Physical Review Physics Education Research

  • Collections
  • Editorial Team
  • Open Access

Conceptual problem solving in high school physics

Jennifer l. docktor, natalie e. strand, josé p. mestre, and brian h. ross, phys. rev. st phys. educ. res. 11 , 020106 – published 1 september 2015.

  • Citing Articles (55)

Supplemental Material

  • INTRODUCTION
  • RESULTS AND DISCUSSION
  • GENERAL DISCUSSION
  • ACKNOWLEDGMENTS

Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers’ implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

Figure

  • Received 30 April 2015

DOI: https://doi.org/10.1103/PhysRevSTPER.11.020106

problem solving method of teaching physical science

This article is available under the terms of the Creative Commons Attribution 3.0 License . Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Authors & Affiliations

  • 1 Department of Physics, University of Wisconsin–La Crosse, La Crosse, Wisconsin 54601, USA
  • 2 Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
  • 3 Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
  • 4 Department of Educational Psychology, University of Illinois, Champaign, Illinois 61820, USA
  • 5 Department of Psychology, University of Illinois, Champaign, Illinois 61820, USA
  • * [email protected]

Article Text

Vol. 11, Iss. 2 — July - December 2015

problem solving method of teaching physical science

Authorization Required

Other options.

  • Buy Article »
  • Find an Institution with the Article »

Download & Share

Sample problem and strategy (principle-justification-plan).

Sample two-column solution.

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License . This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Forgot your username/password?
  • Create an account

Article Lookup

Paste a citation or doi, enter a citation.

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

STEM Problem Solving: Inquiry, Concepts, and Reasoning

  • Published: 29 January 2022
  • Volume 32 , pages 381–397, ( 2023 )

Cite this article

problem solving method of teaching physical science

  • Aik-Ling Tan   ORCID: orcid.org/0000-0002-4627-4977 1 ,
  • Yann Shiou Ong   ORCID: orcid.org/0000-0002-6092-2803 1 ,
  • Yong Sim Ng   ORCID: orcid.org/0000-0002-8400-2040 1 &
  • Jared Hong Jie Tan 1  

10k Accesses

9 Citations

2 Altmetric

Explore all metrics

Balancing disciplinary knowledge and practical reasoning in problem solving is needed for meaningful learning. In STEM problem solving, science subject matter with associated practices often appears distant to learners due to its abstract nature. Consequently, learners experience difficulties making meaningful connections between science and their daily experiences. Applying Dewey’s idea of practical and science inquiry and Bereiter’s idea of referent-centred and problem-centred knowledge, we examine how integrated STEM problem solving offers opportunities for learners to shuttle between practical and science inquiry and the kinds of knowledge that result from each form of inquiry. We hypothesize that connecting science inquiry with practical inquiry narrows the gap between science and everyday experiences to overcome isolation and fragmentation of science learning. In this study, we examine classroom talk as students engage in problem solving to increase crop yield. Qualitative content analysis of the utterances of six classes of 113 eighth graders and their teachers were conducted for 3 hours of video recordings. Analysis showed an almost equal amount of science and practical inquiry talk. Teachers and students applied their everyday experiences to generate solutions. Science talk was at the basic level of facts and was used to explain reasons for specific design considerations. There was little evidence of higher-level scientific conceptual knowledge being applied. Our observations suggest opportunities for more intentional connections of science to practical problem solving, if we intend to apply higher-order scientific knowledge in problem solving. Deliberate application and reference to scientific knowledge could improve the quality of solutions generated.

Similar content being viewed by others

problem solving method of teaching physical science

Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

problem solving method of teaching physical science

Ways of thinking in STEM-based problem solving

problem solving method of teaching physical science

Framing and Assessing Scientific Inquiry Practices

Explore related subjects.

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

1 Introduction

As we enter to second quarter of the twenty-first century, it is timely to take stock of both the changes and demands that continue to weigh on our education system. A recent report by World Economic Forum highlighted the need to continuously re-position and re-invent education to meet the challenges presented by the disruptions brought upon by the fourth industrial revolution (World Economic Forum, 2020 ). There is increasing pressure for education to equip children with the necessary, relevant, and meaningful knowledge, skills, and attitudes to create a “more inclusive, cohesive and productive world” (World Economic Forum, 2020 , p. 4). Further, the shift in emphasis towards twenty-first century competencies over mere acquisition of disciplinary content knowledge is more urgent since we are preparing students for “jobs that do not yet exist, technology that has not yet been invented, and problems that has yet exist” (OECD, 2018 , p. 2). Tan ( 2020 ) concurred with the urgent need to extend the focus of education, particularly in science education, such that learners can learn to think differently about possibilities in this world. Amidst this rhetoric for change, the questions that remained to be answered include how can science education transform itself to be more relevant; what is the role that science education play in integrated STEM learning; how can scientific knowledge, skills and epistemic practices of science be infused in integrated STEM learning; what kinds of STEM problems should we expose students to for them to learn disciplinary knowledge and skills; and what is the relationship between learning disciplinary content knowledge and problem solving skills?

In seeking to understand the extent of science learning that took place within integrated STEM learning, we dissected the STEM problems that were presented to students and examined in detail the sense making processes that students utilized when they worked on the problems. We adopted Dewey’s ( 1938 ) theoretical idea of scientific and practical/common-sense inquiry and Bereiter’s ideas of referent-centred and problem-centred knowledge building process to interpret teacher-students’ interactions during problem solving. There are two primary reasons for choosing these two theoretical frameworks. Firstly, Dewey’s ideas about the relationship between science inquiry and every day practical problem-solving is important in helping us understand the role of science subject matter knowledge and science inquiry in solving practical real-world problems that are commonly used in STEM learning. Secondly, Bereiter’s ideas of referent-centred and problem-centred knowledge augment our understanding of the types of knowledge that students can learn when they engage in solving practical real-world problems.

Taken together, Dewey’s and Bereiter’s ideas enable us to better understand the types of problems used in STEM learning and their corresponding knowledge that is privileged during the problem-solving process. As such, the two theoretical lenses offered an alternative and convincing way to understand the actual types of knowledge that are used within the context of integrated STEM and help to move our understanding of STEM learning beyond current focus on examining how engineering can be used as an integrative mechanism (Bryan et al., 2016 ) or applying the argument of the strengths of trans-, multi-, or inter-disciplinary activities (Bybee, 2013 ; Park et al., 2020 ) or mapping problems by the content and context as pure STEM problems, STEM-related problems or non-STEM problems (Pleasants, 2020 ). Further, existing research (for example, Gale et al., 2000 ) around STEM education focussed largely on description of students’ learning experiences with insufficient attention given to the connections between disciplinary conceptual knowledge and inquiry processes that students use to arrive at solutions to problems. Clarity in the role of disciplinary knowledge and the related inquiry will allow for more intentional design of STEM problems for students to learn higher-order knowledge. Applying Dewey’s idea of practical and scientific inquiry and Bereiter’s ideas of referent-centred and problem-centred knowledge, we analysed six lessons where students engaged with integrated STEM problem solving to propose answers to the following research questions: What is the extent of practical and scientific inquiry in integrated STEM problem solving? and What conceptual knowledge and problem-solving skills are learnt through practical and science inquiry during integrated STEM problem solving?

2 Inquiry in Problem Solving

Inquiry, according to Dewey ( 1938 ), involves the direct control of unknown situations to change them into a coherent and unified one. Inquiry usually encompasses two interrelated activities—(1) thinking about ideas related to conceptual subject-matter and (2) engaging in activities involving our senses or using specific observational techniques. The National Science Education Standards released by the National Research Council in the US in 1996 defined inquiry as “…a multifaceted activity that involves making observations; posing questions; examining books and other sources of information to see what is already known; planning investigations; reviewing what is already known in light of experimental evidence; using tools to gather, analyze, and interpret data; proposing answers, explanations, and predictions; and communicating the results. Inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations” (p. 23). Planning investigation; collecting empirical evidence; using tools to gather, analyse and interpret data; and reasoning are common processes shared in the field of science and engineering and hence are highly relevant to apply to integrated STEM education.

In STEM education, establishing the connection between general inquiry and its application helps to link disciplinary understanding to epistemic knowledge. For instance, methods of science inquiry are popular in STEM education due to the familiarity that teachers have with scientific methods. Science inquiry, a specific form of inquiry, has appeared in many science curriculum (e.g. NRC, 2000 ) since Dewey proposed in 1910 that learning of science should be perceived as both subject-matter and a method of learning science (Dewey, 1910a , 1910b ). Science inquiry which involved ways of doing science should also encompass the ways in which students learn the scientific knowledge and investigative methods that enable scientific knowledge to be constructed. Asking scientifically orientated questions, collecting empirical evidence, crafting explanations, proposing models and reasoning based on available evidence are affordances of scientific inquiry. As such, science should be pursued as a way of knowing rather than merely acquisition of scientific knowledge.

Building on these affordances of science inquiry, Duschl and Bybee ( 2014 ) advocated the 5D model that focused on the practice of planning and carrying out investigations in science and engineering, representing two of the four disciplines in STEM. The 5D model includes science inquiry aspects such as (1) deciding on what and how to measure, observe and sample; (2) developing and selecting appropriate tools to measure and collect data; (3) recording the results and observations in a systematic manner; (4) creating ways to represent the data and patterns that are observed; and (5) determining the validity and the representativeness of the data collected. The focus on planning and carrying out investigations in the 5D model is used to help teachers bridge the gap between the practices of building and refining models and explanation in science and engineering. Indeed, a common approach to incorporating science inquiry in integrated STEM curriculum involves student planning and carrying out scientific investigations and making sense of the data collected to inform engineering design solution (Cunningham & Lachapelle, 2016 ; Roehrig et al., 2021 ). Duschl and Bybee ( 2014 ) argued that it is needful to design experiences for learners to appreciate that struggles are part of problem solving in science and engineering. They argued that “when the struggles of doing science is eliminated or simplified, learners get the wrong perceptions of what is involved when obtaining scientific knowledge and evidence” (Duschl & Bybee, 2014 , p. 2). While we concur with Duschl and Bybee about the need for struggles, in STEM learning, these struggles must be purposeful and grade appropriate so that students will also be able to experience success amidst failure.

The peculiar nature of science inquiry was scrutinized by Dewey ( 1938 ) when he cross-examined the relationship between science inquiry and other forms of inquiry, particularly common-sense inquiry. He positioned science inquiry along a continuum with general or common-sense inquiry that he termed as “logic”. Dewey argued that common-sense inquiry serves a practical purpose and exhibits features of science inquiry such as asking questions and a reliance on evidence although the focus of common-sense inquiry tends to be different. Common-sense inquiry deals with issues or problems that are in the immediate environment where people live, whereas the objects of science inquiry are more likely to be distant (e.g. spintronics) from familiar experiences in people’s daily lives. While we acknowledge the fundamental differences (such as novel discovery compared with re-discovering science, ‘messy’ science compared with ‘sanitised’ science) between school science and science that is practiced by scientists, the subject of interest in science (understanding the world around us) remains the same.

The unfamiliarity between the functionality and purpose of science inquiry to improve the daily lives of learners does little to motivate learners to learn science (Aikenhead, 2006 ; Lee & Luykx, 2006 ) since learners may not appreciate the connections of science inquiry in their day-to-day needs and wants. Bereiter ( 1992 ) has also distinguished knowledge into two forms—referent-centred and problem-centred. Referent-centred knowledge refers to subject-matter that is organised around topics such as that in textbooks. Problem-centred knowledge is knowledge that is organised around problems, whether they are transient problems, practical problems or problems of explanations. Bereiter argued that referent-centred knowledge that is commonly taught in schools is limited in their applications and meaningfulness to the lives of students. This lack of familiarity and affinity to referent-centred knowledge is likened to the science subject-matter knowledge that was mentioned by Dewey. Rather, it is problem-centred knowledge that would be useful when students encounter problems. Learning problem-centred knowledge will allow learners to readily harness the relevant knowledge base that is useful to understand and solve specific problems. This suggests a need to help learners make the meaningful connections between science and their daily lives.

Further, Dewey opined that while the contexts in which scientific knowledge arise could be different from our daily common-sense world, careful consideration of scientific activities and applying the resultant knowledge to daily situations for use and enjoyment is possible. Similarly, in arguing for problem-centred knowledge, Bereiter ( 1992 ) questioned the value of inert knowledge that plays no role in helping us understand or deal with the world around us. Referent-centred knowledge has a higher tendency to be inert due to the way that the knowledge is organised and the way that the knowledge is encountered by learners. For instance, learning about the equation and conditions for photosynthesis is not going to help learners appreciate how plants are adapted for photosynthesis and how these adaptations can allow plants to survive changes in climate and for farmers to grow plants better by creating the best growing conditions. Rather, students could be exposed to problems of explanations where they are asked to unravel the possible reasons for low crop yield and suggest possible ways to overcome the problem. Hence, we argue here that the value of the referent knowledge is that they form the basis and foundation for the students to be able to discuss or suggest ways to overcome real life problems. Referent-centred knowledge serves as part of the relevant knowledge base that can be harnessed to solve specific problems or as foundational knowledge students need to progress to learn higher-order conceptual knowledge that typically forms the foundations or pillars within a discipline. This notion of referent-centred knowledge serving as foundational knowledge that can be and should be activated for application in problem-solving situation is shown by Delahunty et al. ( 2020 ). They found that students show high reliance on memory when they are conceptualising convergent problem-solving tasks.

While Bereiter argues for problem-centred knowledge, he cautioned that engagement should be with problems of explanation rather than transient or practical problems. He opined that if learners only engage in transient or practical problem alone, they will only learn basic-category types of knowledge and fail to understand higher-order conceptual knowledge. For example, for photosynthesis, basic-level types of knowledge included facts about the conditions required for photosynthesis, listing the products formed from the process of photosynthesis and knowing that green leaves reflect green light. These basic-level knowledges should intentionally help learners learn higher-level conceptual knowledge that include learners being able to draw on the conditions for photosynthesis when they encounter that a plant is not growing well or is exhibiting discoloration of leaves.

Transient problems disappear once a solution becomes available and there is a high likelihood that we will not remember the problem after that. Practical problems, according to Bereiter are “stuck-door” problems that could be solved with or without basic-level knowledge and often have solutions that lacks precise definition. There are usually a handful of practical strategies, such as pulling or pushing the door harder, kicking the door, etc. that will work for the problems. All these solutions lack a well-defined approach related to general scientific principles that are reproducible. Problems of explanations are the most desirable types of problems for learners since these are problems that persist and recur such that they can become organising points for knowledge. Problems of explanations consist of the conceptual representations of (1) a text base that serves to represent the text content and (2) a situation model that shows the portion of the world in which the text is relevant. The idea of text base to represent text content in solving problems of explanations is like the idea of domain knowledge and structural knowledge (refers to knowledge of how concepts within a domain are connected) proposed by Jonassen ( 2000 ). He argued that both types of knowledges are required to solve a range of problems from well-structured problems to ill-structured problems with a simulated context, to simple ill-structured problems and to complex ill-structured problems.

Jonassen indicated that complex ill-structured problems are typically design problems and are likely to be the most useful forms of problems for learners to be engaged in inquiry. Complex ill-structured design problems are the “wicked” problems that Buchanan ( 1992 ) discussed. Buchanan’s idea is that design aims to incorporate knowledge from different fields of specialised inquiry to become whole. Complex or wicked problems are akin to the work of scientists who navigate multiple factors and evidence to offer models that are typically oversimplified, but they apply them to propose possible first approximation explanations or solutions and iteratively relax constraints or assumptions to refine the model. The connections between the subject matter of science and the design process to engineer a solution are delicate. While it is important to ensure that practical concerns and questions are taken into consideration in designing solutions (particularly a material artefact) to a practical problem, the challenge here lies in ensuring that creativity in design is encouraged even if students initially lack or neglect the scientific conceptual understanding to explain/justify their design. In his articulation of wicked problems and the role of design thinking, Buchanan ( 1992 ) highlighted the need to pay attention to category and placement. Categories “have fixed meanings that are accepted within the framework of a theory or a philosophy and serve as the basis for analyzing what already exist” (Buchanan, 1992 , p. 12). Placements, on the other hand, “have boundaries to shape and constrain meaning, but are not rigidly fixed and determinate” (p. 12).

The difference in the ideas presented by Dewey and Bereiter lies in the problem design. For Dewey, scientific knowledge could be learnt from inquiring into practical problems that learners are familiar with. After all, Dewey viewed “modern science as continuous with, and to some degree an outgrowth and refinement of, practical or ‘common-sense’ inquiry” (Brown, 2012 ). For Bereiter, he acknowledged the importance of familiar experiences, but instead of using them as starting points for learning science, he argued that practical problems are limiting in helping learners acquire higher-order knowledge. Instead, he advocated for learners to organize their knowledge around problems that are complex, persistent and extended and requiring explanations to better understand the problems. Learners are to have a sense of the kinds of problems to which the specific concept is relevant before they can be said to have grasp the concept in a functionally useful way.

To connect between problem solving, scientific knowledge and everyday experiences, we need to examine ways to re-negotiate the disciplinary boundaries (such as epistemic understanding, object of inquiry, degree of precision) of science and make relevant connections to common-sense inquiry and to the problem at hand. Integrated STEM appears to be one way in which the disciplinary boundaries of science can be re-negotiated to include practices from the fields of technology, engineering and mathematics. In integrated STEM learning, inquiry is seen more holistically as a fluid process in which the outcomes are not absolute but are tentative. The fluidity of the inquiry process is reflected in the non-deterministic inquiry approach. This means that students can use science inquiry, engineering design, design process or any other inquiry approaches that fit to arrive at the solution. This hybridity of inquiry between science, common-sense and problems allows for some familiar aspects of the science inquiry process to be applied to understand and generate solutions to familiar everyday problems. In attempting to infuse elements of common-sense inquiry with science inquiry in problem-solving, logic plays an important role to help learners make connections. Hypothetically, we argue that with increasing exposure to less familiar ways of thinking such as those associated with science inquiry, students’ familiarity with scientific reasoning increases, and hence such ways of thinking gradually become part of their common-sense, which students could employ to solve future relevant problems. The theoretical ideas related to complexities of problems, the different forms of inquiry afforded by different problems and the arguments for engaging in problem solving motivated us to examine empirically how learners engage with ill-structured problems to generate problem-centred knowledge. Of particular interest to us is how learners and teachers weave between practical and scientific reasoning as they inquire to integrate the components in the original problem into a unified whole.

3.1 Context

The integrated STEM activity in our study was planned using the S-T-E-M quartet instructional framework (Tan et al., 2019 ). The S-T-E-M quartet instructional framework positions complex, persistent and extended problems at its core and focusses on the vertical disciplinary knowledge and understanding of the horizontal connections between the disciplines that could be gained by learners through solving the problem (Tan et al., 2019 ). Figure  1 depicts the disciplinary aspects of the problem that was presented to the students. The activity has science and engineering as the two lead disciplines. It spanned three 1-h lessons and required students to both learn and apply relevant scientific conceptual knowledge to solve a complex, real-world problem through processes that resemble the engineering design process (Wheeler et al., 2019 ).

figure 1

Connections across disciplines in integrate STEM activity

figure 2

Frequency of different types of reasoning

In the first session (1 h), students were introduced to the problem and its context. The problem pertains to the issue of limited farmland in a land scarce country that imports 90% of food (Singapore Food Agency [SFA], 2020 ). The students were required to devise a solution by applying knowledge of the conditions required for photosynthesis and plant growth to design and build a vertical farming system to help farmers increase crop yield with limited farmland. This context was motivated by the government’s effort to generate interests and knowledge in farming to achieve the 30 by 30 goal—supplying 30% of country’s nutritional needs by 2030. The scenario was a fictitious one where they were asked to produce 120 tonnes of Kailan (a type of leafy vegetable) with two hectares of land instead of the usual six hectares over a specific period. In addition to the abovementioned constraints, the teacher also discussed relevant success criteria for evaluating the solution with the students. Students then researched about existing urban farming approaches. They were given reading materials pertaining to urban farming to help them understand the affordances and constraints of existing solutions. In the second session (6 h), students engaged in ideation to generate potential solutions. They then designed, built and tested their solution and had opportunities to iteratively refine their solution. Students were given a list of materials (e.g. mounting board, straws, ice-cream stick, glue, etc.) that they could use to design their solutions. In the final session (1 h), students presented their solution and reflected on how well their solution met the success criteria. The prior scientific conceptual knowledge that students require to make sense of the problem include knowledge related to plant nutrition, namely, conditions for photosynthesis, nutritional requirements of Kailin and growth cycle of Kailin. The problem resembles a real-world problem that requires students to engage in some level of explanation of their design solution.

A total of 113 eighth graders (62 boys and 51 girls), 14-year-olds, from six classes and their teachers participated in the study. The students and their teachers were recruited as part of a larger study that examined the learning experiences of students when they work on integrated STEM activities that either begin with a problem, a solution or are focused on the content. Invitations were sent to schools across the country and interested schools opted in for the study. For the study reported here, all students and teachers were from six classes within a school. The teachers had all undergone 3 h of professional development with one of the authors on ways of implementing the integrated STEM activity used in this study. During the professional development session, the teachers learnt about the rationale of the activity, familiarize themselves with the materials and clarified the intentions and goals of the activity. The students were mostly grouped in groups of three, although a handful of students chose to work independently. The group size of students was not critical for the analysis of talk in this study as the analytic focus was on the kinds of knowledge applied rather than collaborative or group think. We assumed that the types of inquiry adopted by teachers and students were largely dependent on the nature of problem. Eighth graders were chosen for this study since lower secondary science offered at this grade level is thematic and integrated across biology, chemistry and physics. Furthermore, the topic of photosynthesis is taught under the theme of Interactions at eighth grade (CPDD, 2021 ). This thematic and integrated nature of science at eighth grade offered an ideal context and platform for integrated STEM activities to be trialled.

The final lessons in a series of three lessons in each of the six classes was analysed and reported in this study. Lessons where students worked on their solutions were not analysed because the recordings had poor audibility due to masking and physical distancing requirements as per COVID-19 regulations. At the start of the first lesson, the instructions given by the teacher were:

You are going to present your models. Remember the scenario that you were given at the beginning that you were tasked to solve using your model. …. In your presentation, you have to present your prototype and its features, what is so good about your prototype, how it addresses the problem and how it saves costs and space. So, this is what you can talk about during your presentation. ….. pay attention to the presentation and write down questions you like to ask the groups after the presentation… you can also critique their model, you can evaluate, critique and ask questions…. Some examples of questions you can ask the groups are? Do you think your prototype can achieve optimal plant growth? You can also ask questions specific to their models.

3.2 Data collection

Parental consent was sought a month before the start of data collection. The informed consent adhered to confidentiality and ethics guidelines as described by the Institutional Review Board. The data collection took place over a period of one month with weekly video recording. Two video cameras, one at the front and one at the back of the science laboratory were set up. The front camera captured the students seated at the front while the back video camera recorded the teacher as well as the groups of students at the back of the laboratory. The video recordings were synchronized so that the events captured from each camera can be interpreted from different angles. After transcription of the raw video files, the identities of students were substituted with pseudonyms.

