik di atas, kita dapat menemukan bahwa peran pemimpin sangat vital dalam proses pengambilan keputusan. Agar proses problem solving terselesaikan, pemimpin tidak boleh egois atau terlalu longgar pada rekan-rekan yang membantunya mengambil keputusan.

Tujuan Problem Solving

Tujuan problem solving adalah untuk menyelesaikan masalah secepatnya dengan hasil terbaik

Setelah mengetahui apa itu problem solving , kali ini kita akan membahas beberapa tujuan problem solving dalam perusahaan, di antaranya adalah:

  • Melatih kemampuan karyawan untuk menghadapi masalah
  • Melatih karyawan dalam menemukan langkah-langkah terbaik untuk mencari solusi dari masalah yang ada
  • Melatih karyawan bagaimana cara bertindak dan apa yang harus dilakukan dalam situasi baru
  • Melatih karyawan untuk lebih berani dalam mengambil keputusan terbaik
  • Melatih karyawan untuk meneliti suatu masalah dari berbagai sudut pandang dan kemungkinan yang ada

Sementara itu, melatih skill problem solving bagi diri sendiri juga sangat penting. Sebab pada faktanya, keahlian ini tidak hanya berguna di dunia kerja, tapi juga dalam aspek-aspek lain kehidupan.

Sebagai contoh, Anda adalah seorang karyawan berusia 24 tahun dengan tanggungan orang tua dan 3 adik. Selain itu, Anda juga punya keinginan punya rumah dan kendaraan di usia 30 tahun. Supaya tanggung jawab dan impian tercapai, Anda melakukan proses problem solving dan menemukan solusi bahwa Anda harus punya side hustle supaya bisa menabung sekaligus tetap membantu ekonomi keluarga.

BACA JUGA: Manfaat Menerapkan Teamwork Karyawan di Perusahaan Anda

  Tahapan Problem Solving

Tahapan Problem Solving dalam Sebuah Tim

Setelah memahami apa itu problem solving dan tujuannya, di bawah ini terdapat beberapa tahapan untuk menerapkan metode problem solving . Jika Anda merasa belum punya skill problem solving mumpuni, cara-cara di bawah ini dapat membantu Anda berlatih.

1. Mendefinisikan Masalah

Tahapan pertama problem solving adalah dengan mendefinisikan, mengurai, dan menyusun kembali satu per satu masalah pokok yang sedang terjadi. Meskipun masalah-masalah tersebut tampak banyak, usahakan untuk menemukan inti dari semua masalah tersebut.

Jika Anda sedang bekerja di perusahaan, pastikan untuk mengajak rekan kerja dan orang lain yang berhubungan dengan masalah tersebut. Dengan demikian, Anda dapat mendengar masalah dari berbagai perspektif dan menemukan titik masalah.

2. Menentukan Sumber/Dalang Penyebab Masalah

Setelah masalah utama ditemukan, tahapan selanjutnya problem solving adalah menyelidiki sumber masalah tersebut. Apakah masalah timbul karena sistem? Orang-orang terlibat? Atau komunikasi yang kurang efektif? Dengan menemukan jawaban dari pertanyaan semacam itu, Anda dan tim dapat melakukan brainstorming sumber masalah, sebelum mencari solusinya.

3. Menentukan Prioritas Masalah

Dalam satu kali brainstorming , Anda dan rekan-rekan barangkali akan menemukan lebih dari satu masalah untuk dipecahkan. Namun demikian, memaksakan diri menyelesaikan semua masalah dalam satu waktu sangat tidak efisien. Bukannya tuntas, bisa-bisa Anda dan tim justru tidak akan memecahkan satu pun masalah.

4. Mengembangkan Solusi Alternatif

Claire Cook – penulis terkenal asal Amerika Serikat – pernah berkata, “Jika plan A tidak berhasil, ingatlah masih ada 25 huruf untuk dijadikan rencana ( plan B, C, D, dan seterusnya”. Alternatif-alternatif rencana seperti ini juga perlu Anda siapkan jika sewaktu-waktu solusi utama tidak bekerja.

5. Mengimplementasikan Solusi dan Mengevaluasinya

Tahapan terakhir pada proses problem solving adalah mengimplementasikan solusi sesuai kesepakatan bersama. Setelah sudah menemukan solusi terbaik, maka Anda tinggal menyusun strategi penerapan, membagikannya kepada tim anggota, dan menindaklanjuti solusi yang sudah diputuskan.

