Multiple assignment in Python: Assign multiple values or the same value to multiple variables

In Python, the = operator is used to assign values to variables.

You can assign values to multiple variables in one line.

Assign multiple values to multiple variables

Assign the same value to multiple variables.

You can assign multiple values to multiple variables by separating them with commas , .

You can assign values to more than three variables, and it is also possible to assign values of different data types to those variables.

When only one variable is on the left side, values on the right side are assigned as a tuple to that variable.

If the number of variables on the left does not match the number of values on the right, a ValueError occurs. You can assign the remaining values as a list by prefixing the variable name with * .

For more information on using * and assigning elements of a tuple and list to multiple variables, see the following article.

  • Unpack a tuple and list in Python

You can also swap the values of multiple variables in the same way. See the following article for details:

  • Swap values ​​in a list or values of variables in Python

You can assign the same value to multiple variables by using = consecutively.

For example, this is useful when initializing multiple variables with the same value.

After assigning the same value, you can assign a different value to one of these variables. As described later, be cautious when assigning mutable objects such as list and dict .

You can apply the same method when assigning the same value to three or more variables.

Be careful when assigning mutable objects such as list and dict .

If you use = consecutively, the same object is assigned to all variables. Therefore, if you change the value of an element or add a new element in one variable, the changes will be reflected in the others as well.

If you want to handle mutable objects separately, you need to assign them individually.

after c = []; d = [] , c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object to both c and d .) 3. Data model — Python 3.11.3 documentation

You can also use copy() or deepcopy() from the copy module to make shallow and deep copies. See the following article.

  • Shallow and deep copy in Python: copy(), deepcopy()

Related Categories

Related articles.

  • NumPy: arange() and linspace() to generate evenly spaced values
  • Chained comparison (a < x < b) in Python
  • pandas: Get first/last n rows of DataFrame with head() and tail()
  • pandas: Filter rows/columns by labels with filter()
  • Get the filename, directory, extension from a path string in Python
  • Sign function in Python (sign/signum/sgn, copysign)
  • How to flatten a list of lists in Python
  • None in Python
  • Create calendar as text, HTML, list in Python
  • NumPy: Insert elements, rows, and columns into an array with np.insert()
  • Shuffle a list, string, tuple in Python (random.shuffle, sample)
  • Add and update an item in a dictionary in Python
  • Cartesian product of lists in Python (itertools.product)
  • Remove a substring from a string in Python
  • pandas: Extract rows that contain specific strings from a DataFrame

Python Tutorial

File handling, python modules, python numpy, python pandas, python matplotlib, python scipy, machine learning, python mysql, python mongodb, python reference, module reference, python how to, python examples, python variables - assign multiple values, many values to multiple variables.

Python allows you to assign values to multiple variables in one line:

Note: Make sure the number of variables matches the number of values, or else you will get an error.

One Value to Multiple Variables

And you can assign the same value to multiple variables in one line:

Unpack a Collection

If you have a collection of values in a list, tuple etc. Python allows you to extract the values into variables. This is called unpacking .

Unpack a list:

Learn more about unpacking in our Unpack Tuples Chapter.

Video: Python Variable Names

Python Tutorial on YouTube

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

  • Python »
  • 3.12.6 Documentation »
  • The Python Language Reference »
  • 7. Simple statements
  • Theme Auto Light Dark |

7. Simple statements ¶

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is:

7.1. Expression statements ¶

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a function that returns no meaningful result; in Python, procedures return the value None ). Other uses of expression statements are allowed and occasionally useful. The syntax for an expression statement is:

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None , it is converted to a string using the built-in repr() function and the resulting string is written to standard output on a line by itself (except if the result is None , so that procedure calls do not cause any output.)

7.2. Assignment statements ¶

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

(See section Primaries for the syntax definitions for attributeref , subscription , and slicing .)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy ).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as follows.

If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that target.

If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be an iterable with at least as many items as there are targets in the target list, minus one. The first items of the iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned to the starred target (the list can be empty).

Else: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

If the name does not occur in a global or nonlocal statement in the current code block: the name is bound to the object in the current local namespace.

Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by nonlocal , respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not necessarily AttributeError ).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator, the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a class attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

This description does not necessarily apply to descriptor attributes, such as properties created with property() .

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2] :

The specification for the *target feature.

7.2.1. Augmented assignment statements ¶

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the result to the original target. The target is only evaluated once.

An augmented assignment statement like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed in-place , meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For example, a[i] += f(x) first looks-up a[i] , then it evaluates f(x) and performs the addition, and lastly, it writes the result back to a[i] .

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assignments.

7.2.2. Annotated assignment statements ¶

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement:

The difference from normal Assignment statements is that only a single target is allowed.

The assignment target is considered “simple” if it consists of a single name that is not enclosed in parentheses. For simple assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution, if annotations are found statically.

If the assignment target is not simple (an attribute, subscript node, or parenthesized name), the annotation is evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations (where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target except for the last __setitem__() or __setattr__() call.