3.3 Data analysis

The video recordings were analysed using the qualitative content analysis approach. Qualitative content analysis allows for patterns or themes and meanings to emerge from the process of systematic classification (Hsieh & Shannon, 2005 ). Qualitative content analysis is an appropriate analytic method for this study as it allows us to systematically identify episodes of practical inquiry and science inquiry to map them to the purposes and outcomes of these episodes as each lesson unfolds.

In total, six h of video recordings where students presented their ideas while the teachers served as facilitator and mentor were analysed. The video recordings were transcribed, and the transcripts were analysed using the NVivo software. Our unit of analysis is a single turn of talk (one utterance). We have chosen to use utterances as proxy indicators of reasoning practices based on the assumption that an utterance relates to both grammar and context. An utterance is a speech act that reveals both meaning and intentions of the speaker within specific contexts (Li, 2008 ).

Our research analytical lens is also interpretative in nature and the validity of our interpretation is through inter-rater discussion and agreement. Each utterance at the speaker level in transcripts was examined and coded either as relevant to practical reasoning or scientific reasoning based on the content. The utterances could be a comment by the teacher, a question by a student or a response by another student. Deductive coding is deployed with the two codes, practical reasoning and scientific reasoning derived from the theoretical ideas of Dewey and Bereiter as described earlier. Practical reasoning refers to utterances that reflect commonsensical knowledge or application of everyday understanding. Scientific reasoning refers to utterances that consist of scientifically oriented questions, scientific terms, or the use of empirical evidence to explain. Examples of each type of reasoning are highlighted in the following section. Each coded utterance is then reviewed for detailed description of the events that took place that led to that specific utterance. The description of the context leading to the utterance is considered an episode. The episodes and codes were discussed and agreed upon by two of the authors. Two coders simultaneously watched the videos to identify and code the episodes. The coders interpreted the content of each utterance, examine the context where the utterance was made and deduced the purpose of the utterance. Once each coder has established the sense-making aspect of the utterance in relation to the context, a code of either practical reasoning or scientific reasoning is assigned. Once that was completed, the two coders compared their coding for similarities and differences. They discussed the differences until an agreement was reached. Through this process, an agreement of 85% was reached between the coders. Where disagreement persisted, codes of the more experienced coder were adopted.

4 Results and Discussion

The specific STEM lessons analysed were taken from the lessons whereby students presented the model of their solutions to the class for peer evaluation. Every group of students stood in front of the class and placed their model on the bench as they presented. There was also a board where they could sketch or write their explanations should they want to. The instructions given by the teacher to the students were to explain their models and state reasons for their design.

4.1 Prevalence of Reasoning

The 6h of videos consists of 1422 turns of talk. Three hundred four turns of talk (21%) were identified as talk related to reasoning, either practical reasoning or scientific reasoning. Practical reasoning made up 62% of the reasoning turns while 38% were scientific reasoning (Fig. 2 ).

The two types of reasoning differ in the justifications that are used to substantiate the claims or decisions made. Table 1 describes the differences between the two categories of reasoning.

4.2 Applications of Scientific Reasoning

Instances of engagement with scientific reasoning (for instance, using scientific concepts to justify, raising scientifically oriented questions, or providing scientific explanations) revolved around the conditions for photosynthesis and the concept of energy conversion when students were presenting their ideas or when they were questioned by their peers. For example, in explaining the reason for including fish in their plant system, one group of students made connection to cyclical energy transfer: “…so as the roots of the plants submerged in the water, faeces from the fish will be used as fertilizers so that the plant can grow”. The students considered how organic matter that is still trapped within waste materials can be released and taken up by plants to enhance the growth. The application of scientific reasoning made their design one that is innovative and sustainable as evaluated by the teacher. Some students attempted more ecofriendly designs by considering energy efficiencies through incorporating water turbines in their farming systems. They applied the concept of different forms of energy and energy conversion when their peers inquired about their design. The same scientific concepts were explained at different levels of details by different students. At one level, the students explained in a purely descriptive manner of what happens to the different entities in their prototypes, with implied changes to the forms of energy─ “…spins then generates electricity. So right, when the water falls down, then it will spin. The water will fall on the fan blade thing, then it will spin and then it generates electricity. So, it saves electricity, and also saves water”. At another level, students defended their design through an explanation of energy conversion─ “…because when the water flows right, it will convert gravitational potential energy so, when it reaches the bottom, there is not really much gravitational potential energy”. While these instances of applying scientific reasoning indicated that students have knowledge about the scientific phenomena and can apply them to assist in the problem-solving process, we are not able to establish if students understood the science behind how the dynamo works to generate electricity. Students in eighth grade only need to know how a generator works at a descriptive level and the specialized understanding how a dynamo works is beyond the intended learning outcomes at this grade level.

The application of scientific concepts for justification may not always be accurate. For instance, the naïve conception that students have about plants only respiring at night and not in the day surfaced when one group of students tried to justify the growth rates of Kailan─ “…I mean, they cannot be making food 24/7 and growing 24/7. They have nighttime for a reason. They need to respire”. These students do not appreciate that plants respire in the day as well, and hence respiration occurs 24/7. This naïve conception that plants only respire at night is one that is common among learners of biology (e.g. Svandova, 2014 ) since students learn that plant gives off oxygen in the day and takes in oxygen at night. The hasty conclusion to that observation is that plants carry out photosynthesis in the day and respire at night. The relative rates of photosynthesis and respiration were not considered by many students.

Besides naïve conceptions, engagement with scientific ideas to solve a practical problem offers opportunities for unusual and alternative ideas about science to surface. For instance, another group of students explained that they lined up their plants so that “they can take turns to absorb sunlight for photosynthesis”. These students appear to be explaining that the sun will move and depending on the position of the sun, some plants may be under shade, and hence rates of photosynthesis are dependent on the position of the sun. However, this idea could also be interpreted as (1) the students failed to appreciate that sunlight is everywhere, and (2) plants, unlike animals, particularly humans, do not have the concept of turn-taking. These diverse ideas held by students surfaced when students were given opportunities to apply their knowledge of photosynthesis to solve a problem.

4.3 Applications of Practical Reasoning

Teachers and students used more practical reasoning during an integrated STEM activity requiring both science and engineering practices as seen from 62% occurrence of practical reasoning compared with 38% for scientific reasoning. The intention of the activity to integrate students’ scientific knowledge related to plant nutrition to engineering practice of building a model of vertical farming system could be the reason for the prevalence of practical reasoning. The practical reasoning used related to structural design considerations of the farming system such as how water, light and harvesting can be carried out in the most efficient manner. Students defended the strengths of designs using logic based on their everyday experiences. In the excerpt below (transcribed verbatim), we see students applied their everyday experiences when something is “thinner” (likely to mean narrower), logically it would save space. Further, to reach a higher level, you use a machine to climb up.

Excerpt 1. “Thinner, more space” Because it is more thinner, so like in terms of space, it’s very convenient. So right, because there is – because it rotates right, so there is this button where you can stop it. Then I also installed steps, so that – because there are certain places you can’t reach even if you stop the – if you stop the machine, so when you stop it and you climb up, and then you see the condition of the plants, even though it costs a lot of labour, there is a need to have an experienced person who can grow plants. Then also, when like – when water reach the plants, cos the plants I want to use is soil-based, so as the water reach the soil, the soil will xxx, so like the water will be used, and then we got like – and then there’s like this filter that will filter like the dirt.

In the examples of practical reasoning, we were not able to identify instances where students and teachers engaged with discussion around trade-off and optimisation. Understanding constraints, trade-offs and optimisations are important ideas in informed design matrix for engineering as suggested by Crismond and Adams ( 2012 ). For instance, utterances such as “everything will be reused”, “we will be saving space”, “it looks very flimsy” or “so that it can contains [sic] the plants” were used. These utterances were made both by students while justifying their own prototypes and also by peers who challenged the design of others. Longer responses involving practical reasoning were made based on common-sense, everyday logic─ “…the product does not require much manpower, so other than one or two supervisors like I said just now, to harvest the Kailan, hence, not too many people need to be used, need to be hired to help supervise the equipment and to supervise the growth”. We infer that the higher instances of utterances related to practical reasoning could be due to the presence of more concrete artefacts that is shown, and the students and teachers were more focused on questioning the structure at hand. This inference was made as instructions given by the teacher at the start of students’ presentation focus largely on the model rather than the scientific concepts or reasoning behind the model.

4.4 Intersection Between Scientific and Practical Reasoning

Comparing science subject matter knowledge and problem-solving to the idea of categories and placement (Buchanan, 1992 ), subject matter is analogous to categories where meanings are fixed with well-established epistemic practices and norms. The problem-solving process and design of solutions are likened to placements where boundaries are less rigid, hence opening opportunities for students’ personal experiences and ideas to be presented. Placements allow students to apply their knowledge from daily experiences and common-sense logic to justify decisions. Common-sense knowledge and logic are more accessible, and hence we observe higher frequency of usage. Comparatively, while science subject matter (categories) is also used, it is observed less frequently. This could possibly be due either to less familiarity with the subject matter or lack of appropriate opportunity to apply in practical problem solving. The challenge for teachers during implementation of a STEM problem-solving activity, therefore, lies in the balance of the application of scientific and practical reasoning to deepen understanding of disciplinary knowledge in the context of solving a problem in a meaningful manner.

Our observations suggest that engaging students with practical inquiry tasks with some engineering demands such as the design of modern farm systems offers opportunities for them to convert their personal lived experiences into feasible concrete ideas that they can share in a public space for critique. The peer critique following the sharing of their practical ideas allows for both practical and scientific questions to be asked and for students to defend their ideas. For instance, after one group of students presented their prototype that has silvered surfaces, a student asked a question: “what is the function of the silver panels?”, to which his peers replied : “Makes the light bounce. Bounce the sunlight away and then to other parts of the tray.” This question indicated that students applied their knowledge that shiny silvered surfaces reflect light, and they used this knowledge to disperse the light to other trays where the crops were growing. An example of a practical question asked was “what is the purpose of the ladder?”, to which the students replied: “To take the plants – to refill the plants, the workers must climb up”. While the process of presentation and peer critique mimic peer review in the science inquiry process, the conceptual knowledge of science may not always be evident as students paid more attention to the design constraints such as lighting, watering, and space that was set in the activity. Given the context of growing plants, engagement with the science behind nutritional requirements of plants, the process of photosynthesis, and the adaptations of plants could be more deliberately explored.

5 Conclusion

The goal of our work lies in applying the theoretical ideas of Dewey and Bereiter to better understand reasoning practices in integrate STEM problem solving. We argue that this is a worthy pursue to better understand the roles of scientific reasoning in practical problem solving. One of the goals of integrated STEM education in schools is to enculture students into the practices of science, engineering and mathematics that include disciplinary conceptual knowledge, epistemic practices, and social norms (Kelly & Licona, 2018 ). In the integrated form, the boundaries and approaches to STEM learning are more diverse compared with monodisciplinary ways of problem solving. For instance, in integrated STEM problem solving, besides scientific investigations and explanations, students are also required to understand constraints, design optimal solutions within specific parameters and even to construct prototypes. For students to learn the ways of speaking, doing and being as they participate in integrated STEM problem solving in schools in a meaningful manner, students could benefit from these experiences.

With reference to the first research question of What is the extent of practical and scientific reasoning in integrated STEM problem solving, our analysis suggests that there are fewer instances of scientific reasoning compared with practical reasoning. Considering the intention of integrated STEM learning and adopting Bereiter’s idea that students should learn higher-order conceptual knowledge through engagement with problem solving, we argue for a need for scientific reasoning to be featured more strongly in integrated STEM lessons so that students can gain higher order scientific conceptual knowledge. While the lessons observed were strong in design and building, what was missing in generating solutions was the engagement in investigations, where learners collected or are presented with data and make decisions about the data to allow them to assess how viable the solutions are. Integrated STEM problems can be designed so that science inquiry can be infused, such as carrying out investigations to figure out relationships between variables. Duschl and Bybee ( 2014 ) have argued for the need to engage students in problematising science inquiry and making choices about what works and what does not.

With reference to the second research question , What is achieved through practical and scientific reasoning during integrated STEM problem solving? , our analyses suggest that utterance for practical reasoning are typically used to justify the physical design of the prototype. These utterances rely largely on what is observable and are associated with basic-level knowledge and experiences. The higher frequency of utterances related to practical reasoning and the nature of the utterances suggests that engagement with practical reasoning is more accessible since they relate more to students’ lived experiences and common-sense. Bereiter ( 1992 ) has urged educators to engage learners in learning that is beyond basic-level knowledge since accumulation of basic-level knowledge does not lead to higher-level conceptual learning. Students should be encouraged to use scientific knowledge also to justify their prototype design and to apply scientific evidence and logic to support their ideas. Engagement with scientific reasoning is preferred as conceptual knowledge, epistemic practices and social norms of science are more widely recognised compared with practical reasoning that are likely to be more varied since they rely on personal experiences and common-sense. This leads us to assert that both context and content are important in integrated STEM learning. Understanding the context or the solution without understanding the scientific principles that makes it work makes the learning less meaningful since we “…cannot strip learning of its context, nor study it in a ‘neutral’ context. It is always situated, always relayed to some ongoing enterprise”. (Bruner, 2004 , p. 20).

To further this discussion on how integrated STEM learning experiences harness the ideas of practical and scientific reasoning to move learners from basic-level knowledge to higher-order conceptual knowledge, we propose the need for further studies that involve working with teachers to identify and create relevant problems-of-explanations that focuses on feasible, worthy inquiry ideas such as those related to specific aspects of transportation, alternative energy sources and clean water that have impact on the local community. The design of these problems can incorporate opportunities for systematic scientific investigations and scaffolded such that there are opportunities to engage in epistemic practices of the constitute disciplines of STEM. Researchers could then examine the impact of problems-of-explanations on students’ learning of higher order scientific concepts. During the problem-solving process, more attention can be given to elicit students’ initial and unfolding ideas (practical) and use them as a basis to start the science inquiry process. Researchers can examine how to encourage discussions that focus on making meaning of scientific phenomena that are embedded within specific problems. This will help students to appreciate how data can be used as evidence to support scientific explanations as well as justifications for the solutions to problems. With evidence, learners can be guided to work on reasoning the phenomena with explanatory models. These aspects should move engagement in integrated STEM problem solving from being purely practice to one that is explanatory.

6 Limitations

There are four key limitations of our study. Firstly, the degree of generalisation of our observations is limited. This study sets out to illustrate what how Dewey and Bereiter’s ideas can be used as lens to examine knowledge used in problem-solving. As such, the findings that we report here is limited in its ability to generalise across different contexts and problems. Secondly, the lessons that were analysed came from teacher-frontal teaching and group presentation of solution and excluded students’ group discussions. We acknowledge that there could potentially be talk that could involve practical and scientific reasonings within group work. There are two practical consideration for choosing to analyse the first and presentation segments of the suite of lesson. Firstly, these two lessons involved participation from everyone in class and we wanted to survey the use of practical and scientific reasoning by the students as a class. Secondly, methodologically, clarity of utterances is important for accurate analysis and as students were wearing face masks during the data collection, their utterances during group discussions lack the clarity for accurate transcription and analysis. Thirdly, insights from this study were gleaned from a small sample of six classes of students. Further work could involve more classes of students although that could require more resources devoted to analysis of the videos. Finally, the number of students varied across groups and this could potentially affect the reasoning practices during discussions.

Data Availability

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice . Teachers College Press.

Google Scholar  

Bereiter, C. (1992). Referent-centred and problem-centred knowledge: Elements of an educational epistemology. Interchange, 23 (4), 337–361.

Article   Google Scholar  

Breiner, J. M., Johnson, C. C., Harkness, S. S., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnership. School Science and Mathematics, 112 (1), 3–11. https://doi.org/10.1111/j.194908594.2011.00109.x

Brown, M. J. (2012). John Dewey’s logic of science. HOPS: The Journal of the International Society for the History of Philosophy of Science, 2 (2), 258–306.

Bruner, J. (2004). The psychology of learning: A short history (pp.13–20). Winter: Daedalus.

Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge.

Buchanan, R. (1992). Wicked problems in design thinking. Design Issues, 8 (2), 5–21.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities . NSTA Press.

Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101 (4), 738–797.

Cunningham, C. M., & Lachapelle, P. (2016). Experiences to engage all students. Educational Designer , 3(9), 1–26. https://www.educationaldesigner.org/ed/volume3/issue9/article31/

Curriculum Planning and Development Division [CPDD] (2021). 2021 Lower secondary science express/ normal (academic) teaching and learning syllabus . Singapore: Ministry of Education.

Delahunty, T., Seery, N., & Lynch, R. (2020). Exploring problem conceptualization and performance in STEM problem solving contexts. Instructional Science, 48 , 395–425. https://doi.org/10.1007/s11251-020-09515-4

Dewey, J. (1938). Logic: The theory of inquiry . Henry Holt and Company Inc.

Dewey, J. (1910a). Science as subject-matter and as method. Science, 31 (787), 121–127.

Dewey, J. (1910b). How we think . D.C. Heath & Co Publishers.

Book   Google Scholar  

Duschl, R. A., & Bybee, R. W. (2014). Planning and carrying out investigations: an entry to learning and to teacher professional development around NGSS science and engineering practices. International Journal of STEM Education, 1 (12). DOI: https://doi.org/10.1186/s40594-014-0012-6 .

Gale, J., Alemder, M., Lingle, J., & Newton, S (2000). Exploring critical components of an integrated STEM curriculum: An application of the innovation implementation framework. International Journal of STEM Education, 7(5), https://doi.org/10.1186/s40594-020-0204-1 .

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15 (9), 1277–1288.

Jonassen, D. H. (2000). Toward a design theory of problem solving. ETR&D, 48 (4), 63–85.

Kelly, G., & Licona, P. (2018). Epistemic practices and science education. In M. R. Matthews (Ed.), History, philosophy and science teaching: New perspectives (pp. 139–165). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-62616-1 .

Lee, O., & Luykx, A. (2006). Science education and student diversity: Synthesis and research agenda . Cambridge University Press.

Li, D. (2008). The pragmatic construction of word meaning in utterances. Journal of Chinese Language and Computing, 18 (3), 121–137.

National Research Council. (1996). The National Science Education standards . National Academy Press.

National Research Council (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: The National Academies Press. https://doi.org/10.17226/9596 .

OECD (2018). The future of education and skills: Education 2030. Downloaded on October 3, 2020 from https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf

Park, W., Wu, J.-Y., & Erduran, S. (2020) The nature of STEM disciplines in science education standards documents from the USA, Korea and Taiwan: Focusing on disciplinary aims, values and practices.  Science & Education, 29 , 899–927.

Pleasants, J. (2020). Inquiring into the nature of STEM problems: Implications for pre-college education. Science & Education, 29 , 831–855.

Roehrig, G. H., Dare, E. A., Ring-Whalen, E., & Wieselmann, J. R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education, 8(2), https://doi.org/10.1186/s40594-020-00259-8

SFA (2020). The food we eat . Downloaded on May 5, 2021 from https://www.sfa.gov.sg/food-farming/singapore-food-supply/the-food-we-eat

Svandova, K. (2014). Secondary school students’ misconceptions about photosynthesis and plant respiration: Preliminary results. Eurasia Journal of Mathematics, Science, & Technology Education, 10 (1), 59–67.

Tan, M. (2020). Context matters in science education. Cultural Studies of Science Education . https://doi.org/10.1007/s11422-020-09971-x

Tan, A.-L., Teo, T. W., Choy, B. H., & Ong, Y. S. (2019). The S-T-E-M Quartet. Innovation and Education , 1 (1), 3. https://doi.org/10.1186/s42862-019-0005-x

Wheeler, L. B., Navy, S. L., Maeng, J. L., & Whitworth, B. A. (2019). Development and validation of the Classroom Observation Protocol for Engineering Design (COPED). Journal of Research in Science Teaching, 56 (9), 1285–1305.

World Economic Forum (2020). Schools of the future: Defining new models of education for the fourth industrial revolution. Retrieved on Jan 18, 2020 from https://www.weforum.org/reports/schools-of-the-future-defining-new-models-of-education-for-the-fourth-industrial-revolution/

Download references

Acknowledgements

The authors would like to acknowledge the contributions of the other members of the research team who gave their comment and feedback in the conceptualization stage.

This study is funded by Office of Education Research grant OER 24/19 TAL.

Author information

Authors and affiliations.

Natural Sciences and Science Education, meriSTEM@NIE, National Institute of Education, Nanyang Technological University, Singapore, Singapore

Aik-Ling Tan, Yann Shiou Ong, Yong Sim Ng & Jared Hong Jie Tan

You can also search for this author in PubMed   Google Scholar

Contributions

The first author conceptualized, researched, read, analysed and wrote the article.

The second author worked on compiling the essential features and the variations tables.

The third and fourth authors worked with the first author on the ideas and refinements of the idea.

Corresponding author

Correspondence to Yann Shiou Ong .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Tan, AL., Ong, Y.S., Ng, Y.S. et al. STEM Problem Solving: Inquiry, Concepts, and Reasoning. Sci & Educ 32 , 381–397 (2023). https://doi.org/10.1007/s11191-021-00310-2

Download citation

Accepted : 28 November 2021

Published : 29 January 2022

Issue Date : April 2023

DOI : https://doi.org/10.1007/s11191-021-00310-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Practical Inquiry
  • Science Inquiry
  • Referent-centered knowledge
  • Problem-centered knowledge
  • Find a journal
  • Publish with us
  • Track your research

AIP Publishing Logo

The Problem Solving Method in Teaching Physics in Elementary School

  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Reprints and Permissions
  • Cite Icon Cite
  • Search Site

Gordana Hajduković Jandrić , Dušanka Ž. Obadović , Maja Stojanović; The Problem Solving Method in Teaching Physics in Elementary School. AIP Conf. Proc. 21 January 2010; 1203 (1): 1320–1324. https://doi.org/10.1063/1.3322363

Download citation file:

  • Ris (Zotero)
  • Reference Manager

The most of the teachers ask if there is a “best” known way to teach. The most effective teaching method depends on the specific goals of the course and the needs of the students. An investigation has been carried out to compare the effect of teaching selected physics topics using problem‐solving method on the overall achievements of the acquired knowledge and teaching the same material by traditional teaching method. The investigation was performed as a pedagogical experiment of the type of parallel groups with randomly chosen sample of students attending grades eight. The control and experimental groups were equalized in the relevant pedagogical parameters. The obtained results were treated statistically. The comparison showed a significant difference in respect of the speed of acquiring knowledge, the problem‐solving teaching being advantageous over traditional methodDo not replace the word “abstract,” but do replace the rest of this text. If you must insert a hard line break, please use Shift + Enter rather than just tapping your “Enter” key. You may want to print this page and refer to it as a style sample before you begin working on your paper.