Tidak berhenti sampai disitu, ada baiknya jika Anda bisa mengumpulkan masukan dari anggota tim atau pihak-pihak yang terlibat dan melakukan evaluasi dari penerapan solusi tersebut.

Pada setiap tahapan untuk menyelesaikan masalah, dibutuhkan beberapa skill problem solving yang mumpuni. Seperti kemampuan menganalisis, kemampuan berdiskusi, hingga penentuan prioritas.

BACA JUGA: Jenis Kepemimpinan Dalam Perusahaan. Anda Termasuk yang Mana?

Metode Problem Solving

Metode Problem Solving Terbaik untuk Perusahaan

Dalam proses problem solving , ada beberapa metode yang dapat Anda gunakan, di antaranya adalah:

1. Linear Thinking

Metode problem solving pertama yang dapat Anda terapkan adalah linear thinking . Penggunaan metode ini sangat sederhana, yaitu dengan menekankan pada pertanyaan “mengapa” agar bisa menemukan akar permasalahan. Setelah akarnya ditemukan, Anda bisa menggunakan data-data lama dan solusi yang ada untuk diterapkan.

Linear thinking adalah salah satu metode problem solving paling tradisional dan mudah dilaksanakan. Kelemahannya, linear thinking hanya cocok untuk menghadapi masalah yang pernah dihadapi sebelumnya, tapi tidak sesuai jika masalahnya sama sekali baru.

2. Design Thinking

Berbeda dengan linear thinking , dalam apa itu problem solving penggunaan design thinking lebih menekankan pendekatan dari sisi user . Untuk memulainya Anda bisa mencoba untuk berempati kepada user yang sedang menghadapi masalah.

Proses Metode Design Thinking menurut Stanford

Kemudian setelah Anda mengetahui apa masalah yang dihadapinya, Anda bisa menggunakan skill problem solving yang dimiliki untuk membuat beberapa gambaran atau prototype yang dapat diuji untuk menemukan solusi dari masalah tersebut.

3. Creative Problem Solving

Ketika kita membahas apa itu problem solving , maka Anda perlu menciptakan keseimbangan antara logika dan kreativitas. Anda bisa menggunakan kreativitas untuk mencari tahu apa penyebab masalah yang terjadi dan kemudian mengembangkan solusi yang inovatif.

Metode creative problem solving tidak hanya seputar brainstorming atau ide-ide gila yang out of the box . Tetapi Anda juga perlu fokus untuk mendapatkan ide sebanyak-banyaknya dari proses tersebut.

4. Solution-based Thinking

Metode problem solving keempat yang dapat Anda terapkan adalah solution-based thinking , yaitu metode pemecahan masalah dengan berfokus pada solusi-solusi yang dapat dipastikan keberhasilannya.

Jika dibandingkan, solution-based thinking tampak seperti pertengahan antara linear thinking dan creative problem solving . Dari segi kecepatan, metode solution-based sama terfokusnya seperti linear thinking . Akan tetapi, dari segi fleksibilitas ide, solution-based thinking menggunakan pendekatan brainstorming seperti creative problem solving .

Demikianlah penjelasan mengenai apa itu problem solving , tujuan, dan metode-metodenya. Skill problem solving adalah salah satu keahlian paling dicari di dunia kerja. Bagi perusahaan, karyawan dengan kemampuan memecahkan masalah adalah aset berharga, baik untuk masa sekarang atau masa depan.

Apakah perusahaan Anda sedang mencari karyawan berkualitas tersebut? Kesulitan menemukan platform penyedia SDM dengan skill problem solving tingkat tinggi? Pasang iklan lowongan kerja Anda di KitaLulus dan jemput anggota tim impian Anda sekarang juga!

Lihat ribuan lowongan kerja dan berkomunikas secara langsung dengan HRD atau pemilik usaha

Download Aplikasi KitaLulus sekarang!

‍#MulaiSekarang demi masa depan yang lebih baik!

materi scientific problem solving

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • NEWS AND VIEWS
  • 04 September 2024

Waste management won’t solve the plastics problem — we need to cut consumption

  • Matthew MacLeod   ORCID: http://orcid.org/0000-0003-2562-7339 0

Matthew MacLeod is in the Department of Environmental Science, Stockholm University, SE-11418 Stockholm, Sweden.