The proposal that added syntax for annotating the types of variables (including class variables and instance variables), instead of expressing them through comments.

The proposal that added the typing module to provide a standard syntax for type annotations that can be used in static analysis tools and IDEs.

Changed in version 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3. The assert statement ¶

Assert statements are a convenient way to insert debugging assertions into a program:

The simple form, assert expression , is equivalent to

The extended form, assert expression1, expression2 , is equivalent to

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when optimization is requested (command line option -O ). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4. The pass statement ¶

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed, for example:

7.5. The del statement ¶

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

7.6. The return statement ¶

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None ) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous generator function.

7.7. The yield statement ¶

A yield statement is semantically equivalent to a yield expression . The yield statement can be used to omit the parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

are equivalent to the yield expression statements

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8. The raise statement ¶

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the active exception . If there isn’t currently an active exception, a RuntimeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of BaseException . If it is a class, the exception instance will be obtained when needed by instantiating the class with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the __traceback__ attribute. You can create an exception and set your own traceback in one step using the with_traceback() exception method (which returns the same exception instance, with its traceback set to its argument), like so:

The from clause is used for exception chaining: if given, the second expression must be another exception class or instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception instance will be attached to the raised exception as the __cause__ attribute. If the raised exception is not handled, both exceptions will be printed:

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An exception may be handled when an except or finally clause, or a with statement, is used. The previous exception is then attached as the new exception’s __context__ attribute:

Exception chaining can be explicitly suppressed by specifying None in the from clause:

Additional information on exceptions can be found in section Exceptions , and information about handling exceptions is in section The try statement .

Changed in version 3.3: None is now permitted as Y in raise X from Y .

Added the __suppress_context__ attribute to suppress automatic display of the exception context.

Changed in version 3.11: If the traceback of the active exception is modified in an except clause, a subsequent raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback it had when it was caught.

7.9. The break statement ¶

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break , the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the loop.

7.10. The continue statement ¶

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed before really starting the next loop cycle.

7.11. The import statement ¶

The basic import statement (no from clause) is executed in two steps:

find a module, loading and initializing it if necessary

define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system , which also describes the various types of packages and modules that can be imported, as well as all the hooks that can be used to customize the import system. Note that failures in this step may indicate either that the module could not be located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:

If the module name is followed by as , then the name following as is bound directly to the imported module.

If no other name is specified, and the module being imported is a top level module, the module’s name is bound in the local namespace as a reference to the imported module

If the module being imported is not a top level module, then the name of the top level package that contains the module is bound in the local namespace as a reference to the top level package. The imported module must be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

find the module specified in the from clause, loading and initializing it if necessary;

for each of the identifiers specified in the import clauses:

check if the imported module has an attribute by that name

if not, attempt to import a submodule with that name and then check the imported module again for that attribute

if the attribute is not found, ImportError is raised.

otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is present, otherwise using the attribute name

If the list of identifiers is replaced by a star ( '*' ), all public names defined in the module are bound in the local namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named __all__ ; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not begin with an underscore character ( '_' ). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to use it in class or function definitions will raise a SyntaxError .

When specifying what module to import you do not have to specify the absolute name of the module. When a module or package is contained within another package it is possible to make a relative import within the same top package without having to mention the package name. By using leading dots in the specified module or package after from you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means the current package where the module making the import exists. Two dots means up one package level. Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up importing pkg.mod . If you execute from ..subpkg2 import mod from within pkg.subpkg1 you will import pkg.subpkg2.mod . The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to be loaded.

Raises an auditing event import with arguments module , filename , sys.path , sys.meta_path , sys.path_hooks .

7.11.1. Future statements ¶

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

the module docstring (if any),

blank lines, and

other future statements.

The only feature that requires using the future statement is annotations (see PEP 563 ).

All historical features enabled by the future statement are still recognized by Python 3. The list includes absolute_import , division , generators , generator_stop , unicode_literals , print_function , nested_scopes and with_statement . They are all redundant because they are always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are often implemented by generating different code. It may even be the case that a new feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__ , described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled by optional arguments to compile() — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it will be in effect in the interactive session started after the script is executed.

The original proposal for the __future__ mechanism.

7.12. The global statement ¶

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global , although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or except clauses, or in a for target list, class definition, function definition, import statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global statement. In particular, a global statement contained in a string or code object supplied to the built-in exec() function does not affect the code block containing the function call, and code contained in such a string is unaffected by global statements in the code containing the function call. The same applies to the eval() and compile() functions.

7.13. The nonlocal statement ¶

When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a variable is used or assigned to prior to its nonlocal declaration in the scope.

The specification for the nonlocal statement.

Programmer’s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the note for the global statement.

7.14. The type statement ¶

The type statement declares a type alias, which is an instance of typing.TypeAliasType .

For example, the following statement creates a type alias:

This code is roughly equivalent to:

annotation-def indicates an annotation scope , which behaves mostly like a function, but with several small differences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but only when the value is accessed through the type alias’s __value__ attribute (see Lazy evaluation ). This allows the type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.

type is a soft keyword .