Citing articles via

Publish with us - request a quote.

problem solving method of teaching physical science

Sign up for alerts

  • Online ISSN 1551-7616
  • Print ISSN 0094-243X
  • For Researchers
  • For Librarians
  • For Advertisers
  • Our Publishing Partners  
  • Physics Today
  • Conference Proceedings
  • Special Topics

pubs.aip.org

  • Privacy Policy
  • Terms of Use

Connect with AIP Publishing

This feature is available to subscribers only.

Sign In or Create an Account

To read this content please select one of the options below:

Please note you do not have access to teaching notes, essential teaching methods to enhance learner academic achievement in physical sciences in rural secondary schools: a south african case study.

Information and Learning Sciences

ISSN : 2398-5348

Article publication date: 13 March 2017

The purpose of this paper is to explore teaching methods that can allow learners to be creative and proactive. The learners should be able to solve problems, make decisions, think critically, communicate ideas effectively and work efficiently. Teaching and learning are evolving and developing in many countries, with a focus concerning what is actually learned through effective teaching methods.

Design/methodology/approach

A qualitative research was carried out, identifying effective teaching methods and exploring their roles in teaching and learning in physical sciences in selected rural secondary schools. Face-to-face interviews with physical sciences teachers, school principals and curriculum advisers were used to collect data.

A range of teaching methods that may be integrated into teaching and learning activities is identified. The teaching methods ensure that topics are discussed and explored through interaction and sharing of perspective, views and values through which new learning can emerge. Viewed from this perspective, there is a need to create a stimulating, enriching, challenging and focused environment for physical sciences learners through the use of multiple teaching methodologies.

Research limitations/implications

The improvement of science learner’s academic achievement requires also the teachers to develop new skills and ways of teaching the subject. Improving learner academic achievement in physical sciences requires an approach to improve the skills of teachers as well, which focuses on the effective use of teaching methods such as experiments. This means attempting to change the attitude of teachers to regard the processes of teaching and learning as central to their role. In addition, the achievement of learners in science could possibly solve the problem of shortages of engineers, skilled artisans, technicians, doctors and technologists for sustainable development. It is important to create conducive conditions for learning and teaching in physical sciences, and continue to progressively and within available resources, realise that collaboration, problem-solving and hands-on activities are effective teaching methods to improve learner academic achievement.

Practical implications

The learners should be able to solve problems, make decisions, think critically, communicate ideas effectively and work efficiently. The study is limited to the teaching methods used in physical sciences. Hands-on activities are essential in science teaching and learning.

Social implications

The use of collaborations, peer teachings and hands-on activities allows learners emphasise the creation of a classroom where students are engaged in essentially open-ended, student-centred and hands-on experiments.

Originality/value

The paper is original work, in which face-to-face interviews were carried out. Qualitative research was carried out. The paper could assist educators in the teaching of physical sciences in secondary schools using the identified methods. The results were obtained from physical sciences educators, school principals and curriculum advisors in South Africa. Poor academic achievement in rural areas is a concern, and therefore, the paper provides effective methods which can be used by educators in the teaching of physical sciences in rural areas.

  • Essential teaching methods
  • Physical sciences
  • Science academic achievement

Zenda, R. (2017), "Essential teaching methods to enhance learner academic achievement in physical sciences in rural secondary schools: A South African case study", Information and Learning Sciences , Vol. 118 No. 3/4, pp. 170-184. https://doi.org/10.1108/ILS-03-2017-0014

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles

All feedback is valuable.

Please share your general feedback

Report an issue or find answers to frequently asked questions

Contact Customer Support

Plan to Attend Cell Bio 2024

Change Password

Your password must have 8 characters or more and contain 3 of the following:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

  • Sign in / Register

Request Username

Can't sign in? Forgot your username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

A Detailed Characterization of the Expert Problem-Solving Process in Science and Engineering: Guidance for Teaching and Assessment

  • Argenta M. Price
  • Candice J. Kim
  • Eric W. Burkholder
  • Amy V. Fritz
  • Carl E. Wieman

*Address correspondence to: Argenta M. Price ( E-mail Address: [email protected] ).

Department of Physics, Stanford University, Stanford, CA 94305

Search for more papers by this author

Graduate School of Education, Stanford University, Stanford, CA 94305

School of Medicine, Stanford University, Stanford, CA 94305

Department of Electrical Engineering, Stanford University, Stanford, CA 94305

A primary goal of science and engineering (S&E) education is to produce good problem solvers, but how to best teach and measure the quality of problem solving remains unclear. The process is complex, multifaceted, and not fully characterized. Here, we present a detailed characterization of the S&E problem-solving process as a set of specific interlinked decisions. This framework of decisions is empirically grounded and describes the entire process. To develop this, we interviewed 52 successful scientists and engineers (“experts”) spanning different disciplines, including biology and medicine. They described how they solved a typical but important problem in their work, and we analyzed the interviews in terms of decisions made. Surprisingly, we found that across all experts and fields, the solution process was framed around making a set of just 29 specific decisions. We also found that the process of making those discipline-general decisions (selecting between alternative actions) relied heavily on domain-specific predictive models that embodied the relevant disciplinary knowledge. This set of decisions provides a guide for the detailed measurement and teaching of S&E problem solving. This decision framework also provides a more specific, complete, and empirically based description of the “practices” of science.

INTRODUCTION

Many faculty members with new graduate students and many managers with employees who are recent college graduates have had similar experiences. Their advisees/employees have just completed a program of rigorous course work, often with distinction, but they seem unable to solve the real-world problems they encounter. The supervisor struggles to figure out exactly what the problem is and how they can guide the person in overcoming it. This paper is providing a way to answer those questions in the context of science and engineering (S&E). By characterizing the problem-solving process of experts, this paper investigates the “mastery” performance level and specifies an overarching learning goal for S&E students, which can be taught and measured to improve teaching.

The importance of problem solving as an educational outcome has long been recognized, but too often postsecondary S&E graduates have serious difficulties when confronted with real-world problems ( Quacquarelli Symonds, 2018 ). This reflects two long-standing educational problems with regard to problem solving: how to properly measure it, and how to effectively teach it. We theorize that the root of these difficulties is that good “problem solving” is a complex multifaceted process, and the details of that process have not been sufficiently characterized. Better characterization of the problem-solving process is necessary to allow problem solving, and more particularly, the complex set of skills and knowledge it entails, to be measured and taught more effectively. We sought to create an empirically grounded conceptual framework that would characterize the detailed structure of the full problem-solving process used by skilled practitioners when solving problems as part of their work. We also wanted a framework that would allow use and comparison across S&E disciplines. To create such a framework, we examined the operational decisions (choices among alternatives that result in subsequent actions) that these practitioners make when solving problems in their discipline.

Various aspects of problem solving have been studied across multiple domains, using a variety of methods (e.g., Newell and Simon, 1972 ; Dunbar, 2000 ; National Research Council [NRC], 2012b ; Lintern et al. , 2018 ). These ranged from expert self-reflections (e.g., Polya, 1945 ), to studies on knowledge lean tasks to discover general problem-solving heuristics (e.g., Egan and Greeno, 1974 ), to comparisons of expert and novice performances on simplified problems across a variety of disciplines (e.g., Chase and Simon, 1973 ; Chi et al. , 1981 ; Larkin and Reif, 1979 ; Ericsson et al. , 2006 , 2018 ). These studies revealed important novice–expert differences—notably, that experts are better at identifying important features and have knowledge structures that allow them to reduce demands on working memory. Studies that specifically gave the experts unfamiliar problems in their disciplines also found that, relative to novices, they had more deliberate and reflective strategies, including more extensive planning and managing of their own behavior, and they could use their knowledge base to better define the problem ( Schoenfeld, 1985 ; Wineburg, 1998 ; Singh, 2002 ). While these studies focused on discrete cognitive steps of the individual, an alternative framing of problem solving has been in terms of “ecological psychology” of “situativity,” looking at how the problem solver views and interacts with the environment in terms of affordances and constraints ( Greeno, 1994 ). “Naturalistic decision making” is a related framework that specifically examines how experts make decisions in complex, real-world, settings, with an emphasis on the importance of assessing the situation surrounding the problem at hand ( Klein, 2008 ; Mosier et al. , 2018 ).

While this work on expertise has provided important insights into the problem-solving process, its focus has been limited. Most has focused on looking for cognitive differences between experts and novices using limited and targeted tasks, such as remembering the pieces on a chessboard ( Chase and Simon, 1973 ) or identifying the important concepts represented in an introductory physics textbook problem ( Chi et al. , 1981 ). It did not attempt to explore the full process of solving, particularly for solving the type of complex problem that a scientist or engineer encounters as a member of the workforce (“authentic problems”).

There have also been many theoretical proposals as to expert problem-solving practices, but with little empirical evidence as to their completeness or accuracy (e.g., Polya, 1945 ; Heller and Reif, 1984 ; Organisation for Economic Cooperation and Development [OECD], 2019 ). The work of Dunbar (2000) is a notable exception to the lack of empirical work, as his group did examine how biologists solved problems in their work by analyzing lab meetings held by eight molecular biology research groups. His groundbreaking work focused on creativity and discovery in the research process, and he identified the importance of analogical reasoning and distributed reasoning by scientists in answering research questions and gaining new insights. Kozma et al. (2000) studied professional chemists solving problems, but their work focused only on the use of specialized representations.

The “cognitive systems engineering” approach ( Lintern et al. , 2018 ) takes a more empirically based approach looking at experts solving problems in their work, and as such tends to span aspects of both the purely cognitive and the ecological psychological theories. It uses both observations of experts in authentic work settings and retrospective interviews about how experts carried out particular work tasks. This theoretical framing and the experimental methods are similar to what we use, particularly in the “naturalistic decision making” area of research ( Mosier et al. , 2018 ). That work looks at how critical decisions are made in solving specific problems in their real-world setting. The decision process is studied primarily through retrospective interviews about challenging cases faced by experts. As described below, our methods are adapted from that work ( Crandall et al. , 2006 ), though there are some notable differences in focus and field. A particular difference is that we focused on identifying what are decisions to be made, which are more straight-forward to identify from retrospective interviews than how those decisions are made. We all have the same ultimate goal, however, to improve the training/teaching of the respective expertise.

Problem solving is central to the processes of science, engineering, and medicine, so research and educational standards about scientific thinking and the process and practices of science are also relevant to this discussion. Work by Osborne and colleagues describes six styles of scientific reasoning that can be used to explain how scientists and students approach different problems ( Kind and Osborne, 2016 ). There are also numerous educational standards and frameworks that, based on theory, lay out the skills or practices that science and engineering students are expected to master (e.g., American Association for the Advancement of Science [AAAS], 2011 ; Next Generation Science Standards Lead States, 2013 ; OECD, 2019 ; ABET, 2020 ). More specifically related to the training of problem solving, Priemer et al. (2020) synthesizes literature on problem solving and scientific reasoning to create a “STEM [science, technology, engineering, and mathematics] and computer science framework for problem solving” that lays out steps that could be involved in a students’ problem-solving efforts across STEM fields. These frameworks provide a rich groundwork, but they have several limitations: 1) They are based on theoretical ideas of the practice of science, not empirical evidence, so while each framework contains overlapping elements of the problem-solving process, it is unclear whether they capture the complete process. 2) They are focused on school science, rather than the actual problem solving that practitioners carry out and that students will need to carry out in future STEM careers. 3) They are typically underspecified, so that the steps or practices apply generally, but it is difficult to translate them into measurable learning goals for students to practice. Working to address that, Clemmons et al. (2020) recently sought to operationalize the core competencies from the Vision and Change report ( AAAS, 2011 ), establishing a set of skills that biology students should be able to master.

Our work seeks to augment this prior work by building a conceptual framework that is empirically based, grounded in how scientists and engineers solve problems in practice instead of in school. We base our framework on the decisions that need to be made during problem solving, which makes each item clearly defined for practice and assessment. In our analysis of expert problem solving, we empirically identified the entire problem-solving process. We found this includes deciding when and how to use the steps and skills defined in the work described previously but also includes additional elements. There are also questions in the literature about how generalizable across fields a particular set of practices may be. Here, we present the first empirical examination of the entire problem-solving process, and we compare that process across many different S&E disciplines.

A variety of instructional methods have been used to try and teach science and engineering problem solving, but there has been little evidence of their efficacy at improving problem solving (for a review, see NRC, 2012b ). Research explicitly on teaching problem solving has primarily focused on textbook-type exercises and utilized step-by-step strategies or heuristics. These studies have shown limited success, often getting students to follow specific procedural steps but with little gain in actually solving problems and showing some potential drawbacks ( Heller and Reif, 1984 ; Heller et al. , 1992 ; Huffman, 1997 ; Heckler, 2010 ; Kuo et al. , 2017 ). As discussed later, the framework presented here offers guidance for different and potentially more effective approaches to teaching problem solving.

These challenges can be illustrated by considering three different problems taken from courses in mechanical engineering, physics, and biology, respectively ( Figure 1 ). All of these problems are challenging, requiring considerable knowledge and effort by the student to solve correctly. Problems such as these are routinely used to both assess students’ problem-solving skills, and students are expected to learn such skills by practicing doing such problems. However, it is obvious to any expert in the respective fields, that, while these problems might be complicated and difficult to answer, they are vastly different from solving authentic problems in that field. They all have well-defined answers that can be reached by straightforward solution paths. More specifically, they do not involve needing to use judgment to make any decisions based on limited information (e.g., insufficient to specify a correct decision with certainty). The relevant concepts and information and assumptions are all stated or obvious. The failure of problems like these to capture the complexity of authentic problem solving underlies the failure of efforts to measure and teach problem solving. Recognizing this failure motivated our efforts to more completely characterize the problem-solving process of practicing scientists, engineers, and doctors.

FIGURE 1. Example problems from courses or textbooks in mechanical engineering, physics and biology. Problems from: Mechanical engineering: Wayne State mechanical engineering sample exam problems (Wayne State, n.d.), Physics: A standard physics problem in nearly every advanced quantum mechanics course, Biology: Molecular Biology of the Cell 6th edition, Chapter 7 end of chapter problems ( Alberts et al ., 2014 ).

We are building on the previous work studying expert–novice differences and problem solving but taking a different direction. We sought to create an empirically grounded framework that would characterize the detailed structure of the full problem-solving process by focusing on the operational decisions that skilled practitioners make when successfully solving authentic problems in their scientific, engineering, or medical work. We chose to identify the decisions that S&E practitioners made, because, unlike potentially nebulous skills or general problem-solving steps that might change with the discipline, decisions are sufficiently specified that they can be individually practiced by students and measured by instructors or departments. The authentic problems that we analyzed are typical problems practitioners encounter in “doing” the science or engineering entailed in their jobs. In the language of traditional problem-
solving and expertise research, such authentic problems are “ill-structured” ( Simon, 1973 ) and require “adaptive expertise” ( Hatano and Inagaki, 1986 ) to solve. However, our authentic problems are considerably more complex and unstructured than what is normally considered in those literatures, because not only do they lack a clear solution path, but in many cases, it is not clear a priori that they have any solution at all. Determining that, and whether the problem needs to be redefined to be soluble, is part of the successful expert solution process. Another way in which our set of decisions goes beyond the characterization of what is involved in adaptive expertise is the prominent role of making judgments with limited information.

A common reaction of scientists and engineers to seeing the list of decisions we obtain as our primary result is, “Oh, yes, these are things I always do in solving problems. There is nothing new here.” It is comforting that these decisions all look familiar; that supports their validity. However, what is new is not that experts are making such decisions, but rather that there is a relatively small but complete set of decisions that has now been explicitly identified and that applies so generally.

We have used a much larger and broader sample of experts in this work than used in prior expert–novice studies, and we used a more stringent selection criterion. Previous empirical work has typically involved just a few experts, almost always in a single domain, and included graduate students as “experts” in some cases. Our semistructured interview sample was 31 experienced practitioners from 10 different disciplines of science, engineering, and medicine, with demonstrated competence and accomplishments well beyond those of most graduate students. Also, approximately 25 additional experts from across science, engineering, and medicine served as consultants during the planning and execution of this work.

Our research question was: What are the decisions experts make in solving authentic problems, and to what extent is this set of decisions to be made consistent both within and across disciplines?

Our approach was designed to identify the level of consistency and unique differences across disciplines. Our hypothesis was that there would be a manageable number (20–50) of decisions to be made, with a large amount of overlap of decisions made between experts within each discipline and a substantial but smaller overlap across disciplines. We believed that if we had found that every expert and/or discipline used a large and completely unique set of decisions, it would have been an interesting research result but of little further use. If our hypothesis turned out to be correct, we expected that the set of decisions obtained would have useful applications in guiding teaching and assessment, as they would show how experts in the respective disciplines applied their content knowledge to solve problems and hence provide a model for what to teach. We were not expecting to find the nearly complete degree of overlap in the decisions made across all the experts.

We first conducted 22 relatively unstructured interviews with a range of S&E experts, in which we asked about problem-solving expertise in their fields. From these interviews, we developed an initial list of decisions to be made in S&E problem solving. To refine and validate the list, we then carried out a set of 31 semistructured interviews in which S&E experts chose a specific problem from their work and described the solution process in detail. The semistructured interviews were coded for the decisions represented, either explicitly stated or implied by a choice of action. This provided a framework of decisions that characterize the problem-solving process across S&E disciplines. The research was approved by the Stanford Institutional Review Board (IRB no. 48785), and informed consent was obtained from all the participants.

This work involved interviewing many experts across different fields. We defined experts as practicing scientists, engineers, or physicians with considerable experience working as faculty at highly rated universities or having several years of experience working in moderately high-level technical positions at successful companies. We also included a few longtime postdocs and research staff in biosciences to capture more details of experimental decisions from which faculty members in those fields often were more removed. This definition of expert allows us to identify the practices of skilled professionals; we are not studying what makes only the most exceptional experts unique.

Experts were volunteers recruited through direct contact via the research team's personal and professional networks and referrals from experts in our networks. This recruitment method likely biased our sample toward people who experienced relatively similar training (most were trained in STEM disciplines at U.S. universities within the last 15–50 years). Within this limitation, we attempted to get a large range of experts by field and experience. This included people from 10 different fields (including molecular biology/biochemistry, ecology, and medicine), 11 U.S. universities, and nine different companies or government labs, and the sample was 33% female (though our engineering sample only included one female). The medical experts were volunteers from a select group of medical school faculty chosen to serve as clinical reasoning mentors for medical students at a prestigious university. We only contacted people who met our criteria for being an “expert,” and everyone who volunteered was included in the study. Most of the people who were contacted volunteered, and the only reason given for not volunteering was insufficient time. Other than their disciplinary expertise, there was little to distinguish these experts beyond the fact they were acquaintances with members of the team or acquaintances of acquaintances of team or project advisory board members. The precise number from each field was determined largely by availability of suitable experts.

We defined an “authentic problem” to be one that these experts solve in their actual jobs. Generally, this meant research projects for the science and engineering faculty, design problems for the industry engineers, and patient diagnoses for the medical doctors. Such problems are characterized by complexity, with many factors involved and no obvious solution process, and involve substantial time, effort, and resources. Such problems involve far more complexity and many more decisions, particularly decisions with limited information, than the typical problems used in previous problem-solving research or used with students in instructional settings.

Creating an Initial List of Problem-Solving Decisions

We first interviewed 22 experts ( Table 1 ), most of whom were faculty at a prestigious university, in which we asked them to discuss expertise and problem solving in their fields as it related to their own experiences. This usually resulted in their discussing examples of one or more problems they had solved. Based on the first seven interviews, plus reflections on personal experience from the research team and review of the literature on expert problem solving and teaching of scientific practices ( Ericsson et al. , 2006 ; NRC, 2012a ; Wieman, 2015 ), we created a generic list of decisions that were made in S&E problem solving. In the rest of the unstructured interviews (15), we also provided the experts with our list and asked them to comment on any additions or deletions they would suggest. Faculty who had close supervision of graduate students and industry experts who had extensively supervised inexperienced staff were particularly informative. Their observations of the way inexperienced people could fail made them sensitive to the different elements of expertise and where incorrect decisions could be made. Although we initially expected to find substantial differences across disciplines, from early in the process, we noted a high degree of overlap across the interviews in the decisions that were described.

Number of interviews conducted, by field of interviewee

DisciplineInformal interviews (creation of initial list)Structured interviews (validation/refinement)Notes
Biology (5 biochem/molecular bio, 2 cell bio, 1 plant bio, 1 immunology, 1 ecology)28Female: 6, URM: 2 5 faculty, 2 industry 3 acad staff/postdoc (year 5+)
Medicine (6 internal med or pediatrics, 1 oncology, 2 surgery)46Female: 4, URM: 1 All medical faculty
Physics (4 experiment, 3 theory)25Female: 1, URM: 1 All faculty
Electrical Engineering432 faculty, 4 industry, 1 acad. staff
Chemical Engineering22Female: 1 3 industry, 1 acad. staff
Mechanical Engineering22URM: 1, 2 faculty, 2 industry
Earth Science12Female: 2, 2 faculty, 1 industry
Chemistry12Female: 2, all faculty
Computer Science21Female: 1, 2 faculty, 1 industry
Biological Engineering2All faculty or acad. staff
Total2231Female: 17, URM: 5

URM (under-represented minority) included 3 African American and 2 Hispanic/Latinx. One medical faculty member was interviewed twice – in both informal and structure interviews, for a total of 53 interviews with 52 experts.

Refinement and Validation of the List of Decisions

After creating the preliminary list of decisions from the informal interviews, we conducted a separate set of more structured interviews to test and refine the list. Semistructured interviews were conducted with 31 experts from across science, engineering, and medical fields ( Table 1 ). For these interviews, we recruited experts from a range of universities and companies, though the range of institutions is still limited, given the sample size. Interviews were conducted in person or over video chat and were transcribed for analysis. In the semistructured interviews, experts were asked to choose a problem or two from their work that they could recall the details of solving and then describe the process, including all the steps and decisions they made. So that we could get a full picture of the successful problem-solving process, we decided to focus the interviews on problems that they had eventually solved successfully, though their processes inherently involved paths that needed to be revised and reconsidered. Transcripts from interviewees who agreed to have their interview transcript published are available in the supplemental data set.

Our interview protocol (see Supplemental Text) was inspired in part by the critical decision method of cognitive task analysis ( Crandall et al. , 2006 ; Lintern et al. , 2018 ), which was created for research in cognitive systems engineering and naturalistic decision making. There are some notable differences between our work and theirs, both in research goal and method. First, their goal is to improve training in specific fields by focusing on how critical decisions are made in that field during an unusual or important event; the analysis seeks to identify factors involved in making those critical decisions. We are focusing on the overall problem solving and how it compares across many different fields, which quickly led to attention on what decisions are to be made, rather than how a limited set of those decisions are made. We asked experts to describe a specific, but not necessarily unusual, problem in their work, and focused our analysis on identifying all decisions made, not reasons for making them or identifying which were most critical. The specific order of problem-solving steps was also less important to us, in part because it was clear that there was no consistent order that was followed. Second, we are looking at different types of work. Cognitive systems engineering work has primarily focused on performance in professions like firefighters, power plant operators, military technicians, and nurses. These tend to require time-sensitive critical skills that are taught with modest amounts of formal training. We are studying scientists, engineers, and doctors solving problems that require much longer and less time-critical solutions and for which the formal training occupies many years.