You can also search for this author in PubMed   Google Scholar

In a paper in Nature , Cottom et al . 1 present an inventory of plastics that pollute the environment, derived from measurements taken at a local scale around the world. The inventory could support policy actions to reduce emissions of plastic, and provides a global baseline for researchers who are modelling the effects of plastic pollution under alternative policy scenarios. It also highlights the fact that strategies for dealing with large pieces of plastic litter can exacerbate emissions of other pollutants, including microplastics, hazardous air pollutants and greenhouse gases.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

Nature 633 , 37-38 (2024)

doi: https://doi.org/10.1038/d41586-024-02580-6

Cottom, J. W., Cook, E. & Velis, C. A. Nature 633 , 101–108 (2024).

Article   Google Scholar  

Lau, W. W. Y. et al. Science 369 , 1455–1461 (2020).

Article   PubMed   Google Scholar  

Ryberg, M. W., Hauschild, M. Z., Wang, F., Averous-Monnery, S. & Laurent, A. Resour. Conserv. Recycl. 151 , 104459 (2019).

MacLeod, M., Domercq, P., Harrison, S. & Praetorius, A. Nature Comput. Sci. 3 , 486–494 (2023).

Rogelj, J. et al. Nature 534 , 631–639 (2016).

United Nations Environment Programme. Third global monitoring report. Global monitoring plan for persistent organic pollutants under the Stockholm Convention Article 16 on effectiveness evaluation . (UNEP, 2023).

Google Scholar  

Giang, A. & Selin, N. E. Proc. Natl Acad. Sci. USA 113 , 286–291 (2015).

Cowan, E., Tiller, R. & Maes, T. J. Environ. Stud. Sci. https://doi.org/10.1007/s13412-024-00961-x (2024).

Stegman, P., Daioglou, V., Londo, M., van Vuuren, D. P. & Junginger, M. Nature 612 , 272–276 (2022).

Duan, Z., Scheutz, C. & Kjeldsen, P. Waste Manag . 119 , 39–62 (2021).

Download references

Reprints and permissions

Competing Interests

M.M. has funding for a research project (LRI ECO56) from CEFIC, the European Chemical Industry Council. It is conceivable that publication of this article could lead to financial gains or losses by CEFIC member companies.

Related Articles

materi scientific problem solving

See all News & Views

  • Sustainability
  • Environmental sciences

Light bulbs have energy ratings — so why can’t AI chatbots?

Light bulbs have energy ratings — so why can’t AI chatbots?

Comment 21 AUG 24

Monitor soil health using advanced technologies

Correspondence 23 JUL 24

Freezer holding world’s biggest ancient-ice archive to get ‘future-proofed’

Freezer holding world’s biggest ancient-ice archive to get ‘future-proofed’

News 16 JUL 24

Simple steps could shrink US beef industry’s carbon hoofprint

Simple steps could shrink US beef industry’s carbon hoofprint

Research Highlight 05 SEP 24

Why the next pandemic could come from the Arctic — and what to do about it

Why the next pandemic could come from the Arctic — and what to do about it

World View 04 SEP 24

A local-to-global emissions inventory of macroplastic pollution

A local-to-global emissions inventory of macroplastic pollution

Article 04 SEP 24

International whaling convention needs boosting, not dismantling

Correspondence 03 SEP 24

To conserve biodiversity, create spaces where natural selection is allowed free rein

NOMIS Foundation ETH Postdoctoral Fellowship

The NOMIS Foundation ETH Fellowship Programme supports postdoctoral researchers at ETH Zurich within the Centre for Origin and Prevalence of Life ...

Zurich, Canton of Zürich (CH)

Centre for Origin and Prevalence of Life at ETH Zurich

materi scientific problem solving

13 PhD Positions at Heidelberg University

GRK2727/1 – InCheck Innate Immune Checkpoints in Cancer and Tissue Damage

Heidelberg, Baden-Württemberg (DE) and Mannheim, Baden-Württemberg (DE)

Medical Faculties Mannheim & Heidelberg and DKFZ, Germany

materi scientific problem solving

Postdoctoral Associate- Environmental Epidemiology

Houston, Texas (US)

Baylor College of Medicine (BCM)

materi scientific problem solving

Open Faculty Positions at the State Key Laboratory of Brain Cognition & Brain-inspired Intelligence

The laboratory focuses on understanding the mechanisms of brain intelligence and developing the theory and techniques of brain-inspired intelligence.