Given our different focus, we made several adaptations to eliminate some of the more time-consuming steps from the interview protocol, allowing us to limit the interview time to approximately 1 hour. Both protocols seek to elicit an accurate and complete reporting of the steps taken and decisions made in the process of solving a problem. Our general strategy was: 1) Have the expert explain the problem and talk step by step through the decisions involved in solving it, with relatively few interruptions from the interviewer except to keep the discussion focused on the specific problem and occasionally to ask for clarifications. 2) Ask follow-up questions to probe for more detail about particular steps and aspects of the problem-solving process. 3) Occasionally ask for general thoughts on how a novice's process might differ.

While some have questioned the reliability of information from retrospective interviews ( Nisbett and Wilson, 1977 ), we believe we avoid these concerns, because we are only identifying a decision to be made, which in this case, means identifying a well-defined action that was chosen from alternatives. This is less subjective and much more likely to be accurately recalled than is the rationale behind such a decision. See Ericsson and Simon (1980) . However, the decisions identified may still be somewhat limited—the process of deciding among possible actions might involve additional decisions in the moment, when the solution is still unknown, that we are unable to capture in the retrospective context. For the decisions we can identify, we are able to check their accuracy and completeness by comparing them with the actions taken in the conduct of the research/design. For example, consider this quote from a physician who had to re-evaluate a diagnosis, “And, in my very subjective sense, he seemed like he was being forthcoming and honest. Granted people can fool you, but he seemed like he was being forthcoming. So we had to reevaluate.” The physician then considered alternative diagnoses that could explain a test result that at first had indicated an incorrect diagnosis. While this quote does describe the (retrospective) reasoning behind a decision, we do not need to know whether that reasoning is accurately recalled. We can simply code this as “decision 18, how believable is info?” The physician followed up by considering alternative diagnoses, which in this context was coded as “26, how good is solution?” and “8, potential solutions?” This was followed by the description of the literature and additional tests conducted. These indicated actions taken that confirm the physician made a decision about the reliability of the information given by the patient.

Interview Coding

We coded the semistructured interviews in terms of decisions made, through iterative rounds of coding ( Chi, 1997 ), following a “directed content analysis approach,” which involves coding according to predefined theoretical categories and updating the codes as needed based on the data ( Hsieh and Shannon, 2005 ). Our predefined categories were the list of decisions we had developed during the informal interviews. This approach means that we limited the focus of our qualitative analysis—we were able to test and refine the list of decisions, but we did not seek to identify all possible categories of approach to selecting and solving problems. The goals of each iterative round of coding are described in the next three paragraphs. To code for decisions in general, we matched decisions from the list to statements in each interview, based on the following criteria: 1) there was an explicit statement of a decision or choice made or needing to be made; 2) there was the description of the outcome of a decision, such as listing important features of the problem (that had been decided on) or conclusions arrived at; or 3) there was a statement of actions taken that indicated a decision about the appropriate action had been made, usually from a set of alternatives. Two examples illustrate the types of comments we identified as decisions: A molecular biologist explicitly stated the decisions required to decompose a problem into subproblems (decision 11), “Which cell do we use? The gene. Which gene do we edit? Which part of that gene do we edit? How do we build the enzyme that is going to do the cutting? … And how do we read out that it worked?” An ecologist made a statement that was also coded as a decomposition decision, because it described the action taken: “So I analyze the bird data first on its own, rather than trying to smash all the taxonomic groups together because they seem really apples and oranges. And just did two kinds of analysis, one was just sort of across all of these cases, around the world.” A single statement could be coded as multiple decisions if they were occurring simultaneously in the story being recalled or were intimately interconnected in the context of that interview, as with the ecology quote, in which the last sentence leads into deciding what data analysis is needed. Inherent in nearly every one of these decisions was that there was insufficient information to know the answer with certainty, so judgment was required.

Our primary goal for the first iterative round of coding was to check whether our list was complete by checking for any decisions that were missing, as indicated by either an action taken or a stated decision that was not clearly connected to a decision on our initial list. In this round, we also clarified wording and combined decisions that we were consistently unable to differentiate during the coding. A sample of three interviews (from biology, medicine, and electrical engineering) were first coded independently by four coders (AP, EB, CK, and AF), then discussed. The decision list was modified to add decisions and update wording based on that discussion. Then the interviews were recoded with the new list and rediscussed, leading to more refinements to the list. Two additional interviews (from physics and chemical engineering) were then coded by three coders (AP, EB, and CK) and further similar refinements were made. Throughout the subsequent rounds of coding, we continued to check for missing decisions, but after the additions and adjustments made based on these five interviews, we did not identify any more missing decisions.

In our next round of coding, we focused on condensing overlapping decisions and refining wording to improve the clarity of descriptions as they applied across different disciplinary contexts and to ensure consistent interpretation by different coders. Two or three coders independently coded an additional 11 interviews, iteratively meeting to discuss codes identified in the interviews, refining wording and condensing the list to improve agreement and combine overlapping codes, and then using the updated list to code subsequent interviews. We condensed the list by combining decisions that represented the same cognitive process taking place at different times, that were discipline-specific variations on the same decision, or that were substeps involved in making a larger decision. We noticed that some decisions were frequently co-coded with others, particularly in some disciplines. But if they were identified as distinct a reasonable fraction of the time in any discipline, we listed them as separate. This provided us with a list, condensed from 42 to 29 discrete decisions (plus five additional non-decision themes that were so prevalent that they are important to describe), that gave good consistency between coders.

Finally, we used the resulting codes to tabulate which decisions occurred in each interview, simplifying our coding process to focus on deciding whether or not each decision had occurred, with an example if it did occur to back up the “yes” code, but no longer attempting to capture every time each decision was mentioned. Individual coders identified decisions mentioned in the remaining 15 interviews. Interviews that had been coded with the early versions of the list were also recoded to ensure consistency. Coders flagged any decisions they were unsure about occurring in a particular interview, and two to four coders (AP, EB, CK, and CW) met to discuss those debated codes, with most uncertainties being resolved by explanations from a team member who had more technical expertise in the field of the interview. Minor wording changes were made during this process to ensure that each description of a decision captured all instantiations of the decision across disciplines, but no significant changes to the list were needed or made.

Coding an interview in terms of decisions made and actions taken in the research often required a high level of expertise in the discipline in question. The coder had to be familiar with the conduct of research in the field in order to recognize which actions corresponded to a decision between alternatives, but our team was assembled with this requirement in mind. It included high-level expertise across five different fields of science, engineering, and medicine and substantial familiarity with several other fields.

Supplemental Table S1 shows the final tabulation of decisions identified in each interview. In the tabulation, most decisions were marked as either “yes” or “no” for each interview, though 65 out of 1054 total were marked as “implied,” for one of the following reasons: 1) for 40/65, based on the coder's knowledge of the field, it was clear that a step must have been taken to achieve an outcome or action, even though that decision was not explicitly mentioned (e.g., interviewees describe collecting certain raw data and then coming to a specific conclusion, so they must have decided how to analyze the data, even if they did not mention the analysis explicitly); 2) for 15/65, the interview context was important, in that multiple statements from different parts of the interview taken together were sufficient to conclude that the decision must have happened, though no single statement described that decision explicitly; 3) 10/65 involved a decision that was explicitly discussed as an important step in problem solving, but they did not directly state how it was related to the problem at hand, or it was stated only in response to a direct prompt from the interviewer. The proportion of decisions identified in each interview, broken down by either explicit or explicit + implied, is presented in Supplemental Tables S1 and S2. Table 2 and Figure 2 of the main text show explicit + implied decision numbers.

Problem-solving decisions and percentages of expert interviews in which they occur

A. Selection and goals (Occur in 100% )B. Frame problem (100%)C. Plan process for solving (100%)D. Interpret info and choose solutions (100%)E. Reflect (100%)F. Implications and communicate results (84%)
1. (61%) What is important in field?4. (100%) Important features and info?10. (100%) Approximations and simplifications to make?16. (81%) Which calculations and data analysis?23. (77%) Assumptions and simplifications appropriate?27. (65%) Broader implications?
2. (77%) Opportunity fits solver’s expertise?5. (100%) What predictive framework? 11. (68%) How to decompose into sub-problems?17. (68%) How to represent and organize information?24. (84%) Additional knowledge needed?28. (55%) Audience for communication?
3. (100%) Goals, criteria, constraints?6. (97%) How to narrow down problem?12. (90%) Most difficult or uncertain areas?18. (77%) How believable is information?25. (94%) How well is solving approach working?29. (68%) Best way to present work?
7. (97%) Related problems?13. (100%) What info needed?19. (100%) How does info compare to predictions?26. (100%) How good is solution?
8. (100%) Potential Solutions?14. (87%) Priorities?20. (71%) Any significant anomalies?
9. (74%) Is problem solvable?15. (100%) Specific plan for getting information?21. (97%) Appropriate conclusions?
22. (97%) What is best solution?

a See supplementary text and Table S2 for full description and examples of each decision. A set of other non-decision knowledge and skill development themes were also frequently mentioned as important to professional success: Staying up to date in the field (84%), intuition and experience (77%), interpersonal and teamwork (100%), efficiency (32%), and attitude (68%).

b Percentage of interviews in which category or decision was mentioned.

c Numbering is for reference. In practice ordering is fluid – involves extensive iteration with other possible starting points.

d Chosen predictive framework(s) will inform all other decisions.

e Reflection occurs throughout process, and often leads to iteration. Reflection on solution occurs at the end as well.

FIGURE 2. Proportion of decisions coded in interviews by field. This tabulation includes decisions 1–29, not the additional themes. Error bars represent standard deviations. Number of interviews: total = 31; physical science = 9; biological science = 8; engineering = 8; medicine = 6. Compared with the sciences, slightly fewer decisions overall were identified in the coding of engineering and medicine interviews, largely for discipline-specific reasons. See Supplemental Table S2 and associated discussion.

Two of the interviews that had not been discussed during earlier rounds of coding (one physics [AP and EB], one medicine [AP and CK]) were independently coded by two coders to check interrater reliability using the final list of decisions. The goal of our final coding was to tabulate whether or not each expert described making each decision at any point in the problem-solving process, so the level of detail we chose for coding and interrater reliability was whether or not a decision was present in the entire interview. The decisions identified in each interview were compared for the two coders. For both interviews, the raters disagreed on whether or not only one of the 29 decisions occurred. Codes of “implied” were counted as agreement if the other coder selected either “yes” or “implied.” This equates to a percent agreement of 97% for each interview (28 agree/29 total decisions per interview = 97%). As a side note, there was also one disagreement per interview on the coding of the five other themes, but those themes were not a focus of this work nor the interviews.

We identified a total set of 29 decisions to be made (plus five other themes), all of which were identified in a large fraction of the interviews across all disciplines ( Table 2 and Figure 2 ). There was a surprising degree of overlap across the different fields with all the experts mentioning similar decisions to be made. All 29 were evident by the fifth semistructured interview, and on average, each interview revealed 85% of the 29 decisions. Many decisions occurred multiple times in an interview, with the number of times varying widely, depending on the length and complexity of the problem-solving process discussed.

We focused our analysis on what decisions needed to be made, not on the experts’ processes for making those decisions: noting that a choice happened, not how they selected and chose among different alternatives. This is because, while the decisions to be made were the same across disciplines, how the experts made those decisions varied greatly by discipline and individual. The process of making the decisions relied on specialized disciplinary knowledge and experience and may vary depending on demographics or other factors that our study design (both our sample and nature of retrospective interviews) did not allow us to investigate. However, while that knowledge was distinct and specialized, we could tell that it was consistently organized according to a common structure we call a “predictive framework,” as discussed in the “ Predictive Framework ” section below. Also, while every “decision” reflected a step in the problem solving involved in the work, and the expert being interviewed was involved in making or approving the decision, that does not mean the decision process was carried out only by that individual. In many cases, the experts described the decisions made in terms of ideas and results of their teams, and the importance of interpersonal skills and teamwork was an important non-decision theme raised in all interviews.

We were particularly concerned with the correctness and completeness of the set of decisions. Although the correctness was largely established by the statements in the interviews, we also showed the list of decisions to these experts at the end of the interviews as well as to about a dozen other experts. In all cases, they all agreed that these decisions were ones they and others in their field made when solving problems. The completeness of the list of decisions was confirmed by: 1) looking carefully at all specific actions taken in the described problem-solving process and checking that each action matched a corresponding decision from the list; and 2) the high degree of consistency in the set of decisions across all the interviews and disciplines. This implies that it is unlikely that there are important decisions that we are missing, because that would require any such missing decisions to be consistently unspoken by all 31 interviewees as well as consistently unrecognized by us from the actions that were taken in the problem-solving process.

In focusing on experts’ recollections of their successful solving of problems, our study design may have missed decisions that experts only made during failed problem-solving attempts. However, almost all interviews described solution paths that were not smooth and continuous, but rather involved going down numerous dead ends. There were approaches that were tried and failed, data that turned out to be ambiguous and worthless, and so on. Identifying the failed path involved reflection decisions (23–26). Often decision 9 (is problem solvable?) would be mentioned, because it described a path that was determined to be not solvable. For example, a biologist explained, “And then I ended up just switching to a different strain that did it [crawling off the plate] less. Because it was just … hard to really get them to behave themselves. I suppose if I really needed to rely on that very particular one, I probably would have exhausted the possibilities a bit more.” Thus, we expect unsuccessful problem solving would entail a smaller subset of decisions being made, particularly lack of reflection decisions, or poor choices on the decisions, rather than making a different set of decisions.

The set of decisions represent a remarkably consistent structure underlying S&E problem solving. For the purposes of presentation, we have categorized the decisions as shown in Figure 3 , roughly based on the purposes they achieve. However, the process is far less orderly and sequential than implied by this diagram, or in fact any characterization of an orderly “scientific method.” We were struck by how variable the sequence of decisions was in the descriptions provided. For example, experts who described how they began work on a problem sometimes discussed importance and goals (1–3, what is important in field?; opportunity fits solver’s expertise?; and goals, criteria, constraints?), but others mentioned a curious observation (20, any significant anomalies?), important features of their system that led them to questions (4, important features and info?, 6, how to narrow down problem?), or other starting points. We also saw that there were flexible connections between decisions and repeated iterations—jumping back to the same type of decision multiple times in the solution process, often prompted by reflection as new information and insights were developed. The sequence and number of iterations described varied dramatically by interview, and we cannot determine to what extent this was due to legitimate differences in the problem-solving process or to how the expert recalled and chose to describe the process. This lack of a consistent starting point, with jumping and iterating between decisions, has also been identified in the naturalistic decision-making literature ( Mosier et al. , 2018 ). Finally, the experts also often described considering multiple decisions simultaneously. In some interviews, a few decisions were always described together, while in others, they were clearly separate decisions. In summary, while the specific decisions themselves are fully grounded in expert practice, the categories and order shown here are artificial simplifications for presentation purposes.

FIGURE 3. Representation of problem-solving decisions by categories. The black arrows represent a hypothetical but unrealistic order of operations, the blue arrows represent more realistic iteration paths. The decisions are grouped into categories for presentation purposes; numbers indicate the number of decisions in each category. Knowledge and skill development were commonly mentioned themes but are not decisions.

The decisions contained in the seven categories are summarized here. See Supplemental Table S2 for specific examples of each decision across multiple disciplines.

Category A. Selection and Goals of the Problem

This category involves deciding on the importance of the problem, what criteria a solution must meet, and how well it matches the capabilities, resources, and priorities of the expert. As an example, an earth scientist described the goal of her project (decision 3, goals, criteria, constraints?) to map and date the earliest volcanic rocks associated with what is now Yellowstone and explained why the project was a good fit for her group (2, opportunity fits solver’s expertise?) and her decision to pursue the project in light of the significance of this type of eruption in major extinction events (1, what is important in field?). In many cases, decisions related to framing (see category B) were mentioned before decisions in this category or were an integral part of the process for developing goals.

1. What is important in the field?

What are important questions or problems? Where is the field heading? Are there advances in the field that open new possibilities?

2. Opportunity fits solver's expertise?

If and where are there gaps/opportunities to solve in field? Given experts’ unique perspectives and capabilities, are there opportunities particularly accessible to them? (This could involve challenging the status quo, questioning assumptions in the field.)

3. Goals, criteria, constraints?

a. What are the goals, design criteria, or requirements of the problem or its solution?

b. What is the scope of the problem?

c. What constraints are there on the solution?

d. What will be the criteria on which the solution is evaluated?

Category B. Frame Problem

These decisions lead to a more concrete formulation of the solution process and potential solutions. This involves identifying the key features of the problem and deciding on predictive frameworks to use (see “ Predictive Framework ” section below), as well as narrowing down the problem, often forming specific questions or hypotheses. Many of these decisions are guided by past problem solutions with which the expert is familiar and sees as relevant. The framing decisions of a physician can be seen in his discussion of a patient with liver failure who had previously been diagnosed with HIV but had features (4, important features and info?; 5, what predictive framework?) that made the physician question the HIV diagnosis (5, what predictive framework?; 26, how good is solution?). His team then searched for possible diagnoses that could explain liver failure and lead to a false-positive HIV test (7, related problems?; 8, potential solutions?), which led to their hypothesis the patient might have Q fever (6, how to narrow down problem?; 13, what info needed?; 15, specific plan for getting info?). While each individual decision is strongly supported by the data, the categories are groupings for presentation purposes. In particular, framing (category B) and planning (see category C) decisions often blended together in interviews.

a. Which available information is relevant to problem solving and why?

b. (When appropriate) Create/find a suitable abstract representation of core ideas and information Examples: physics, equation representing process involved; chemistry, bond diagrams/potential energy surfaces; biology, diagram of pathway steps.

5. What predictive framework?

Which potential predictive frameworks to use? (Decide among possible predictive frameworks or create framework.) This includes deciding on the appropriate level of mechanism and structure that the framework needs to embody to be most useful for the problem at hand.

6. How to narrow down the problem?

How to narrow down the problem? Often involves formulating specific questions and hypotheses.

7. Related problems?

What are related problems or work seen before, and what aspects of their problem-solving process and solutions might be useful in the present context? (This may involve reviewing literature and/or reflecting on experience.)

8. Potential solutions?

What are potential solutions? (This is based on experience and fitting some criteria for solution they have for a problem having general key features identified.)

9. Is problem solvable?

Is the problem plausibly solvable and is the solution worth pursuing given the difficulties, constraints, risks, and uncertainties?

Category C. Plan the Process for Solving

These decisions establish the specifics needed to solve the problem and include: how to simplify the problem and decompose it into pieces, what specific information is needed, how to obtain that information, and what are the resources needed and priorities? Planning by an ecologist can be seen in her extensive discussion of her process of simplifying (10, approximations/simplifications to make?) a meta-analysis project about changes in migration behavior, which included deciding what types of data she needed (13, what info needed?), planning how to conduct her literature search (15, specific plan for getting info?), difficulties in analyzing the data (12, most difficult/uncertain areas?; 16, which calculations and data analysis?), and deciding to analyze different taxonomic groups separately (11, how to decompose into subproblems?). In general, decomposition often resulted in multiple iterations through the problem-solving decisions, as subsets of decisions need to be made about each decomposed aspect of a problem. Framing (category B) and planning (category C) decisions occupied much of the interviews, indicating their importance.

10. Approximations and simplifications to make?

What approximations or simplifications are appropriate? How to simplify the problem to make it easier to solve? Test possible simplifications/approximations against established criteria.

11. How to decompose into subproblems?

How to decompose the problem into more tractable subproblems? (Subproblems are independently solvable pieces with their own subgoals.)

12. Most difficult or uncertain areas?

a. What are acceptable levels of uncertainty with which to proceed at various stages?

13. What info needed?

a. What will be sufficient to test and distinguish between potential solutions?

14. Priorities?

What to prioritize among many competing considerations? What to do first and how to obtain necessary resources?

Considerations could include: What's most important? Most difficult? Addressing uncertainties? Easiest? Constraints (time, materials, etc.)? Cost? Optimization and trade-offs? Availability of resources? (facilities/materials, funding sources, personnel)

15. Specific plan for getting information?

a. What are the general requirements of a problem-solving approach, and what general approach will they pursue? (These decisions are often made early in the problem-solving process as part of framing.)

b. How to obtain needed information? Then carry out those plans. (This could involve many discipline- and problem-specific investigation possibilities such as: designing and conducting experiments, making observations, talking to experts, consulting the literature, doing calculations, building models, or using simulations.)

c. What are achievable milestones, and what are metrics for evaluating progress?

d. What are possible alternative outcomes and paths that may arise during the problem-solving process, both consistent with predictive framework and not, and what would be paths to follow for the different outcomes?

Category D. Interpret Information and Choose Solution(s)

This category includes deciding how to analyze, organize, and draw conclusions from available information, reacting to unexpected information, and deciding upon a solution. A biologist studying aging in worms described how she analyzed results from her experiments, which included representing her results in survival curves and conducting statistical analyses (16, which calculations and data analysis?; 17, how to represent and organize info?), as well as setting up blind experiments (15, specific plan for getting info?) so that she could make unbiased interpretations (18, how believable is info?) of whether a worm was alive or dead. She also described comparing results with predictions to justify the conclusion that worm aging was related to fertility (19, how does info compare to predictions?; 21, appropriate conclusions?; 22, what is best solution?). Deciding how results compared with expectations based on a predictive framework was a key decision that often preceded several other decisions.

16. Which calculations and data analysis?

What calculations and data analysis are needed? Once determined, these must then be carried out.

17. How to represent and organize information?

What is the best way to represent and organize available information to provide clarity and insights? (Usually this will involve specialized and technical representations related to key features of predictive framework.)

18. How believable is the information?

Is information valid, reliable, and believable (includes recognizing potential biases)?

19. How does information compare to predictions?

As new information comes in, particularly from experiments or calculations, how does it compare with expected results (based on the predictive framework)?

20. Any significant anomalies?

a. Does potential anomaly fit within acceptable range of predictive framework(s) (given limitations of predictive framework and underlying assumptions and approximations)?

b. Is potential anomaly an unusual statistical variation or relevant data? Is it within acceptable levels of uncertainty?

21. Appropriate conclusions?

What are appropriate conclusions based on the data? (This involves making conclusions and deciding if they are justified.)

22. What is the best solution?

a. Which of multiple candidate solutions are consistent with all available information and which can be rejected? (This could be based on comparing data with predicted results.)

b. What refinements need to be made to candidate solutions?

Category E. Reflect

Reflection decisions occur throughout the process and include deciding whether assumptions are justified, whether additional knowledge or information is needed, how well the solution approach is working, and whether potential and then final solutions are adequate. These decisions match the categories of reflection identified by Salehi (2018) . A mechanical engineer described developing a model (to inform surgical decisions) of which muscles allow the thumb to function in the most useful manner (22, what is best solution?), including reflecting on how well engineering approximations applied in the biological context (23, assumptions and simplifications appropriate?). He also described reflecting on his approach, that is, why he chose to use cadaveric models instead of mathematical models (25, how well is solving approach working?), and the limitations of his findings in that the “best” muscle identified was difficult to access surgically (26, how good is solution?; 27, broader implications?). Reflection decisions are made throughout the problem-solving process, often lead to reconsidering other decisions, and are critical for success.

23. Assumptions and simplifications appropriate?

a. Do the assumptions and simplifications made previously still look appropriate considering new information?

b Does predictive framework need to be modified?

24. Additional knowledge needed?

a. Is solver's relevant knowledge sufficient?

b. Is more information needed and, if so, what?

c. Does some information need to be checked? (Is there a need to repeat experiment or check a different source?)

25. How well is the problem-solving approach working?

How well is the problem-solving approach working, and does it need to be modified? This includes possibly modifying the goals. (One needs to reflect on one's strategy by evaluating progress toward the solution.) and reflecting on one’s strategy by evaluating progress toward the solution.

26. How good is the solution?

a. Decide by exploring possible failure modes and limitations—“try to break” solution.

b. Does it “make sense” and pass discipline-specific tests for solutions of this type of problem?

c. Does it completely meet the goals/criteria?

Category F. Implications and Communication of Results

These are decisions about the broader implications of the work, and how to communicate results most effectively. For example, a theoretical physicist developing a method to calculate the magnetic moment of the muon decided on who would be interested in his work (28, audience for communication?) and what would be the best way to present it (29, best way to present work?). He also discussed the implications of preliminary work on a simplified aspect of the problem (10, approximations and simplifications to make?) in terms of evaluating its impact on the scientific community and deciding on next steps (27, broader implications?; 29, best way to present work?). Many interviewees described that making decisions in this category affected their decisions in other categories.

27. Broader implications?

What are the broader implications of the results, including over what range of contexts does the solution apply? What outstanding problems in the field might it solve? What novel predictions can it enable? How and why might this be seen as interesting to a broader community?

28. Audience for communication?

What is the audience for communication of work, and what are their important characteristics?

29. Best way to present work?

What is the best way to present the work to have it understood, and its correctness and importance appreciated? How to make a compelling story of the work?

Category G. Ongoing Skill and Knowledge Development

Although we focused on decisions in the problem-solving process, the experts volunteered general skills and knowledge they saw as important elements of problem-solving expertise in their fields. These included teamwork and interpersonal skills (strongly emphasized), acquiring experience and intuition, and keeping abreast of new developments in their fields.

30. Stay up to date in field

a. Reviewing literature, which does involve making decisions as to which is important.

b. Learning relevant new knowledge (ideas and technology from literature, conferences, colleagues, etc.)

31. Intuition and experience

Acquiring experience and associated intuition to improve problem solving.

32. Interpersonal, teamwork

Includes navigating collaborations, team management, patient interactions, communication skills, etc., particularly as how these apply in the context of the various types of problem-solving processes.

33. Efficiency

Time management including learning to complete certain common tasks efficiently and accurately.

34. Attitude

Motivation and attitude toward the task. Factors such as interest, perseverance, dealing with stress, and confidence in decisions.

Predictive Framework

How the decisions were made was highly dependent on the discipline and problem. However, there was one element that was fundamental and common across all interviews: the early adoption of a “predictive framework” that the experts used throughout the problem-solving process. We define this framework as “a mental model of key features of the problem and the relationships between the features.” All the predictive frameworks involved some degree of simplification and approximation and an underlying level of mechanism that established the relationships between key features. The frameworks provided a structure of knowledge and facilitated the application of that knowledge to the problem at hand, allowing experts to repeatedly run “mental simulations” to make predictions for dependencies and observables and to interpret new information.

As an example, an ecologist described her predictive framework for migration, which incorporated important features such as environmental conditions and genetic differences between species and the mechanisms by which these interacted to impact the migration patterns for a species. She used this framework to guide her meta-analysis of changes in migration patterns, affecting everything from her choice of data sets to include to her interpretation of why migration patterns changed for different species. In many interviews, the frameworks used evolved as additional information was obtained, with additional features being added or underlying assumptions modified. For some problems, the relevant framework was well established and used with confidence, while for other problems, there was considerable uncertainty as to a suitable framework, so developing and testing the framework was a substantial part of the solution process.

A predictive framework contains the expert knowledge organization that has been observed in previous studies of expertise ( Egan and Greeno, 1974 ) but goes further, as here it serves as an explicit tool that guides most decisions and actions during the solving of complex problems. Mental models and mental simulations that are described in the naturalistic decision-making literature are similar, in that they are used to understand the problem and guide decisions ( Klein, 2008 ; Mosier et al. , 2018 ), but they do not necessarily contain the same level of mechanistic understanding of relationships that underlies the predictive frameworks used in science and engineering problem solving. While the use of predictive frameworks was universal, the individual frameworks themselves explicitly reflected the relevant specialized knowledge, structure, and standards of the discipline, and arguably largely define a discipline ( Wieman, 2019 ).

Discipline-Specific Variation

While the set of decisions to be made was highly consistent across disciplines, there were extensive differences within and across disciplines and work contexts, which reflected the differences in perspectives and experiences. These differences were usually evident in how experts made each of the specific decisions, but not in the choice of which decisions needed to be made. In other words, the solution methods, which included following standard accepted procedures in each field, were very different. For example, planning in some experimental sciences may involve formulating a multiyear construction and data-collection effort, while in medicine it may be deciding on a simple blood test. Some decisions, notably in categories A, D, and F, were less likely to be mentioned in particular disciplines, because of the nature of the problems. Specifically, decisions 1 (what is important in field?), 2 (opportunity fits solver’s expertise?), 27 (broader implications?), 28 (audience for communication?), and 29 (best way to present work?) were dependent on the scope of the problem being described and the expert's specific role in it. These were mentioned less frequently in interviews where the problem was assigned to the expert (most often engineering or industry) or where the importance or audience was implicit (most often in medicine). Decisions 16 (which calculations and data analysis?) and 17 (how to represent and organize info?) were particularly unlikely to be mentioned in medicine, because test results are typically provided to doctors not in the form or raw data, but rather already analyzed by a lab or other medical technology professional, so the doctors we interviewed did not need to make decisions themselves about how to analyze or represent the data. Qualitatively, we also noticed some differences between disciplines in the patterns of connections between decisions. When the problem involved development of a tool or product, most commonly the case in engineering, the interview indicated relatively rapid cycles between goals (3), framing problem/potential solutions (8), and reflection on the potential solution (26), before going through the other decisions. Biology, the experimental science most represented in our interviews, had strong links between planning (15), deciding on appropriate conclusions (21), and reflection on the solution (26). This is likely because the respective problems involved complex systems with many unknowns, so careful planning was unusually important for achieving definitive conclusions. See Supplemental Text and Supplemental Table S2 for additional notes on decisions that were mentioned at lower frequency and decisions that were likely to be interconnected, regardless of field.

This work has created a framework of decisions to characterize problem solving in science and engineering. This framework is empirically based and captures the successful problem-solving process of all experts interviewed. We see that several dozen experts across many different fields all make a common set of decisions when solving authentic problems. There are flexible linkages between decisions that are guided by reflection in a continually evolving process. We have also identified the nature of the “predictive frameworks” that S&E experts consistently use in problem solving. These predictive frameworks reveal how these experts organize their disciplinary knowledge to facilitate making decisions. Many of the decisions we identified are reflected in previous work on expertise and scientific problem solving. This is particularly true for those listed in the planning and interpreting information categories ( Egan and Greeno, 1974 ). The priority experts give to framing and planning decisions over execution compared with novices has been noted repeatedly (e.g., Chi et al. , 1988 ). Expert reflection has been discussed, but less extensively ( Chase and Simon, 1973 ), and elements of the selection and implications and communication categories have been included in policy and standards reports (e.g., AAAS, 2011 ). Thus, our framework of decisions is consistent with previous work on scientific practices and expertise, but it is more complete, specific, empirically based, and generalizable across S&E disciplines.

A limitation of this study is the small number of experts we have in total, from each discipline, and from underrepresented groups (especially lack of female representation in engineering). The lack of randomized selection of participants may also bias the sample toward experts who experienced similar academic training (STEM disciplines at U.S. universities). This means we cannot prove that there are not some experts who follow other paths in problem solving. As with any scientific model, the framework described here should be subjected to further tests and modifications as necessary. However, to our knowledge, this is a far larger sample than used in any previous study of expert problem solving. Although we see a large amount of variation both within and across disciplines in the problem-solving process, this is reflected in how experts make decisions, not in what decisions they make. The very high degree of consistency in the decisions made across the entire sample strongly suggests that we are capturing elements that are common to all experts across science and engineering. A second limitation is that decisions often overlap and co-occur in an interview, so the division between decision items is often somewhat ambiguous and could be defined somewhat differently. As noted, a number of these decisions can be interconnected, and in some fields are nearly always interconnected.

The set of decisions we have observed provides a general framework for characterizing, analyzing, and teaching S&E problem solving. These decisions likely define much of the set of cognitive skills a student needs to practice and master to perform as a skilled practitioner in S&E. This framework of decisions provides a detailed and structured way to approach the teaching and measurement of problem solving at the undergraduate, graduate, and professional training levels. For teaching, we propose using the process of “deliberate practice” ( Ericsson, 2018 ) to help students learn problem solving. Deliberate practice of problem solving would involve effective scaffolding and concentrated practice, with feedback, at making the specific decisions identified here in relevant contexts. In a course, this would likely involve only an appropriately selected set of the decisions, but a good research mentor would ensure that trainees have opportunities to practice and receive feedback on their performance on each of these 29 decisions. Future work is needed to determine whether there are additional decisions that were not identified in experts but are productive components of student problem solving and should also be practiced. Measurements of individual problem-solving expertise based on our decision list and the associated discipline-specific predictive frameworks will allow a detailed measure of an individual's discipline-specific problem-solving strengths and weaknesses relative to an established expert. This can be used to provide targeted feedback to the learner, and when aggregated across students in a program, feedback on the educational quality of the program. We are currently working on the implementation of these ideas in a variety of instructional settings and will report on that work in future publications.

As discussed in the Introduction , typical science and engineering problems fail to engage students in the complete problem-solving process. By considering which of the 29 decisions are required to answer the problem, we can more clearly articulate why. The biology problem, for example, requires students to decide on a predictive framework and access the necessary content knowledge, and they need to decide which information they need to answer the problem. However, other decisions are not required or are already made for them, such as deciding on important features and identifying anomalies. We propose that different problems, designed specifically to require students to make sets of the problem-solving decisions from our framework, will provide more effective tools for measuring, practicing, and ultimately mastering the full S&E problem-solving process.

Our preliminary work with the use of such decision-based problems for assessing problem-solving expertise is showing great promise. For several different disciplines, we have given test subjects a relevant context, requiring content knowledge covered in courses they have taken, and asked them to make decisions from the list presented here. Skilled practitioners in the relevant discipline respond in very consistent ways, while students respond very differently and show large differences that typically correlate with their different educational experiences. What apparently matters is not what content they have seen, but rather what decisions they have had practice making. Our approach was to identify the decisions made by experts, this being the task that educators want students to master. Our data do not exclude the possibility that students engage in and/or should learn other decisions as a productive part of the problem-solving process while they are learning. Future work would seek to identify decisions made at intermediate levels during the development of expertise, to identify potential learning progressions that could be used to teach problem solving more efficiently. What we have seen is consistent with previous work identifying expert–novice differences but provides a much more extensive and detailed picture of a student's strengths and weaknesses and the impacts of particular educational experiences. We have also carried out preliminary development of courses that explicitly involve students making and justifying many of these decisions in relevant contexts, followed by feedback on their decisions. Preliminary results from these courses are also encouraging. Future work will involve the more extensive development and application of decision-based measurement and teaching of problem solving.

ACKNOWLEDGMENTS

We acknowledge the many experts who agreed to be interviewed for this work, M. Flynn for contributions on expertise in mechanical engineering, and Shima Salehi for useful discussions. This work was funded by the Howard Hughes Medical Institute through an HHMI Professor grant to C.E.W.

  • ABET . ( 2020 ). Criteria for accrediting engineering programs, 2020–2021 . Retrieved November 23, 2020, from www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2020-2021 Google Scholar
  • Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. ( 2014 ). Control of gene expression . In Molecular Biology of the Cell (6th ed., pp. 436–437). New York: Garland Science. Retrieved November 12, 2020, from https://books.google.com/books?id=2xIwDwAAQBAJ Google Scholar
  • American Association for the Advancement of Science . ( 2011 ). Vision and change in undergraduate biology education: A call to action . Washington, DC. Retrieved February 12, 2021, from https://visionandchange.org/finalreport Google Scholar
  • Chi, M. T. H., Glaser, R., & Farr, M. J.( ( 1988 ). The nature of expertise . Hillsdale, NJ: Erlbaum. Google Scholar
  • Crandall, B., Klein, G. A., & Hoffman, R. R. ( 2006 ). Working minds: A practitioner's guide to cognitive task analysis . Cambridge, MA: MIT Press. Google Scholar
  • Egan, D. E., & Greeno, J. G. ( 1974 ). Theory of rule induction: Knowledge acquired in concept learning, serial pattern learning, and problem solving in L . In Gregg, W. (Ed.), Knowledge and cognition . Potomac, MD: Erlbaum. Google Scholar
  • Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. , (Eds.) ( 2006 ). The Cambridge handbook of expertise and expert performance . Cambridge, United Kingdom: Cambridge University Press. Google Scholar
  • Ericsson, K. A., Hoffman, R. R., Kozbelt, A., & Williams, A. A. , (Eds.) ( 2018 ). The Cambridge handbook of expertise and expert performance (2nd ed.). Cambridge, United Kingdom: Cambridge University Press. Google Scholar
  • Hatano, G., & Inagaki, K. ( 1986 ). Two courses of expertise . In Stevenson, H. W.Azuma, H.Hakuta, K. (Eds.), A series of books in psychology. Child development and education in Japan (pp. 262–272). New York: Freeman/Times Books/Henry Holt. Google Scholar
  • Klein, G. ( 2008 ). Naturalistic decision making . Human Factors , 50 (3), 456–460. Medline ,  Google Scholar
  • Kozma, R., Chin, E., Russell, J., & Marx, N. ( 2000 ). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning . Journal of the Learning Sciences , 9 (2), 105–143. Google Scholar
  • Lintern, G., Moon, B., Klein, G., & Hoffman, R. ( 2018 ). Eliciting and representing the knowledge of experts . In Ericcson, K. A.Hoffman, R. R.Kozbelt, A.Williams, A. M. (Eds.), The Cambridge handbook of expertise and expert performance (2nd ed). (pp. 165–191). Cambridge, United Kingdom: Cambridge University Press. Google Scholar
  • Mosier, K., Fischer, U., Hoffman, R. R., & Klein, G. ( 2018 ). Expert professional judgments and “naturalistic decision making.” In Ericcson, K. A.Hoffman, R. R.Kozbelt, A.Williams, A. M. (Eds.), The Cambridge handbook of expertise and expert performance (2nd ed). (pp. 453–475). Cambridge, United Kingdom: Cambridge University Press. Google Scholar
  • National Research Council (NRC) . ( 2012a ). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas . Washington, DC: National Academies Press. Google Scholar
  • Newell, A., & Simon, H. A. ( 1972 ). Human problem solving . Prentice-Hall. Google Scholar
  • Next Generation Science Standards Lead States . ( 2013 ). Next Generation Science Standards: For states, by states . Washington, DC: National Academies Press. Google Scholar
  • Polya, G. ( 1945 ). How to solve it: A new aspect of mathematical method . Princeton, NJ: Princeton University Press. Google Scholar
  • Quacquarelli Symonds . ( 2018 ). The global skills gap in the 21st century . Retrieved July 20, 2021, from www.qs.com/portfolio-items/the-global-skills-gap-in-the-21st-century/ Google Scholar
  • Salehi, S. ( 2018 ). Improving problem-solving through reflection (Doctoral dissertation) . Stanford Digital Repository, Stanford University. Retrieved February 18, 2021, from https://purl.stanford.edu/gc847wj5876 Google Scholar
  • Schoenfeld, A. H. ( 1985 ). Mathematical problem solving . Orlando, FL: Academic Press. Google Scholar
  • Wayne State University . ( n.d ). Mechanical engineering practice qualifying exams. Wayne State University Mechanical Engineering department . Retrieved February 23, 2021, from https://engineering.wayne.edu/me/exams/mechanics_of_materials_-_sample_pqe_problems_.pdf Google Scholar
  • Wineburg, S. ( 1998 ). Reading Abraham Lincoln: An expert/expert study in the interpretation of historical texts . Cognitive Science , 22 (3), 319–346. https://doi.org/10.1016/S0364-0213(99)80043-3 Google Scholar
  • Uncovering students’ problem-solving processes in game-based learning environments 1 Jun 2022 | Computers & Education, Vol. 182
  • Student understanding of kinematics: a qualitative assessment 9 May 2022 | European Journal of Engineering Education, Vol. 5
  • What decisions do experts make when doing back-of-the-envelope calculations? 5 April 2022 | Physical Review Physics Education Research, Vol. 18, No. 1
  • Simulation led optical design assessments: Emphasizing practical and computational considerations in an upper division physics lecture course 1 Apr 2022 | American Journal of Physics, Vol. 90, No. 4
  • Evidence-Based Principles for Worksheet Design 1 Sep 2021 | The Physics Teacher, Vol. 59, No. 6

problem solving method of teaching physical science

Submitted: 2 December 2020 Revised: 11 June 2021 Accepted: 23 June 2021

© 2021 A. M. Price et al. CBE—Life Sciences Education © 2021 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Supporting physics teaching with research-based resources

  • Expert Recommendations

Teaching Methods and Materials

Tell us about your course to find methods relevant to you .

problem solving method of teaching physical science

The level of research validation for a teaching method is determined by how many of the following categories of research have been done on the method:

  • theories of how students learn
  • student ideas about specific topics
  • conceptual understanding
  • problem-solving skills
  • beliefs and attitudes
  • retention of students
  • success of underrepresented groups
  • performance in subsequent classes
  • cycle of research and redevelopment
  • student interviews
  • classroom observations
  • analysis of written work
  • research at multiple institutions
  • research by multiple groups
  • peer-reviewed publication
  • Gold Star: both "based on" categories, at least 4 "demonstrated to improve" categories, at least 5 "studied using" categories
  • Silver: at least 1 "based on" categories, at least 2 "demonstrated to improve" categories, at least 4 "studied using" categories
  • Bronze: 3 at least 1 "based on" categories, at least 1 "demonstrated to improve" category, at least 1 "studied using" category
  • Research-Based: at least 1 validation category

problem solving method of teaching physical science

62 Research-Based Methods

Detailed View

PhET Interactive Simulations

Silver Validated

Open-ended game-like simulations that include expert visual models, enabling scientist-like exploration and real-world connections.

Mechanics

Peer Instruction

Implementation Guide available

Small group discussion of conceptual questions interspersed with lectures, increasing engagement and providing formative feedback on student thinking.

 Pedagogy

Teaching with Clickers

Bronze Validated

Students use electronic devices to answer questions and instructors collect and display responses, facilitating student engagement and collaboration.

problem solving method of teaching physical science

Ranking Task Exercises in Physics

Research-Based

Exercises in which students rank variations of a physical situation on the basis of a specified physical quantity and explain their reasoning.

problem solving method of teaching physical science

Interactive Lecture Demonstrations

Worksheets for use in lecture. Students predict results of demos, discuss in small groups, observe results, compare with predictions and explain.

problem solving method of teaching physical science

Cooperative Group Problem-solving

Students work in groups using structured problem-solving strategy to solve complex, context-rich problems too difficult to solve individually.

Lecture - Small (<30 students)

Small, flexible, educational physics applets that use simple graphics to convey only salient features of physical phenomena; modifiable and adaptable.

Just-in-Time Teaching

Students answer questions online before class, promoting preparation for class and encouraging them to come to class with a "need to know."

Context-Rich Problems

Students work in small groups on short, realistic scenarios, giving them a plausible motivation to solve problems.

Open Source Physics Collection

Open source code libraries, tools, and compiled simulations. Collection includes curriculum resources for physics, computation, and computer modeling.

problem solving method of teaching physical science

The Quantum Mechanics Visualization Project

A collection of interactive simulations for learning and teaching quantum mechanics concepts from advanced high school to advanced undergraduate.

Modern / Quantum

Guided-inquiry worksheets for use in small groups, typically in a recitation section. Instructors engage students in Socratic dialogue.

problem solving method of teaching physical science

Tutorials in Introductory Physics

Gold Star Validated

Guided-inquiry worksheets for small groups in recitation section of intro calculus-based physics. Instructors engage groups in Socratic dialogue.

problem solving method of teaching physical science

RealTime Physics

A series of introductory laboratory modules that use computer data acquisition tools to help students develop physics concepts and acquire lab skills.

Lab

Workshop Physics

A calculus-based introductory physics curriculum designed to completely replace traditional lectures and laboratories with sequenced activities.

problem solving method of teaching physical science

Tasks Inspired by Physics Education Research

Short activities that help students apply concepts and address known difficulties; designed so that they cannot be solved using plug and chug.

Electricity / Magnetism

Activity-Based Tutorials, Volume 1: Introductory Physics

problem solving method of teaching physical science

Learning Assistants

A program to recruit science majors to become K-12 teachers and to improve undergraduate education by implementing large-scale teaching reform.

problem solving method of teaching physical science

Tools for Scientific Thinking

Laboratory activities that use microcomputer-based laboratory tools to develop both conceptual understanding and quantitative laboratory skills.

Diagnoser Tools

Tools to elicit students' initial ideas, lessons to engage those ideas, assessment items, and reporting structures for students and teachers.

problem solving method of teaching physical science

An integrated learning environment where the space is designed to facilitate interactions between small groups working on short, interesting tasks.

Studio

Modeling Instruction for High School Physics

Instruction organized around active student construction of conceptual and mathematical models in an interactive learning community.

Socratic Dialog Inducing Laboratories

Guided-inquiry, introductory mechanics labs designed to promote students' mental construction of concepts.

problem solving method of teaching physical science

Open Source Tutorials

Guided-inquiry worksheets for small groups in recitation section of intro algebra-based physics. Instructors engage groups in Socratic dialogue.

problem solving method of teaching physical science

Physics by Inquiry

Lab-based guided-inquiry curriculum for future and current teachers to develop deep understanding of physics content and scientific reasoning skills.

Physics and Everyday Thinking

A guided-inquiry conceptual physics course designed to help students develop a deep conceptual understanding of big ideas in physics.

Physical Science and Everyday Thinking

A guided-inquiry conceptual physical science course designed to help students develop a deep conceptual understanding of big ideas.