Shanghai, China

CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)

materi scientific problem solving

Research Associate - Good Manufacturing Practices (GMP)

materi scientific problem solving

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

IMAGES

  1. 5 Step Problem Solving Process

    materi scientific problem solving

  2. The 5 Steps of Problem Solving

    materi scientific problem solving

  3. Problem Solving

    materi scientific problem solving

  4. 4s model of problem solving

    materi scientific problem solving

  5. Materi Problem Solving Ppt

    materi scientific problem solving

  6. Draw A Map Showing The Problem Solving Process

    materi scientific problem solving

VIDEO

  1. Problem Solving Bimbingan Konseling

  2. Problem Solving and Decision Making

  3. Blaze and the Monster Machines 2

  4. Problem Set 001 Pra-Kalkulus (Matematika Dasar)

  5. Problem Based Learning materi Bernoulli pada pesawat terbang

  6. How to solve an everyday problem

COMMENTS

  1. Teaching and learning problem solving in science. Part I: A general

    How to encourage university students to solve physics problems requiring mathematical skills: the adventurous problem solving approach. European Journal of Physics 2004 , 25 (1) , 51-61.

  2. A Study of Problem Solving in Physics Learning: a Systematic Review

    solving pada materi fisika [Literature review on the development of problem solving ability instruments on physics material]. Inovasi Pendidikan Fisika, 10 (2), 16-127.

  3. Using the Scientific Method to Solve Problems

    The scientific method can be used to address any situation or problem where a theory can be developed. Although more often associated with natural sciences, it can also be used to develop theories in social sciences (such as psychology, sociology and linguistics), using both. information is information that can be measured, and tends to focus ...

  4. STEM Problem Solving: Inquiry, Concepts, and Reasoning

    Balancing disciplinary knowledge and practical reasoning in problem solving is needed for meaningful learning. In STEM problem solving, science subject matter with associated practices often appears distant to learners due to its abstract nature. Consequently, learners experience difficulties making meaningful connections between science and their daily experiences. Applying Dewey's idea of ...

  5. Problem-Solving in Science and Technology Education

    Many researchers proposed phases or steps to simplify the problem-solving process. However, according to Anderson (), problem-solving is an intuitive process, which is later checked analytically.He cites Bruner (1962, cited in Anderson, 1967) in saying that rather than using set formulas or patterns, intuitive problem-solving appears to be based on an implicit awareness of the entire issue ...

  6. What is the Scientific Method: How does it work and why is it ...

    While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving: Define a question: Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must ...

  7. The achieving of students' mathematical problem solving abilities in

    It was gotten that (1) gain of students' mathematical problem solving abilities taught by scientific learning was not higher than direct learning, (2) proportion of students who have good categorized of mathematical problem solving abilities in scientific learning was not higher than direct learning, and (3) the scientific learning was better ...

  8. The 6 Scientific Method Steps and How to Use Them

    One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation, as well as examining your thinking through rigorous study. There are in fact multiple scientific methods, as the basic structure can be easily modified.

  9. Scientific Problem Solving

    Scientific Problem Solving 2 Recognize the Problem The first step in using a scientific approach to solving a problem is recognizing a problem. A scientific problem is a question that can be answered using scientific methods. To solve a problem, scientists must do research using various sources of information.

  10. Materi Scientific Problem Solving

    Scribd adalah situs bacaan dan penerbitan sosial terbesar di dunia.

  11. Problem Solving (Pemecahan Masalah)

    Menurut Uno (2014, hlm. 134) problem solving adalah kemampuan untuk menggunakan proses berpikir dalam memecahkan masalah dengan mengumpulkan fakta, menganalisis informasi, penyusunan alternatif solusi, serta memilih solusi masalah yang lebih efektif. Artinya problem solving merupakan pencarian solusi melalui proses berpikir yang sistematis.

  12. (PDF) Efektivitas E-Modul Sistem Pencernaan Berbasis Problem Solving

    berbasis problem solving pada materi sistem pencernaan yang terdiri atas: ... causing a lack of scientific literacy and problem-solving skills of students in learning. This study aims to analyze ...