Learning Physical Science

A guided-inquiry, conceptual physical science course intended for teaching in a lecture-style environment, e.g. classes with large enrollment.

CAE Think-Pair-Share

Engage students in lecture classes by asking cognitively engaging multiple-choice questions to challenge their thinking and foster deep discussion.

Astronomy

Lecture-Tutorials for Introductory Astronomy

Socratic-dialogue driven, highly-structured collaborative learning activities for use in introductory Astronomy lecture courses.

Intro College Conceptual

Ranking Tasks for Introductory Astronomy

Conceptual exercises in which students make comparative judgments to identify the order of various situations based on a physical outcome or result.

problem solving method of teaching physical science

Investigative Science Learning Environment (ISLE)

Comprehensive learning system for introductory physics that engages students in experiences that mirror experiences of practicing scientists.

Thinking Problems

Questions for homework, clickers, and exams that help students connect mathematical and conceptual reasoning and relate physics to the real world.

problem solving method of teaching physical science

Workbook for Introductory Physics

Sequences of multiple-choice questions that emphasize qualitative reasoning and multiple representations. For interactive discussion in lecture.

problem solving method of teaching physical science

CU Upper-Level E&M Curriculum

Supplementary activities for upper-level E&M. All materials are modular and can be mixed and matched with any other teaching strategy or materials.

problem solving method of teaching physical science

CU Upper-Level QM Curriculum

Supplementary activities for upper-level QM I. All materials are modular and can be mixed and matched with any other teaching strategy or materials.

problem solving method of teaching physical science

Minds-On Physics

Activity-based curriculum for high school physics. Helps students to explore, hone, and link concepts, and to develop analysis and reasoning skills.

problem solving method of teaching physical science

NEXUS/Physics

An Introductory Physics for Life Sciences (IPLS) class that develops general scientific competencies and is biologically authentic.

Intro College Calculus-based

Next Generation Physical Science and Everyday Thinking

A guided-inquiry, physical science curriculum for pre- and in-service K-5 teachers, with flexible modular units for lab- or lecture-based courses.

problem solving method of teaching physical science

Physics Union Mathematics (PUM)

A physics/physical science curriculum that builds on intrinsic mathematical reasoning to develop and strengthen mathematics and physics concepts.

problem solving method of teaching physical science

New Model Course in Applied Quantum Physics

Resources for teaching introductory quantum mechanics and modern physics with an emphasis on concepts and applications.

problem solving method of teaching physical science

Technology-Enhanced Formative Assessment

A pedagogy using clickers for interactive, student-centered science instruction that engages students in extended whole-class discussion.

problem solving method of teaching physical science

CU Modern Physics Curriculum

Curriculum for large-lecture modern physics class for engineering majors. Focus on reasoning development, model building, and real-world applications.

problem solving method of teaching physical science

Matter and Interactions

A modern calculus-based introductory curriculum with an emphasis on the application of fundamental principles and on the atomic nature of matter.

problem solving method of teaching physical science

Paradigms in Physics

Activities for upper-level physics that can be incorporated into a standard course or used as part of a restructuring of the undergraduate curriculum.

University Modeling Instruction

A curriculum and pedagogy to integrate lab and lecture into a learning environment where students build, test, deploy, and revise conceptual models.

problem solving method of teaching physical science

CPU Computer Simulators

A suite of computer simulations for teaching physics and physical science through exploring phenomena and conducting simulated experiments.

problem solving method of teaching physical science

CU Upper-Level Mechanics and Math Methods Curriculum

Supplementary activities for upper-level CM. All materials are modular and can be mixed and matched with any other teaching strategy or materials.

problem solving method of teaching physical science

Quantum Interactive Learning Tutorials (QuILTs)

Worksheets, clicker questions, and homework for quantum mechanics. Connect quantitative formalism to qualitative understanding and build intuition.

problem solving method of teaching physical science

Explorations in Physics

A sequence of introductory, activity-based, laboratory activities that integrate the use of guided-inquiry techniques with self-directed projects.

Guided group work for graduate core courses

Guided group material for common graduate-level core courses: Classical Mechanics, Statistical Mechanics, Quantum Mechanics, and E&M

problem solving method of teaching physical science

Responsive Teaching in Science

A practice of attending and responding to the substance of students' thinking. The instructor's next moves are based on students' emerging ideas.

problem solving method of teaching physical science

ACORN Physics Tutorials

Tutorials designed to support students in building on the productive ideas they already have about physics to develop scientific models.

problem solving method of teaching physical science

PRISMS PLUS

A high school physics curriculum and professional development program that uses a learning cycle pedagogy, inexpensive materials, and technology.

problem solving method of teaching physical science

Intuitive Quantum Physics (IQP)

Tutorials for a course introducing non-science majors to basic ideas of quantum mechanics, including spectroscopy, simple molecules, and tunneling.

problem solving method of teaching physical science

Tutorials in Thermal & Statistical Physics

Guided-inquiry worksheet activities to help students develop a better understanding of upper-division thermodynamics and statistical mechanics.

Thermal / Statistical

Intermediate Mechanics Tutorials

Small-group learning materials for teaching intermediate mechanics. A mix of conceptual, mathematical, and problem-solving activities.

Scientific Community Laboratories

Design labs in which students work in groups to design an experiment, carry it out, analyze it, and present their results to other groups.

problem solving method of teaching physical science

Tutorials on thinking about quantum entities

Guided-inquiry worksheets to support students in thinking about the nature of quantum entities and engage in interpretation of quantum phenomena.

problem solving method of teaching physical science

Interactive Video-Enhanced Tutorials

Online activities with videos of instructors who guide students through a problem-solving process with a series of questions to interact and engage.

problem solving method of teaching physical science

Energy Project

A professional development program for K-12 teachers on the learning of energy. Teachers construct an understanding about energy and about learning.

problem solving method of teaching physical science

Student-Generated Scientific Inquiry

A curriculum for pre-service teachers. Students craft and investigate their own scientific questions about a range of scientific topics.

Home | Expert Recommendations | Teaching Methods | Assessment | Workshops | Data Explorer | About | Help | Contact | Terms | Privacy | My Account

ORIGINAL RESEARCH article

The problem-solving method: efficacy for learning and motivation in the field of physical education.

\nGhaith Ezeddine

  • 1 High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
  • 2 Research Unit of the National Sports Observatory (ONS), Tunis, Tunisia
  • 3 Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia
  • 4 Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
  • 5 Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
  • 6 Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
  • 7 High Institute of Sport and Physical Education of Ksar Saîd, University Manouba, UMA, Manouba, Tunisia

Background: In pursuit of quality teaching and learning, teachers seek the best method to provide their students with a positive educational atmosphere and the most appropriate learning conditions.

Objectives: The purpose of this study is to compare the effects of the problem-solving method vs. the traditional method on motivation and learning during physical education courses.

Methods: Fifty-three students ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study, and randomly assigned to a control or experimental group. Participants in the control group were taught using the traditional methods, whereas participants in the experimental group were taught using the problem-solving method. Both groups took part in a 10-hour experiment over 5 weeks. To measure students' situational motivation, a questionnaire was used to evaluate intrinsic motivation, identified regulation, external regulation, and amotivation during the first (T0) and the last sessions (T2). Additionally, the degree of students' learning was determined via video analyses, recorded at T0, the fifth (T1), and T2.

Results: Motivational dimensions, including identified regulation and intrinsic motivation, were significantly greater (all p < 0.001) in the experimental vs. the control group. The students' motor engagement in learning situations, during which the learner, despite a degree of difficulty performs the motor activity with sufficient success, increased only in the experimental group ( p < 0.001). The waiting time in the experimental group decreased significantly at T1 and T2 vs. T0 (all p < 0.001), with lower values recorded in the experimental vs. the control group at the three-time points (all p < 0.001).

Conclusions: The problem-solving method is an efficient strategy for motor skills and performance enhancement, as well as motivation development during physical education courses.

1. Introduction

The education of children is a sensitive and poignant subject, where the wellbeing of the child in the school environment is a key issue ( Ergül and Kargin, 2014 ). For this, numerous research has sought to find solutions to the problems of the traditional method, which focuses on the teacher as an instructor, giver of knowledge, arbiter of truth, and ultimate evaluator of learning ( Ergül and Kargin, 2014 ; Cunningham and Sood, 2018 ). From this perspective, a teachers' job is to present students with a designated body of knowledge in a predetermined order ( Arvind and Kusum, 2017 ). For them, learners are seen as people with “knowledge gaps” that need to be filled with information. In this method, teaching is conceived as the act of transmitting knowledge from point A (responsible for the teacher) to point B (responsible for the students; Arvind and Kusum, 2017 ). According to Novak (2010) , in the traditional method, the teacher is the one who provokes the learning.

The traditional method focuses on lecture-based teaching as the center of instruction, emphasizing delivery of program and concept ( Johnson, 2010 ; Ilkiw et al., 2017 ; Dickinson et al., 2018 ). The student listens and takes notes, passively accepts and receives from the teacher undifferentiated and identical knowledge ( Bi et al., 2019 ). Course content and delivery are considered most important, and learners acquire knowledge through exercise and practice ( Johnson et al., 1998 ). In the traditional method, academic achievement is seen as the ability of students to demonstrate, replicate, or convey this designated body of knowledge to the teacher. It is based on a transmissive model, the teacher contenting themselves with exchanging and transmitting information to the learner. Here, only the “knowledge” and “teacher” poles of the pedagogical triangle are solicited. The teacher teaches the students, who play the role of the spectator. They receive information without participating in its creation ( Perrenoud, 2003 ). For this, researchers invented a new student-centered method with effects on improving students' graphic interpretation skills and conceptual understanding of kinematic motion represent an area of contemporary interest ( Tebabal and Kahssay, 2011 ). Indeed, in order to facilitate the process of knowledge transfer, teachers should use appropriate methods targeted to specific objectives of the school curricula.

For instance, it has been emphasized that the effectiveness of any educational process as a whole relies on the crucial role of using a well-designed pedagogical (teaching and/or learning) strategy ( Kolesnikova, 2016 ).

Alternate to a traditional method of teaching, Ergül and Kargin (2014 ), proposed the problem-solving method, which represents one of the most common student-centered learning strategies. Indeed, this method allows students to participate in the learning environment, giving them the responsibility for their own acquisition of knowledge, as well as the opportunity for the understanding and structuring of diverse information.

For Cunningham and Sood (2018) , the problem-solving method may be considered a fundamental tool for the acquisition of new knowledge, notably learning transfer. Moreover, the problem-solving method is purportedly efficient for the development of manual skills and experiential learning ( Ergül and Kargin, 2014 ), as well as the optimization of thinking ability. Additionally, the problem-solving method allows learners to participate in the learning environment, while giving them responsibility for their learning and making them understand and structure the information ( Pohan et al., 2020 ). In this context, Ali (2019) reported that, when faced with an obstacle, the student will have to invoke his/her knowledge and use his/her abilities to “break the deadlock.” He/she will therefore make the most of his/her potential, but also share and exchange with his/her colleagues ( Ali, 2019 ). Throughout the process, the student will learn new concepts and skills. The role of the teacher is paramount at the beginning of the activity, since activities will be created based on problematic situations according to the subject and the program. However, on the day of the activity, it does not have the main role, and the teacher will guide learners in difficulty and will allow them to manage themselves most of the time ( Ali, 2019 ).

The problem-solving method encourages group discussion and teamwork ( Fidan and Tuncel, 2019 ). Additionally, in this pedagogical approach, the role of the teacher is a facilitator of learning, and they take on a much more interactive and less rebarbative role ( Garrett, 2008 ).

For the teaching method to be effective, teaching should consist of an ongoing process of making desirable changes among learners using appropriate methods ( Ayeni, 2011 ; Norboev, 2021 ). To bring about positive changes in students, the methods used by teachers should be the best for the subject to be taught ( Adunola et al., 2012 ). Further, suggests that teaching methods work effectively, especially if they meet the needs of learners since each learner interprets and answers questions in a unique way. Improving problem-solving skills is a primary educational goal, as is the ability to use reasoning. To acquire this skill, students must solve problems to learn mathematics and problem-solving ( Hu, 2010 ); this encourages the students to actively participate and contribute to the activities suggested by the teacher. Without sufficient motivation, learning goals can no longer be optimally achieved, although learners may have exceptional abilities. The method of teaching employed by the teachers is decisive to achieve motivational consequences in physical education students ( Leo et al., 2022 ). Pérez-Jorge et al. (2021 ) posited that given we now live in a technological society in which children are used to receiving a large amount of stimuli, gaining and maintaining their attention and keeping them motivated at school becomes a challenge for teachers.

Fenouillet (2012) stated that academic motivation is linked to resources and methods that improve attention for school learning. Furthermore, Rolland (2009) and Bessa et al. (2021) reported a link between a learner's motivational dynamics and classroom activities. The models of learning situations, where the student is the main actor, directly refers to active teaching methods, and that there is a strong link between motivation and active teaching ( Rossa et al., 2021 ). In the same context, previous reports assert that the motivation of students in physical education is an important factor since the intra-individual motivation toward this discipline is recognized as a major determinant of physical activity for students ( Standage et al., 2012 ; Luo, 2019 ; Leo et al., 2022 ). Further, extensive research on the effectiveness of teaching methods shows that the quality of teaching often influences the performance of learners ( Norboev, 2021 ). Ayeni (2011) reported that education is a process that allows students to make changes desirable to achieve specific results. Thus, the consistency of teaching methods with student needs and learning influences student achievement. This has led several researchers to explore the impact of different teaching strategies, ranging from traditional methods to active learning techniques that can be used such as the problem-solving method ( Skinner, 1985 ; Darling-Hammond et al., 2020 ).

In the context of innovation, Blázquez (2016 ) emphasizes the importance of adopting active methods and implementing them as the main element promoting the development of skills, motivation and active participation. Pedagogical models are part of the active methods which, together with model-based practice, replace traditional teaching ( Hastie and Casey, 2014 ; Casey et al., 2021 ). Thus, many studies have identified pedagogical models as the most effective way to place students at the center of the teaching-learning process ( Metzler, 2017 ), making it possible to assess the impact of physical education on learning students ( Casey, 2014 ; Rivera-Pérez et al., 2020 ; Manninen and Campbell, 2021 ). Since each model is designed to focus on a specific program objective, each model has limitations when implemented in isolation ( Bunker and Thorpe, 1982 ; Rivera-Pérez et al., 2020 ). Therefore, focusing on developing students' social and emotional skills and capacities could help them avoid failure in physical education ( Ang and Penney, 2013 ). Thus, the current emergence of new pedagogical models goes with their hybridization with different methods, which is a wave of combinations proposed today as an innovative pedagogical strategy. The incorporation of this type of method in the current education system is becoming increasingly important because it gives students a greater role, participation, autonomy and self-regulation, and above all it improves their motivation ( Puigarnau et al., 2016 ). The teaching model of personal and social responsibility, for example, is closely related to the sports education model because both share certain approaches to responsibility ( Siedentop et al., 2011 ). One of the first studies to use these two models together was Rugby ( Gordon and Doyle, 2015 ), which found significant improvements in student behavior. Also, the recent study by Menendez and Fernandez-Rio (2017) on educational kickboxing.

Previous studies have indicated that hybridization can increase play, problem solving performance and motor skills ( Menendez and Fernandez-Rio, 2017 ; Ward et al., 2021 ) and generate positive psychosocial consequences, such as pleasure, intention to be physically active and responsibility ( Dyson and Grineski, 2001 ; Menendez and Fernandez-Rio, 2017 ).

But despite all these research results, the picture remains unclear, and it remains unknown which method is more effective in improving students' learning and motivation. Given the lack of published evidence on this topic, the aim of this study was to compare the effects of problem-solving vs. the traditional method on students' motivation and learning.

We hypothesized would that the problem-solving method would be more effective in improving students' motivation and learning better than the traditional method.

2. Materials and method

2.1. participants.

Fifty-three students, aged 15–16 ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study. All participants were randomly chosen. Repeating students, those who practice handball activity in civil/competitive/amateur clubs or in the high school sports association, and students who were absent, even for one session, were excluded. The first class consisted of 30 students (16 boys and 14 girls), who represented the experimental group and followed basic courses on a learning method by solving problems. The second class consisted of 23 students (10 boys and 13 girls), who represented the control group and followed the traditional teaching method. The total duration was spread over 5 weeks, or two sessions per week and each session lasted 50 min.

University research ethics board approval (CPPSUD: 0295/2021) was obtained before recruiting participants who were subsequently informed of the nature, objective, methodology, and constraints. Teacher, school director, parental/guardian, and child informed consent was obtained prior to participation in the study.

2.2. Procedure

Before the start of the experiment, the participants were familiarized with the equipment and the experimental protocol in order to ensure a good learning climate. For this and to mitigate the impact of the observer and the cameras on the students, the two researchers were involved prior to the data collection in a week of familiarization by making test recordings with the classes concerned.

An approach of a teaching cycle consisting of 10 sessions spread over 5 weeks, amounting to two sessions per week. Physical education classes were held in the morning from 8 a.m. to 9 a.m., with a single goal for each session that lasted 50 min. The cyclic programs were produced by the teacher responsible for carrying out the experiment with 18 years of service. To do this, the students had the same lessons with the same objectives, only pedagogy that differs: the experimental group worked using problem-solving pedagogy, while the control group was confronted with traditional pedagogy. The sessions took place in a handball field 40 m long and 20 m wide. Examples of training sessions using the problem-solving pedagogy and the traditional pedagogy are presented in Table 1 . In addition, a motivation questionnaire, the Situational Motivation Scale (SIMS; Guay et al., 2000 ), was administered to learners at the end of the session (i.e., in the beginning, and end of the cycle). Each student answered the questions alone and according to their own ideas. This questionnaire was taken in a classroom to prevent students from acting abnormally during the study. It lasted for a maximum of 10 min.

www.frontiersin.org

Table 1 . Example of activities for the different sessions.

Two diametrically opposed cameras were installed so to film all the movements and behaviors of each student and teacher during the three sessions [(i) test at the start of the cycle (T0), (ii) in the middle of the cycle (T1), and (iii) test at the end of the cycle (T2)]. These sessions had the same content and each consisted of four phases: the getting started, the warm-up, the work up (which consisted of three situations: first, the work was goes up the ball to two to score in the goal following a shot. Second, the same principle as the previous situation but in the presence of a defender. Finally, third, a match 7 ≠ 7), and the cooling down These recordings were analyzed using a Learning Time Analysis System grid (LTAS; Brunelle et al., 1988 ). This made it possible to measure individual learning by coding observable variables of the behavior of learners in a learning situation.

2.3. Data collection and analysis

2.3.1. the motivation questionnaire.

In this study, in order to measure the situational motivation of students, the situational motivation scale (SIMS; Guay et al., 2000 ), which used. This questionnaire assesses intrinsic motivation, identified regulation, external regulation and amotivation. SIMS has demonstrated good reliability and factor validity in the context of physical education in adolescents ( Lonsdale et al., 2011 ). The participants received exact instructions from the researchers in accordance with written instructions on how to conduct the data collection. Participants completed the SIMS anonymously at the start of a physical education class. All students had the opportunity to write down their answers without being observed and to ask questions if anything was unclear. To minimize the tendency to give socially desirable answers, they were asked to answer as honestly as possible, with the confidence that the teacher would not be able to read their answers and that their grades would not be affected by how they responded. The SIMS questionnaire was filled at T0 and T2. This scale is made up of 16 items divided into four dimensions: intrinsic motivation, identified regulation, external regulation and amotivation. Each item is rated on a 7-point Likert scale ranging from 1 (which is the weakest factor) “not at all” to 7 (which is the strongest factor) “exactly matches.”

In order to assess the internal consistency of the scales, a Cronbach alpha test was conducted ( Cronbach, 1951 ). The internal consistency of the scales was acceptable with reliability coefficients ranging from 0.719 to 0.87. The coefficient of reliability was 0.8.

In the present study, Cronbach's alphas were: intrinsic motivation = 0.790; regulation identified = 0.870; external regulation = 0.749; and amotivation = 0.719.

2.3.2. Camcorders

The audio-visual data collection was conducted using two Sony camcorders (Model; Handcam 4K) with a wireless microphone with a DJ transmitter-receiver (VHF 10HL F4 Micro HF) with a range of 80 m ( Maddeh et al., 2020 ). The collection took place over a period of 5 weeks, with three captures for each class (three sessions of 50 min for each at T0, T1, and T2). Two researchers were trained in the procedures and video capture techniques. The cameras were positioned diagonally, in order to film all the behavior of the students and teacher on the set.

2.3.3. The Learning Time Analysis System (LTAS)

To measure the degree of student learning, the analysis of videos recorded using the LTAS grid by Brunelle et al. (1988) was used, at T0, T1, and T2. This observation system with predetermined categories uses the technique of observation by small intervals (i.e., 6 s) and allows to measure individual learning by coding observable variables of their behaviors when they have been in a learning situation. This grid also permits the specification of the quantity and quality with which the participants engaged in the requested work and was graded, broadly, on two characteristics: the type of situation offered to the group by the teacher and the behavior of the target participant. The situation offered to the group was subdivided into three parts: preparatory situations; knowledge development situations, and motor development situations.

The observations and coding of behaviors are carried out “at intervals.” This technique is used extensively in research on behavior analysis. The coder observes the teaching situation and a particular student during each interval ( Brunelle et al., 1988 ). It then makes a decision concerning the characteristic of the observed behavior. The 6-s observation interval is followed by a coding interval of 6 s too. A cassette tape recorder is used to regulate the observation and recording intervals. It is recorded for this purpose with the indices “observe” and “code” at the start of each 6-s period. During each coding unit, the observer answered the following questions: What is the type of situation in which the class group finds itself? If the class group is in a learning situation proper, in what form of commitment does the observed student find himself? The abbreviations representing the various categories of behavior have been entered in the spaces which correspond to them. The coder was asked to enter a hyphen instead of the abbreviation when the same categories of behavior follow one another in consecutive intervals ( Brunelle et al., 1988 ).

During the preparatory period, the following behaviors were identified and analyzed:

- Deviant behavior: The student adopts a behavior incompatible with a listening attitude or with the smooth running of the preparatory situations.

- Waiting time: The student is waiting without listening or observing.

- Organized during: The student is involved in a complementary activity that does not represent a contribution to learning (e.g., regaining his place in a line, fetching a ball that has just left the field, replacing a piece of equipment).

During the motor development situations, the following behaviors were identified and analyzed:

- Motor engagement 1: The participant performs the motor activity with such easy that it can be inferred that their actions have little chance to engage in a learning process.

- Motor engagement 2: The participant-despite a certain degree of difficulty, performs the motor activity with sufficient success, which makes it possible to infer that they are in the process of learning.

- Motor engagement 3: The participant performs the motor activity with such difficulty that their efforts have very little chance of being part of a learning process.

2.4. Statistical analysis

Statistical tests were performed using statistical software 26.0 for windows (SPSS, Inc, Chicago, IL, USA). Data are presented in text and tables as means ± standard deviations and in figures as means and standard errors. Once the normal distribution of data was confirmed by the Shapiro-Wilk W -test, parametric tests were performed. Analysis of the results was performed using a mixed 2-way analysis of variance (ANOVA): Groups × Time with repeated measures.

For the learning parameters, the ANOVA took the following form: 2 Groups (Control Group vs. Experimental Group) × 3 Times (T0, T1, and T2).

For the dimensions of motivation, the ANOVA took the following form: 2 Groups (Control Group vs. Experimental Group) × 2 Time (T0 vs. T2).

In instances where the ANOVA showed a significant effect, a Bonferroni post-hoc test was applied in order to compare the experimental data in pairs, otherwise by an independent or paired Student's T -test. Effect sizes were calculated as partial eta-squared η p 2 to estimate the meaningfulness of significant findings, where η p 2 values of 0.01, 0.06, and 0.13 represent small, moderate, and large effect sizes, respectively ( Lakens, 2013 ). All observed differences were considered statistically significant for a probability threshold lower than p < 0.05.

Table 2 shows the results of learning variables during the preparatory and the development learning periods at T0, T1, and T2, in the control group and the experimental group.

www.frontiersin.org

Table 2 . Comparison of learning variables using two teaching methods in physical education.

The analysis of variance of two factors with repeated measures showed a significant effect of group, learning, and group learning interaction for the deviant behavior. The post-hoc test revealed significantly less frequent deviant behaviors in the experimental than in the control group at T0, T1, and T2 (all p < 0.001). Additionally, the deviant behavior decreased significantly at T1 and T2 compared to T0 for both groups (all p < 0.001).

For appropriate engagement, there were no significant group effect, a significant learning effect, and a significant group learning interaction effect. The post-hoc test revealed that compared to T0, Appropriate engagement recorded at T1 and T2 increased significantly ( p = 0.032; p = 0.031, respectively) in the experimental group, whilst it decreased significantly in the control group ( p < 0.001). Additionally, Appropriate engagement was higher in the experimental vs. control group at T1 and T2 (all p < 0.001).

For waiting time, a significant interaction in terms of group effect, learning, and group learning was found. The post-hoc test revealed that waiting time was higher at T1 and T2 vs. T0 (all p < 0.001) in the control group. In addition, waiting time in the experimental group decreased significantly at T1 and T2 vs. T0 (all p < 0.001), with higher values recorded at T2 vs. T1 ( p = 0.025). Additionally, lower values were recorded in the experimental group vs. the control group at the three-time points (all p < 0.001).

For Motor engagement 2, a significant group, learning, and group-learning interaction effect was noted. The post-hoc test revealed that Motor engagement 2 increased significantly in both groups at T1 ( p < 0.0001) and T2 ( p < 0.0001) vs. T0 ( p = 0.045), with significantly higher values recorded in the experimental group at T1 and T2.

Regarding Motor engagement 3, a non-significant group effect was reported. Contrariwise, a significant learning effect and group learning interaction was reported ( Table 1 ). The post-hoc test revealed a significant decrease in the control group and the experimental group at T1 ( p = 0.294) at T2 ( p = 0.294) vs. T0 ( p = 0.0543). In addition, a non-significant difference between the two groups was found.

A significant group and learning effect was noted for the organized during, and a non-significant group learning interaction. For organized during, the paired Student T -test showed a significant decrease in the control group and the experimental group (all p < 0.001). The independent Student T -test revealed a non-significant difference between groups at the three-time points.

Results of the motivational dimensions in the control group and the experimental group recorded at T0 and T2 are presented in Table 3 .

www.frontiersin.org

Table 3 . Comparison of the four motivational dimensions in two teaching methods in physical education.

For intrinsic motivation, a significant group effect and group learning interaction and also a non-significant learning effect was found. The post-hoc test indicated that the intrinsic motivation decreased significantly in the control group ( p = 0.029), whilst it increased in the experimental group ( p = 0.04). Additionally, the intrinsic motivation of the experimental group was higher at T0 ( p = 0.026) and T2 ( p < 0.001) compared to that of the control group.

For the identified regulation, a significant group effect, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test revealed that from T0 to T1, the identified motivation increased significantly only in the experimental group ( p = 0.022), while it remained unchanged in the control group. The independent Student's T -test revealed that the identified regulation recorded in the experimental group at T0 ( p = 0.012) and T2 ( p < 0.001) was higher compared to that of the control group.

The external regulation presents a significant group effect. In addition, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test showed that the external regulation decreased significantly in the experimental group ( p = 0.038), whereas it remained unchanged in the control group. Further, the independent Student's T -test revealed that the external regulation recorded at T2 was higher in the control group vs. the experimental group ( p < 0.001).

Relating to amotivation, results showed a significant group effect. Furthermore, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test showed that, from T0 to T2, amotivation decreased significantly in the experimental group ( p = 0.011) and did not change in the control group. The independent Student T -test revealed that amotivation recorded at T2 was lower in the experimental compared to the control group ( p = 0.002).

4. Discussion

The main purpose of this study was to compare the effects of the problem-solving vs. traditional method on motivation and learning during physical education courses. The results revealed that the problem-solving method is more effective than the traditional method in increasing students' motivation and improving their learning. Moreover, the results showed that mean wait times and deviant behaviors decreased using the problem-solving method. Interestingly, the average time spent on appropriate engagement increased using the problem-solving method compared to the traditional method. When using the traditional method, the average wait times increased and, as a result, the time spent on appropriate engagement decreased. Then, following the decrease in deviant behaviors and waiting times, an increase in the time spent warming up was evident (i.e., appropriate engagement). Indeed, there was an improvement in engagement time using the problem-solving method and a decrease using the traditional method. On the other hand, there was a decrease in motor engagement 3 in favor of motor engagement 2. Indeed, it has been shown that the problem-solving method has been used in the learning process and allows for its improvement ( Docktor et al., 2015 ). In addition, it could also produce better quality solutions and has higher scores on conceptual and problem-solving measures. It is also a good method for the learning process to enhance students' academic performance ( Docktor et al., 2015 ; Ali, 2019 ). In contrast, the traditional method limits the ability of teachers to reach and engage all students ( Cook and Artino, 2016 ). Furthermore, it produces passive learning with an understanding of basic knowledge which is characterized by its weakness ( Goldstein, 2016 ). Taken together, it appears that the problem-solving method promotes and improves learning more than the traditional method.

It should be acknowledged that other factors, such as motivation, could influence learning. In this context, our results showed that the method of problem-solving could improve the motivation of the learners. This motivation includes several variables that change depending on the situation, namely the intrinsic motivation that pushes the learner to engage in an activity for the interest and pleasure linked to the practice of the latter ( Komarraju et al., 2009 ; Guiffrida et al., 2013 ; Chedru, 2015 ). The student, therefore, likes to learn through problem-solving and neglects that of the traditional method. These results are concordant with others ( Deci and Ryan, 1985 ; Chedru, 2015 ; Ryan and Deci, 2020 ). Regarding the three forms of extrinsic motivation: first, extrinsic motivation by an identified regulation which manifests itself in a high degree of self-determination where the learner engages in the activity because it is important for him ( Deci and Ryan, 1985 ; Chedru, 2015 ). This explains the significant difference between the two groups. Then, the motivation by external regulation which is characterized by a low degree of self-determination such as the behavior of the learner is manipulated by external circumstances such as obtaining rewards or the removal of sanctions ( Deci and Ryan, 1985 ; Chedru, 2015 ). For this, the means of this variable decreased for the experimental group which is intrinsically motivated. He does not need any reward to work and is not afraid of punishment because he is self-confident. Third, amotivation is at the opposite end of the self-determination continuum. Unmotivated students are the most likely to feel negative emotions ( Ratelle et al., 2007 ; David, 2010 ), to have low self-esteem ( Deci and Ryan, 1995 ), and who attempts to abandon their studies ( Vallerand et al., 1997 ; Blanchard et al., 2005 ). So, more students are motivated by external regulation or demotivated, less interest they show and less effort they make, and more likely they are to fail ( Grolnick et al., 1991 ; Miserandino, 1996 ; Guay et al., 2000 ; Blanchard et al., 2005 ).

It is worth noting that there is a close link between motivation and learning ( Bessa et al., 2021 ; Rossa et al., 2021 ). Indeed, when the learner's motivation is high, so will his learning. However, all this depends on the method used ( Norboev, 2021 ). For example, the method of problem-solving increase motivation more than the traditional method, as evidenced by several researchers ( Parish and Treasure, 2003 ; Artino and Stephens, 2009 ; Kim and Frick, 2011 ; Lemos and Veríssimo, 2014 ).

Given the effectiveness of the problem-solving method in improving students' learning and motivation, it should be used during physical education teaching. This could be achieved through the organization of comprehensive training programs, seminars, and workshops for teachers so to master and subsequently be able to use the problem-solving method during physical education lessons.

Despite its novelty, the present study suffers from a few limitations that should be acknowledged. First, a future study, consisting of a group taught using the mixed method would preferable so to better elucidate the true impact of this teaching and learning method. Second, no gender and/or age group comparisons were performed. This issue should be addressed in future investigations. Finally, the number of participants is limited. This may be due to working in a secondary school where the number of students in a class is limited to 30 students. Additionally, the number of participants fell to 53 after excluding certain students (exempted, absent for a session, exercising in civil clubs or member of the school association). Therefore, to account for classes of finite size, a cluster-based trial would be beneficial in the future. Moreover, future studies investigating the effect of the active method in reducing some behaviors (e.g., disruptive behaviors) and for the improvement of pupils' attention are warranted.

5. Conclusion

There was an improvement in student learning in favor of the problem-solving method. Additionally, we found that the motivation of learners who were taught using the problem-solving method was better than that of learners who were educated by the traditional method.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

University Research Ethics Board approval was obtained before recruiting participants who were subsequently informed of the nature, objective, methodology, and constraints. Teacher, school director, parental/guardian, and child informed consent was obtained prior to participation in the study. In addition, exclusion criteria included; the practice of handball activity in civil/competitive/amateur clubs or in the high school sports association. Written informed consent to participate in this study was provided by the participants' legal guardian/next of kin.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Acknowledgments

Special thanks for all students and physical education teaching staff from the 15 November 1955 Secondary School, who generously shared their time, experience, and materials for the proposes of this study.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer MJ declared a shared affiliation, with no collaboration, with the authors GE, NS, LM, and KT to the handling editor at the time of review.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Adunola, O., Ed, B., and Adeniran, A. (2012). The Impact of Teachers' Teaching Methods on the Academic Performance of Primary School Pupils . Ogun: Ego Booster Books.

Google Scholar

Ali, S. S. (2019). Problem based learning: A student-centered approach. Engl. Lang. Teach . 12, 73. doi: 10.5539/elt.v12n5p73

CrossRef Full Text | Google Scholar

Ang, S. C., and Penney, D. (2013). Promoting social and emotional learning outcomes in physical education: Insights from a school-based research project in Singapore. Asia-Pac. J. Health Sport Phys. Educ . 4, 267–286. doi: 10.1080/18377122.2013.836768

Artino, A. R., and Stephens, J. M. (2009). Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online. Internet. High. Educ. 12, 146–151. doi: 10.1016/j.iheduc.2009.02.001

Arvind, K., and Kusum, G. (2017). Teaching approaches, methods and strategy. Sch. Res. J. Interdiscip. Stud. 4, 6692–6697. doi: 10.21922/srjis.v4i36.10014

Ayeni, A. J. (2011). Teachers' professional development and quality assurance in Nigerian secondary schools. World J. Educ. 1, 143. doi: 10.5430/wje.v1n2p143

Bessa, C., Hastie, P., Rosado, A., and Mesquita, I. (2021). Sport education and traditional teaching: Influence on students' empowerment and self-confidence in high school physical education classes. Sustainability 13, 578. doi: 10.3390/su13020578

Bi, M., Zhao, Z., Yang, J., and Wang, Y. (2019). Comparison of case-based learning and traditional method in teaching postgraduate students of medical oncology. Med. Teach . 4, 1124–1128. doi: 10.1080/0142159X.2019.1617414

PubMed Abstract | CrossRef Full Text | Google Scholar

Blanchard, C., Pelletier, L., Otis, N., and Sharp, E. (2005). Role of self-determination and academic ability in predicting school absences and intention to drop out. J. Educ. Sci. 30, 105–123. doi: 10.7202/011772ar

Blázquez, D. (2016).Métodos de enseñanza en Educación Física. Enfoques innovadores para la enseñanza de competencias . Barcelona: Inde Publisher.

Brunelle, J., Drouin, D., Godbout, P., and Tousignant, M. (1988). Supervision of physical activity intervention. Montreal, Canada: G. Morin, Dl. Open J. Soc. Sci. 8.

Bunker, D., and Thorpe, R. (1982). A model for the teaching of games in secondary schools. Bull. Phys. Educ . 18, 5–8.

Casey, A. (2014). Models-based practice: Great white hope or white elephant? Phys. Educ. Sport Pedagog. 19, 18–34. doi: 10.1080/17408989.2012.726977

Casey, A., MacPhail, A., Larsson, H., and Quennerstedt, M. (2021). Between hope and happening: Problematizing the M and the P in models-based practice. Phys. Educ. Sport Pedagog. 26, 111–122. doi: 10.1080/17408989.2020.1789576

Chedru, M. (2015). Impact of motivation and learning styles on the academic performance of engineering students. J. Educ. Sci. 41, 457–482. doi: 10.7202/1035313ar

Cook, D. A., and Artino, A. R. (2016). Motivation to learn: An overview of contemporary theories. J. Med. Educ . 50, 997–1014. doi: 10.1111/medu.13074

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika. J. 16, 297–334. doi: 10.1007/BF02310555

Cunningham, J., and Sood, K. (2018). How effective are working memory training interventions at improving maths in schools: a study into the efficacy of working memory training in children aged 9 and 10 in a junior school?. Education 46, 174–187. doi: 10.1080/03004279.2016.1210192

Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., and Osher, D. (2020). Implications for educational practice of the science of learning and development. Appl. Dev. Sci. 24, 97–140. doi: 10.1080/10888691.2018.1537791

David, A. (2010). Examining the relationship of personality and burnout in college students: The role of academic motivation. E. M. E. Rev. 1, 90–104.

Deci, E., and Ryan, R. (1985). Intrinsic motivation and self-determination in human behavior. Perspect. Soc. Psychol . 2271, 7. doi: 10.1007/978-1-4899-2271-7

Deci, E. L., and Ryan, R. M. (1995). “Human autonomy,” in Efficacy, Agency, and Self-Esteem (Boston, MA: Springer).

Dickinson, B. L., Lackey, W., Sheakley, M., Miller, L., Jevert, S., and Shattuck, B. (2018). Involving a real patient in the design and implementation of case-based learning to engage learners. Adv. Physiol. Educ. 42, 118–122. doi: 10.1152/advan.00174.2017

Docktor, J. L., Strand, N. E., Mestre, J. P., and Ross, B. H. (2015). Conceptual problem solving in high school. Phys. Rev. ST Phys. Educ. Res. 11, 20106. doi: 10.1103/PhysRevSTPER.11.020106

Dyson, B., and Grineski, S. (2001). Using cooperative learning structures in physical education. J. Phys. Educ. Recreat. Dance. 72, 28–31. doi: 10.1080/07303084.2001.10605831

Ergül, N. R., and Kargin, E. K. (2014). The effect of project based learning on students' science success. Procedia. Soc. Behav. Sci. 136, 537–541. doi: 10.1016/j.sbspro.2014.05.371

Fenouillet, F. (2012). Les théories de la motivation . Psycho Sup : Dunod.

Fidan, M., and Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Comput. Educ .142, 103635. doi: 10.1016/j.compedu.2019.103635

Garrett, T. (2008). Student-centered and teacher-centered classroom management: A case study of three elementary teachers. J. Classr. Interact. 43, 34–47.

Goldstein, O. A. (2016). Project-based learning approach to teaching physics for pre-service elementary school teacher education students. Bevins S, éditeur. Cogent. Educ. 3, 1200833. doi: 10.1080/2331186X.2016.1200833

Gordon, B., and Doyle, S. (2015). Teaching personal and social responsibility and transfer of learning: Opportunities and challenges for teachers and coaches. J. Teach. Phys. Educ. 34, 152–161. doi: 10.1123/jtpe.2013-0184

Grolnick, W. S., Ryan, R. M., and Deci, E. L. (1991). Inner resources for school achievement: Motivational mediators of children's perceptions of their parents. J. Educ. Psychol . 83, 508–517. doi: 10.1037/0022-0663.83.4.508

Guay, F., Vallerand, R. J., and Blanchard, C. (2000). On the assessment of situational intrinsic and extrinsic motivation: The Situational Motivation Scale (SIMS). Motiv. Emot . 24, 175–213. doi: 10.1023/A:1005614228250

Guiffrida, D., Lynch, M., Wall, A., and Abel, D. (2013). Do reasons for attending college affect academic outcomes? A test of a motivational model from a self-determination theory perspective. J. Coll. Stud. Dev. 54, 121–139. doi: 10.1353/csd.2013.0019

Hastie, P. A., and Casey, A. (2014). Fidelity in models-based practice research in sport pedagogy: A guide for future investigations. J. Teach. Phys. Educ . 33, 422–431. doi: 10.1123/jtpe.2013-0141

Hu, W. (2010). Creative scientific problem finding and its developmental trend. Creat. Res. J. 22, 46–52. doi: 10.1080/10400410903579551

Ilkiw, J. E., Nelson, R. W., Watson, J. L., Conley, A. J., Raybould, H. E., Chigerwe, M., et al. (2017). Curricular revision and reform: The process, what was important, and lessons learned. J. Vet. Med. Educ . 44, 480–489. doi: 10.3138/jvme.0316-068R

Johnson, A. P. (2010). Making Connections in Elementary and Middle School Social Studies. 2nd Edn. London: SAGE.

Johnson, D. W., Johnson, R. T., and Smith, K. A. (1998). Active Learning: Cooperation in the College Classroom. 2nd Edn. Edina, MN: Interaction Press.

Kim, K. J., and Frick, T. (2011). Changes in student motivation during online learning. J. Educ. Comput. 44, 23. doi: 10.2190/EC.44.1.a

Kolesnikova, I. (2016). Combined teaching method: An experimental study. World J. Educ. 6, 51–59. doi: 10.5430/wje.v6n6p51

Komarraju, M., Karau, S. J., and Schmeck, R. R. (2009). Role of the Big Five personality traits in predicting college students' academic motivation and achievement. Learn. Individ. Differ. 19, 47–52. doi: 10.1016/j.lindif.2008.07.001

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t -tests and ANOVAs. Front. Psychol . 4, 863. doi: 10.3389/fpsyg.2013.00863

Lemos, M. S., and Veríssimo, L. (2014). The relationships between intrinsic motivation, extrinsic motivation, and achievement, along elementary school. Procedia. Soc. Behav. Sci . 112, 930–938. doi: 10.1016/j.sbspro.2014.01.1251

Leo, M. F., Mouratidis, A., Pulido, J. J., López-Gajardo, M. A., and Sánchez-Oliva, D. (2022). Perceived teachers' behavior and students' engagement in physical education: the mediating role of basic psychological needs and self-determined motivation. Phys. Educ. Sport Pedagogy. 27, 59–76. doi: 10.1080/17408989.2020.1850667

Lonsdale, C., Sabiston, C., Taylor, I., and Ntoumanis, N. (2011). Measuring student motivation for physical education: Examining the psychometric properties of the Perceived Locus of Causality Questionnaire and the Situational Motivation Scale. Psychol. Sport. Exerc . 12, 284–292. doi: 10.1016/j.psychsport.2010.11.003

Luo, Y. J. (2019). The influence of problem-based learning on learning effectiveness in students' of varying learning abilities within physical education. Innov. Educ. Teach. Int. 56, 3–13. doi: 10.1080/14703297.2017.1389288

Maddeh, T., Amamou, S., Desbiens, J., and françois Souissi, N. (2020). The management of disruptive behavior of secondary school students by Tunisian trainee teachers in physical education: Effects of a training program in the prevention and management of indiscipline. J. Educ. Fac . 4, 323–344. doi: 10.34056/aujef.674931

Manninen, M., and Campbell, S. (2021). The effect of the sport education model on basic needs, intrinsic motivation and prosocial attitudes: A systematic review and multilevel meta-Analysis. Eur. Phys. Educ. Rev . 28, 76–99. doi: 10.1177/1356336X211017938

Menendez, J. I., and Fernandez-Rio, J. (2017). Hybridising sport education and teaching for personal and social responsibility to include students with disabilities. Eur. J. Spec. Needs Educ. 32, 508–524 doi: 10.1080/08856257.2016.1267943

Metzler, M. (2017). Instructional Models in Physical Education . London: Routledge.

Miserandino, M. (1996). Children who do well in school: Individual differences in perceived competence and autonomy in above-average children. J. Educ. Psychol . 88, 203–214. doi: 10.1037/0022-0663.88.2.203

Norboev, N. N. (2021). Theoretical aspects of the influence of motivation on increasing the efficiency of physical education. Curr. Res. J. Pedagog . 2, 247–252. doi: 10.37547/pedagogics-crjp-02-10-44

Novak, D. J. (2010). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. J. E-Learn. Knowl. Soc . 6, 21–30. doi: 10.20368/1971-8829/441

Parish, L. E., and Treasure, D. C. (2003). Physical activity and situational motivation in physical education: Influence of the motivational climate and perceived ability. Res. Q. Exerc. Sport. 74, 173. doi: 10.1080/02701367.2003.10609079

Pérez-Jorge, D., González-Dorta, D., Del Carmen Rodríguez-Jiménez, D., and Fariña-Hernández, L. (2021). Problem-solving teacher training, the effect of the ProyectaMates Programme in Tenerife. International Educ . 49, 777–7791. doi: 10.1080/03004279.2020.1786427

Perrenoud, P. (2003). Qu'est-ce qu'apprendre. Enfances Psy . 4, 9–17. doi: 10.3917/ep.024.0009

Pohan, A., Asmin, A., and Menanti, A. (2020). The effect of problem based learning and learning motivation of mathematical problem solving skills of class 5 students at SDN 0407 Mondang. BirLE . 3, 531–539. doi: 10.33258/birle.v3i1.850

Puigarnau, S., Camerino, O., Castañer, M., Prat, Q., and Anguera, M. T. (2016). El apoyo a la autonomía en practicantes de centros deportivos y de fitness para aumentar su motivación. Rev. Int. de Cienc. del deporte. 43, 48–64. doi: 10.5232/ricyde2016.04303

Ratelle, C. F., Guay, F., Vallerand, R. J., Larose, S., and Senécal, C. (2007). Autonomous, controlled, and amotivated types of academic motivation: A person-oriented analysis. J. Educ. Psychol. 99, 734–746. doi: 10.1037/0022-0663.99.4.734

Rivera-Pérez, S., Fernandez-Rio, J., and Gallego, D. I. (2020). Effects of an 8-week cooperative learning intervention on physical education students' task and self-approach goals, and Emotional Intelligence. Int. J. Environ. Res. Public Health . 18, 61. doi: 10.3390/ijerph18010061

Rolland, V. (2009). Motivation in the School Context . 5th Edn . Belguim: De Boeck Superior, 218.