  13. Students' Scientific Problem Solving Skills in 3T Region: Using PhET

    The aim of this study was analyzing students' scientific problem solving skills during the learning process bysimulation of PhET located in 3T region. The outermost area in the territory of Indonesia is referred as 3T region. ... Pengembangan Instrumen Tes Pemecahan Masalah Bagi Mahasiswa Jurusan Fisika Pada Materi Dinamika Partikel. 6(1), 55 ...

  14. The Effect of Problem Based Learning Based Sosio-Scientific ...

    The population included class VII Junior High School of 6 Yogyakarta that consisting of seven classes in the 2019/2020 school year. The sample is determined by the Purposive Sampling technique. The research instruments were pretest and posttest questions of scientific literacy and students' problem-solving skills.

  15. Materi Problem Solving Lakmud

    Dokumen tersebut membahas tentang pendekatan Scientific Problem Solving (SPS) dalam pemecahan masalah organisasi. SPS melibatkan mengamati, menganalisis, dan mengevaluasi faktor-faktor eksternal dan internal yang dapat menyebabkan masalah, serta mengambil keputusan berdasarkan logika dan diskusi untuk menemukan solusi terbaik. Langkah-langkah pemecahan masalah meliputi identifikasi, definisi ...

  16. Keefektifan pendekatan saintifik model problem based learning, problem

    Kata kunci: keefektifan pendekatan saintifik, PBL, PS, Inquiry THE EFFECTIVENESS OF SCIENTIFIC APPROACH OF PROBLEM BASED LEARNING, PROBLEM SOLVING, AND INQUIRY IN TEACHING AND LEARNING SOCIAL STUDIES Abstract This research aims to reveal: (1) the differences among Problem-Based Learning, Problem solving, and Inquiry; (2) the effectiveness of ...

  17. PDF Problem Solving Signifikansi, Pengertian, Dan Ragamnya

    1 PPKn - FKIP Universitas Kristen Satya WacanaABSTRAKPemecahan masalah (problem solving) merupakan bagian dari ketrampilan atau kecakapan intelektual yang dinilai sebagai hasil belaj. r yang penting dan signifikan dalam proses pendidikan. Signifikansi kecakapan pemecahan masalah itu dapat dilihat baik dari banyaknya perhatian berbagai aliran ...

  18. Cognitive flexibility: exploring students' problem-solving in

    To solve the problems, they must be able to grasp the problem, see it from various points of view, and should not be rigid thinking with one solving method. In fact, the students still lack the ability to think flexibly in solving math problems. This exploration is necessary to determine how to encourage the students' creative problem-solving.

  19. PDF BAB II LANDASAN TEORI A. Problem Solving 1. Pengertian Problem Solving

    A. Problem Solving 1. Pengertian Problem Solving Secara bahasa problem solving berasal dari dua kata yaitu problem dan solves. Makna bahasa dari problem yaitu "a thing that is difficult to deal with or understand" (suatu hal yang sulit untuk melakukannya atau memahaminya), dapat jika diartikan "a question to be answered or solved"

  20. The Effect of Creative Problem Solving Models with Ethnoscience on

    This research aims to analyze whether there are significant differences in problem-solving abilities and scientific attitudes between students who use the ethnoscience-based creative problem-solving learning model and students who use the Discovery learning model on colloidal materials. This research was conducted at SMA N 6 Yogyakarta and SMA N 11 Yogyakarta using a quasi-experimental method ...

  21. Apa Itu Problem Solving? Ini Pengertian, Tujuan, & 5 Metodenya

    Setelah memahami apa itu problem solving dan tujuannya, di bawah ini terdapat beberapa tahapan untuk menerapkan metode problem solving.Jika Anda merasa belum punya skill problem solving mumpuni, cara-cara di bawah ini dapat membantu Anda berlatih.. 1. Mendefinisikan Masalah. Tahapan pertama problem solving adalah dengan mendefinisikan, mengurai, dan menyusun kembali satu per satu masalah pokok ...

  22. Waste management won't solve the plastics problem

    Waste management won't solve the plastics problem — we need to cut consumption Machine learning has been used to turn a survey of local waste-management practices into a global inventory of ...