Rossa, R., Maulidiah, R. H., and Aryni, Y. (2021). The effect of problem solving technique and motivation toward students' writing skills. J. Pena. Edukasi. 8, 43–54. doi: 10.54314/jpe.v8i1.654

Ryan, R., and Deci, E. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol . 61, 101860. doi: 10.1016/j.cedpsych.2020.101860

Siedentop, D., Hastie, P. A., and Van Der Mars, H. (2011). Complete Guide to Sport Education, 2nd Edn. Champaign, IL: Human Kinetics.

Skinner, B. F. (1985). Cognitive science and behaviourism. Br. J. Psychol. 76, 291–301. doi: 10.1111/j.2044-8295.1985.tb01953.x

Standage, M., Gillison, F. B., Ntoumanis, N., and Treasure, D. C. (2012). Predicting students' physical activity and health-related well-being: a prospective cross-domain investigation of motivation across school physical education and exercise settings. J. Sport. Exerc. Psychol . 34, 37–60. doi: 10.1123/jsep.34.1.37

Tebabal, A., and Kahssay, G. (2011). The effects of student-centered approach in improving students' graphical interpretation skills and conceptual understanding of kinematical motion. Lat. Am. J. Phys. Educ. 5, 9.

Vallerand, R. J., Fbrtier, M. S., and Guay, F. (1997). Self-determination and persistence in a real-life setting toward a motivational model of high school dropout. J. Pers. Soc. Psychol. 2, 1161–1176. doi: 10.1037/0022-3514.72.5.1161

Ward, P., Mitchell, M. F., van der Mars, H., and Lawson, H. A. (2021). Chapter 3: PK+12 School physical education: conditions, lessons learned, and future directions. J. Teach. Phys. Educ. 40, 363–371. doi: 10.1123/jtpe.2020-0241

Keywords: problem-solving method, traditional method, motivation, learning, students

Citation: Ezeddine G, Souissi N, Masmoudi L, Trabelsi K, Puce L, Clark CCT, Bragazzi NL and Mrayah M (2023) The problem-solving method: Efficacy for learning and motivation in the field of physical education. Front. Psychol. 13:1041252. doi: 10.3389/fpsyg.2022.1041252

Received: 10 September 2022; Accepted: 15 December 2022; Published: 25 January 2023.

Reviewed by:

Copyright © 2023 Ezeddine, Souissi, Masmoudi, Trabelsi, Puce, Clark, Bragazzi and Mrayah. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

education-logo

Article Menu

problem solving method of teaching physical science

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Problem-based learning versus traditional learning in physics education for engineering program students.

problem solving method of teaching physical science

1. Introduction

2. materials and methods, 3. results and discussions, 4. conclusions, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Bao, L.; Koenig, K. Physics education research for 21st century learning. Discip. Interdiscip. Sci. Educ. Res. 2019 , 1 , 2. [ Google Scholar ] [ CrossRef ]
  • Bell, S. Project-Based Learning for the 21st Century: Skills for the Future. Clear. House J. Educ. Strateg. Issues Ideas 2010 , 83 , 39–43. [ Google Scholar ] [ CrossRef ]
  • McNeil, L.; Heron, P. Preparing physics students for 21st-century careers. Phys. Today 2017 , 70 , 38–43. [ Google Scholar ] [ CrossRef ]
  • Byun, T.; Lee, G. Why students still can’t solve physics problems after solving over 2000 problems. Am. J. Phys. 2014 , 82 , 906–913. [ Google Scholar ] [ CrossRef ]
  • Shah, R.; Gillen, A.L. A systematic literature review of university-industry partnerships in engineering education. Eur. J. Eng. Educ. 2023 , 1–27. [ Google Scholar ] [ CrossRef ]
  • Tiruneh, D.T.; De Cock, M.; Weldeslassie, A.G.; Elen, J.; Janssen, R. Measuring critical thinking in physics: Development and validation of a critical thinking test in electricity and magnetism. Int. J. Sci. Math. Educ. 2017 , 15 , 663–682. [ Google Scholar ] [ CrossRef ]
  • Abd-El-Khalick, F.; Boujaoude, S.; Duschl, R.; Lederman, N.G.; Mamlok-Naaman, R.; Hofstein, A.; Niaz, M.; Treagust, D.; Tuan, H.l. Inquiry in science education: International perspectives. Sci. Educ. 2004 , 88 , 397–419. [ Google Scholar ] [ CrossRef ]
  • Sahin, M. Effects of problem-based learning on university students’ epistemological beliefs about physics and physics learning and conceptual understanding of Newtonian mechanics. J. Sci. Educ. Technol. 2010 , 19 , 266–275. [ Google Scholar ] [ CrossRef ]
  • Sutriani; Mansyur, J. The analysis of students’ ability in solving physics problems using multiple representations. J. Phys. Conf. Ser. 2021 , 1760 , 012035. [ Google Scholar ] [ CrossRef ]
  • Zwickl, B.M.; Finkelstein, N.; Lewandowski, H.J. The process of transforming an advanced lab course: Goals, curriculum, and assessments. Am. J. Phys. 2013 , 81 , 63–70. [ Google Scholar ] [ CrossRef ]
  • Argaw, A.S. Beyene Bashu Haile, Beyene Tesfaw Ayalew, and Shiferaw Gadisa Kuma. The Effect of Problem Based Learning (PBL) Instruction on Students’ Motivation and Problem Solving Skills of Physics. Eurasia J. Math. Sci. Technol. Educ. 2017 , 13 , 857–871. [ Google Scholar ]
  • Padmadewa, M.; Ismoyo, H. Effect of problem-based learning on improvement physics achievement and critical thinking of senior high school student. J. Balt. Sci. Educ. 2017 , 16 , 761–779. [ Google Scholar ] [ CrossRef ]
  • Bowe, B.; Daly, S.E.; Flynn, C.; Howard, R. Problem-based learning: An approach to enhancing learning and understanding of optics for first-year students. In Proceedings of the Opto-Ireland 2002: Optics and Photonics Technologies and Applications, Galway, Ireland, 5–6 September 2002; pp. 1292–1299. [ Google Scholar ]
  • Lee, M.; Larkin, C.J.K.; Hoekstra, S. Impacts of Problem-Based Instruction on Students&rsquo; Beliefs about Physics and Learning Physics. Educ. Sci. 2023 , 13 , 321. [ Google Scholar ] [ CrossRef ]
  • Makkonen, T.; Tirri, K.; Lavonen, J. Engagement in Learning Physics Through Project-Based Learning: A Case Study of Gifted Finnish Upper-Secondary-Level Students. J. Adv. Acad. 2021 , 32 , 501–532. [ Google Scholar ] [ CrossRef ]
  • Moust, J.; Bouhuijs, P.; Schmidt, H. Introduction to Problem-Based Learning ; Routledge: London, UK, 2021. [ Google Scholar ]
  • Moust, J.H.C.; Berkel, H.J.M.V.; Schmidt, H.G. Signs of Erosion: Reflections on Three Decades of Problem-based Learning at Maastricht University. High. Educ. 2005 , 50 , 665–683. [ Google Scholar ] [ CrossRef ]
  • Polanco, R.; Calderón, P.; Delgado, F. Effects of a problem-based learning program on engineering students’ academic achievements in a Mexican university. Innov. Educ. Teach. Int. 2004 , 41 , 145–155. [ Google Scholar ] [ CrossRef ]
  • Bobroff, J.; Bouquet, F. A project-based course about outreach in a physics curriculum. Eur. J. Phys. 2016 , 37 , 045704. [ Google Scholar ] [ CrossRef ]
  • Lämsä, J.; Hämäläinen, R.; Koskinen, P.; Viiri, J. Visualising the temporal aspects of collaborative inquiry-based learning processes in technology-enhanced physics learning. Int. J. Sci. Educ. 2018 , 40 , 1697–1717. [ Google Scholar ] [ CrossRef ]
  • Anderson, J. Effect of Problem-Based Learning on Knowledge Acquisition, Knowledge Retention, and Critical Thinking Ability of Agriculture Students in Urban Schools. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 2007. [ Google Scholar ]
  • Tiwari, A.; Lai, P.; So, M.; Yuen, K. A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med. Educ. 2006 , 40 , 547–554. [ Google Scholar ] [ CrossRef ]
  • Liu, M.; Liu, S.; Pan, Z.; Zou, W.; Li, C. Examining science learning and attitude by at-risk students after they used a multimedia-enriched problem-based learning environment. Interdiscip. J. Probl.-Based Learn. 2019 , 13 , 6. [ Google Scholar ] [ CrossRef ]
  • Herliana, F.; Farhan, A.; Elisa; Syukri, M.; Mahzum, E. Perception of Novice Learners Using Blended Learning Approach During the Covid-19 Pandemic. J. Phys. Conf. Ser. 2021 , 2019 , 012032. [ Google Scholar ] [ CrossRef ]
  • Ajai, J.; Imoko, B. Gender Differences in Mathematics Achievement and Retention Scores: A Case of Problem-Based Learning Method. Int. J. Res. Educ. Sci. 2014 , 1 , 45. [ Google Scholar ] [ CrossRef ]
  • Ali , A.H.; Rubani, S.N.K. Problem-Based Learning in Physics Education: A Study on Engineering Students. Available online: https://core.ac.uk/reader/12007261 (accessed on 15 December 2023).
  • Heng, L.K.; Mansor, Y. Impact of information literacy training on academic self-efficacy and learning performance of university students in a problem-based learning environment. Pertanika J. Soc. Sci. Humanit. 2010 , 18 , 121–134. [ Google Scholar ]
  • Pawlak, A.; Irving, P.W.; Caballero, M.D. Learning assistant approaches to teaching computational physics problems in a problem-based learning course. Phys. Rev. Phys. Educ. Res. 2020 , 16 , 010139. [ Google Scholar ] [ CrossRef ]
  • Celik, P.; Onder, F.; Silay, I. The effects of problem-based learning on the students’ success in physics course. Procedia—Soc. Behav. Sci. 2011 , 28 , 656–660. [ Google Scholar ] [ CrossRef ]
  • Ojaleye, O.; Awofala, A.O. Blended Learning and Problem-Based Learning Instructional Strategies as Determinants of Senior Secondary School Students’ Achievement in Algebra. Int. J. Res. Educ. Sci. 2018 , 4 , 486–501. [ Google Scholar ] [ CrossRef ]
  • Ali, S.S. Problem based learning: A student-centered approach. Engl. Lang. Teach. 2019 , 12 , 73–78. [ Google Scholar ] [ CrossRef ]
  • Wilder, S. Impact of problem-based learning on academic achievement in high school: A systematic review. Educ. Rev. 2015 , 67 , 414–435. [ Google Scholar ] [ CrossRef ]
  • Kartal Tasoğlu, A.; Bakaç, M. The Effect of Problem Based Learning Approach on Conceptual Understanding in Teaching of Magnetism Topics. Int. J. Phys. Chem. Educ. 2014 , 6 , 110–122. [ Google Scholar ]
  • Becerra-Labra, C.; Gras-Martí, A.; Torregrosa, J.M. Effects of a Problem-based Structure of Physics Contents on Conceptual Learning and the Ability to Solve Problems. Int. J. Sci. Educ. 2012 , 34 , 1235–1253. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Marcinauskas, L.; Iljinas, A.; Čyvienė, J.; Stankus, V. Problem-Based Learning versus Traditional Learning in Physics Education for Engineering Program Students. Educ. Sci. 2024 , 14 , 154. https://doi.org/10.3390/educsci14020154

Marcinauskas L, Iljinas A, Čyvienė J, Stankus V. Problem-Based Learning versus Traditional Learning in Physics Education for Engineering Program Students. Education Sciences . 2024; 14(2):154. https://doi.org/10.3390/educsci14020154

Marcinauskas, Liutauras, Aleksandras Iljinas, Jurgita Čyvienė, and Vytautas Stankus. 2024. "Problem-Based Learning versus Traditional Learning in Physics Education for Engineering Program Students" Education Sciences 14, no. 2: 154. https://doi.org/10.3390/educsci14020154

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

EurekAlert! Science News

  • News Releases

Auburn University secures two NSF grants to transform physics education

Auburn University Department of Physics

Auburn University’s Department of Physics has been awarded two significant National Science Foundation (NSF) grants, marking a major step toward transforming physics education across all levels—from introductory courses to graduate studies. The grants, led by Assistant Professor Eric Burkholder, a specialist in Physics Education Research, aim to close the gap between traditional physics instruction and the complex problem-solving skills needed for real-world scientific challenges.

The cornerstone of these projects is the recognition that traditional methods of teaching physics—while effective in conveying foundational concepts—often fall short in preparing students to tackle the kind of unsolved, complex problems they will face in their careers. “We need to start training physics students to solve problems with no known solution and no known way of arriving at that solution,” said Prof. Burkholder. “Our current teaching has them practice skills that are rapidly being replaced by AI.”

This revolutionary approach includes a comprehensive study of how both students and faculty perceive scientific problem-solving in the classroom, and how these perceptions can be better aligned with the demands of real-world physics. The research will also involve the development of new tools to reliably measure students' problem-solving abilities in practical, real-world contexts. These tools will then be used to transform the physics curriculum, ensuring that students are better equipped for the challenges of their future careers.

The project is a collaborative effort involving multiple faculty members within Auburn University’s Department of Physics, all dedicated to enhancing both undergraduate and graduate education. By bringing together students and practicing physicists, the initiative aims to create a dynamic environment where academic learning meets practical application, providing a more holistic educational experience.

While this initiative is of utmost importance to Auburn University, it also holds significant implications for the broader scientific community and the field of physics education. By pioneering new ways of teaching problem-solving skills, Auburn University is positioning itself at the forefront of educational innovation, with the potential to influence physics curricula nationwide.

Prof. Burkholder’s work not only promises to elevate the standard of physics education at Auburn but also aims to set a new benchmark for educational practices across the country. “Teaching physics is often far removed from doing physics,” Burkholder noted. “We seek to bridge this gap and ensure that our students are not just learning physics but are learning how to think and act like physicists.”

To highlight this groundbreaking work, Auburn University plans to capture the spirit of collaboration and innovation through a team photograph of the faculty and students involved. This image will serve as a powerful visual representation of the collective effort to advance physics education and will be featured prominently in the press release.

About Auburn University’s Department of Physics

Auburn University’s Department of Physics is dedicated to advancing the frontiers of knowledge through research and education, with a strong emphasis on both theoretical and applied physics. The department offers a wide range of undergraduate and graduate programs designed to prepare students for successful careers in academia, industry, and beyond. This new NSF-funded initiative will also create exciting opportunities for prospective graduate students who are passionate about improving physics education, inviting them to join Auburn’s PhD program where they will have the chance to contribute to groundbreaking research and help shape the future of physics education.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

  • DOI: 10.52902/kjsc.2024.28.121
  • Corpus ID: 269039411

Correlation between Communication Competence, Problem-Solving Skills, Clinical Competence, and Critical Thinking Competence on Person-Centered Care Competence of Nursing Students in who Experienced Clinical Practice

  • Mi Young Moon
  • Published in Forum of Public Safety and… 30 March 2024
  • Education, Medicine

Related Papers

Showing 1 through 3 of 0 Related Papers

IMAGES

  1. Problem Solving Part I and II:

    problem solving method of teaching physical science

  2. EDUCATION NETWORK: Methods Of Teaching science-Problem solving method

    problem solving method of teaching physical science

  3. Students Problem Solving

    problem solving method of teaching physical science

  4. problem solving method in teaching

    problem solving method of teaching physical science

  5. 36 Problem-solving techniques, methods and tools

    problem solving method of teaching physical science

  6. Teaching problem-solving through science

    problem solving method of teaching physical science

VIDEO

  1. How to Solve 2D Kinematics Problems

  2. E-learning /learning and teaching/ physical science pedagogy

  3. Module 2. 1 Maths Problem Solving

  4. How To Solve Any Science Problem

  5. Aims and Objectives of teaching physical science || Bloom's Taxonomy || B. Ed || Short Notes ||

  6. Problem Solving Method // for all teaching subjects

COMMENTS

  1. PDF An Overview of Problem Solving Studies in Physics Education

    3. Discussion and Conclusion. The aim of this study is to present an overview problem solving studies in Physics Education. When the studies on problem solving in physics teaching are examined in the literature, it is observed that some of the studies are related to the factors affecting problem solving performance.

  2. PDF Teaching Introductory Physical Science Through Problem Solving

    Appropriate Problems for Problem Solving The problems must be challenging enough so there is a real advantage to using problem solving heuristics. 1. The problem must be complex enough so the best student in the class is not certain how to solve it. The problem must be simple enough so that the solution, once arrived at, can be understood and ...

  3. PDF Teaching Physics Through Problem Solving

    The problems must be challenging enough so there is a real advantage to using problem solving heuristics. 1. The problem must be complex enough so the best student in the class is not certain how to solve it. The problem must be simple enough so that the solution, once arrived at, can be understood and appreciated.

  4. Teaching and learning problem solving in science. Part I: A general

    Non‐algorithmic quantitative problem solving in university physical chemistry: a correlation study of the role of selective cognitive factors. Research in Science & Technological Education 2005 , 23 (2) , 125-148.

  5. Conceptual problem solving in high school physics

    Physical Review Physics Education Research ... and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the ...

  6. Problem Solving in Science Learning

    The traditional teaching of science problem solving involves a considerable amount of drill and practice. Research suggests that these practices do not lead to the development of expert-like problem-solving strategies and that there is little correlation between the number of problems solved (exceeding 1,000 problems in one specific study) and the development of a conceptual understanding.

  7. On the teaching and learning of physics problem solving

    The proposed strategy includes the following steps: 1. Understand the problem, 2. Provide a qualitative description of the problem, 3. Plan a solution, 4. Carry out the plan, 5. Verify the ...

  8. [PDF] The Impact of Problem-Solving Instruction on Middle School

    The purpose of this study is to explore the impact of problem solving instruction on 126 middle school students' learning of physical science in terms of their scientific knowledge, scientific concept dependent reasoning and problem solving ability. This study used a quasi-experiment with one factorial design of instructional approaches (problem solving and traditional hands-on learning ...

  9. Teaching Science Problem Solving: An Overview of Experimental Work

    In their paper "Teaching Science Problem Solving: An Overview of Experimental Work" (Journal of Research in Science Teaching 2001, 38, 442-468), Taconis, Ferguson-Hessler, and Broekkamp present a meta-analysis of results from 40 quantitative studies of problem solving and identify strategies that proved to be effective in developing problem-solving abilities in science students.

  10. PDF The problem-solving method: Efficacy for learning and motivation in the

    Conclusions: The problem-solving method is an ecient strategy for motor s kills and performance enhancement, as well as motivation development during physical education courses. KEYWORDS. problem ...

  11. PDF Effective teaching methods —Project-based learning in physics

    Abstract: The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project.

  12. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  13. A STUDY OF PROBLEM SOLVING IN PHYSICS LEARNING: A ...

    One. of the 25 articles also revealed some difficulties for students in solving problems in physics: 1) Students were less able to relate physics concepts, 2) Students were less systematic, paid ...

  14. STEM Problem Solving: Inquiry, Concepts, and Reasoning

    Balancing disciplinary knowledge and practical reasoning in problem solving is needed for meaningful learning. In STEM problem solving, science subject matter with associated practices often appears distant to learners due to its abstract nature. Consequently, learners experience difficulties making meaningful connections between science and their daily experiences. Applying Dewey's idea of ...

  15. PDF Active learning strategies in physics teaching

    When active learning is carried out, simulations, discussions, student presentations, games, role-plays, flip charts and handouts are basic elements of physics lessons. Meyers & Jones have maintained that the active learning consists of three factors, which are interrelated [2]. These are: basic elements; learning strategies; and teaching ...

  16. The Problem Solving Method in Teaching Physics in Elementary School

    An investigation has been carried out to compare the effect of teaching selected physics topics using problem‐solving method on the overall achievements of the acquired knowledge and teaching the same material by traditional teaching method. ... ORGANIZED BY THE HELLENIC PHYSICAL SOCIETY WITH THE COOPERATION OF THE PHYSICS DEPARTMENTS OF ...

  17. Essential teaching methods to enhance learner ...

    It is important to create conducive conditions for learning and teaching in physical sciences, and continue to progressively and within available resources, realise that collaboration, problem-solving and hands-on activities are effective teaching methods to improve learner academic achievement.,The learners should be able to solve problems ...

  18. Teaching Creativity and Inventive Problem Solving in Science

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known ...

  19. A Detailed Characterization of the Expert Problem-Solving Process in

    A primary goal of science and engineering (S&E) education is to produce good problem solvers, but how to best teach and measure the quality of problem solving remains unclear. The process is complex, multifaceted, and not fully characterized. Here, we present a detailed characterization of the S&E problem-solving process as a set of specific interlinked decisions. This framework of decisions ...

  20. PhysPort Teaching Methods and Materials

    The level of research validation for a teaching method is determined by how many of the following categories of research have been done on the method: Categories of research validation: Based on Research Into: theories of how students learn; student ideas about specific topics; Demonstrated to Improve: conceptual understanding; problem-solving ...

  21. 1.5: Teaching the Scientific Method

    Teaching the Scientific Method to K-5th Graders. The scientific method is a fundamental process in science that helps students understand how scientists investigate and learn about the world. Teaching this method to K-5th graders involves breaking down complex concepts into simpler, engaging activities that foster curiosity and critical thinking.

  22. Frontiers

    Objectives: The purpose of this study is to compare the effects of the problem-solving method vs. the traditional method on motivation and learning during physical education courses. Methods: Fifty-three students ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study, and ...

  23. Education Sciences

    Problem-based learning (PBL) is an educational method which involves learning by solving real problems. However, applying a PBL approach to engineering subjects in some cases became a challenging issue. Thus, it is important to determine the best ways in which engineering students can learn physics more effectively and solve problems relevant to their daily lives. The main aim of this study ...

  24. Problem-Solving Method of Teaching|Physical & Life Science|B ...

    Problem-Solving Method of Teaching|Physical & Life Science|B.Ed, B.El.Ed |Sunita Mam|Darvesh Classes pedagogy by sunita mam | physical science | life science...

  25. Auburn University secures two NSF grants to t

    Auburn University's Department of Physics has received two NSF grants to revolutionize physics education, led by Assistant Professor Eric Burkholder. The grants aim to enhance problem-solving ...

  26. Correlation between Communication Competence, Problem-Solving Skills

    It is necessary to induce nursing students to use a lot of volunteer programs in order to increase their person-centered care competence, and it is necessary to develop and actively guide convergence extracurricular activities linked to subjects. Purpose: This study is a descriptive research study conducted to identify the relationship and influencing factors between communication competence ...