Added in version 3.12.

Introduced the type statement and syntax for generic classes and functions.

Table of Contents

  • 7.1. Expression statements
  • 7.2.1. Augmented assignment statements
  • 7.2.2. Annotated assignment statements
  • 7.3. The assert statement
  • 7.4. The pass statement
  • 7.5. The del statement
  • 7.6. The return statement
  • 7.7. The yield statement
  • 7.8. The raise statement
  • 7.9. The break statement
  • 7.10. The continue statement
  • 7.11.1. Future statements
  • 7.12. The global statement
  • 7.13. The nonlocal statement
  • 7.14. The type statement

Previous topic

6. Expressions

8. Compound statements

  • Report a Bug
  • Show Source

Multiple Assignment Syntax in Python

  • python-tricks

The multiple assignment syntax, often referred to as tuple unpacking or extended unpacking, is a powerful feature in Python. There are several ways to assign multiple values to variables at once.

Let's start with a first example that uses extended unpacking . This syntax is used to assign values from an iterable (in this case, a string) to multiple variables:

a : This variable will be assigned the first element of the iterable, which is 'D' in the case of the string 'Devlabs'.

*b : The asterisk (*) before b is used to collect the remaining elements of the iterable (the middle characters in the string 'Devlabs') into a list: ['e', 'v', 'l', 'a', 'b']

c : This variable will be assigned the last element of the iterable: 's'.

The multiple assignment syntax can also be used for numerous other tasks:

Swapping Values

This swaps the values of variables a and b without needing a temporary variable.

Splitting a List

first will be 1, and rest will be a list containing [2, 3, 4, 5] .

Assigning Multiple Values from a Function

This assigns the values returned by get_values() to x, y, and z.

Ignoring Values

Here, you're ignoring the first value with an underscore _ and assigning "Hello" to the important_value . In Python, the underscore is commonly used as a convention to indicate that a variable is being intentionally ignored or is a placeholder for a value that you don't intend to use.

Unpacking Nested Structures

This unpacks a nested structure (Tuple in this example) into separate variables. We can use similar syntax also for Dictionaries:

In this case, we first extract the 'person' dictionary from data, and then we use multiple assignment to further extract values from the nested dictionaries, making the code more concise.

Extended Unpacking with Slicing

first will be 1, middle will be a list containing [2, 3, 4], and last will be 5.

Split a String into a List

*split, is used for iterable unpacking. The asterisk (*) collects the remaining elements into a list variable named split . In this case, it collects all the characters from the string.

The comma , after *split is used to indicate that it's a single-element tuple assignment. It's a syntax requirement to ensure that split becomes a list containing the characters.

Mastering Multiple Variable Assignment in Python

Python's ability to assign multiple variables in a single line is a feature that exemplifies the language's emphasis on readability and efficiency. In this detailed blog post, we'll explore the nuances of assigning multiple variables in Python, a technique that not only simplifies code but also enhances its readability and maintainability.

Introduction to Multiple Variable Assignment

Python allows the assignment of multiple variables simultaneously. This feature is not only a syntactic sugar but a powerful tool that can make your code more Pythonic.

What is Multiple Variable Assignment?

  • Simultaneous Assignment : Python enables the initialization of several variables in a single line, thereby reducing the number of lines of code and making it more readable.
  • Versatility : This feature can be used with various data types and is particularly useful for unpacking sequences.

Basic Multiple Variable Assignment

The simplest form of multiple variable assignment in Python involves assigning single values to multiple variables in one line.

Syntax and Examples

Parallel Assignment : Assign values to several variables in parallel.

  • Clarity and Brevity : This form of assignment is clear and concise.
  • Efficiency : Reduces the need for multiple lines when initializing several variables.

Unpacking Sequences into Variables

Python takes multiple variable assignment a step further with unpacking, allowing the assignment of sequences to individual variables.

Unpacking Lists and Tuples

Direct Unpacking : If you have a list or tuple, you can unpack its elements into individual variables.

Unpacking Strings

Character Assignment : You can also unpack strings into variables with each character assigned to one variable.

Using Underscore for Unwanted Values

When unpacking, you may not always need all the values. Python allows the use of the underscore ( _ ) as a placeholder for unwanted values.

Ignoring Unnecessary Values

Discarding Values : Use _ for values you don't intend to use.

Swapping Variables Efficiently

Multiple variable assignment can be used for an elegant and efficient way to swap the values of two variables.

Swapping Variables

No Temporary Variable Needed : Swap values without the need for an additional temporary variable.

Advanced Unpacking Techniques

Python provides even more advanced ways to handle multiple variable assignments, especially useful with longer sequences.

Extended Unpacking

Using Asterisk ( * ): Python 3 introduced a syntax for extended unpacking where you can use * to collect multiple values.

Best Practices and Common Pitfalls

While multiple variable assignment is a powerful feature, it should be used judiciously.

  • Readability : Ensure that your use of multiple variable assignments enhances, rather than detracts from, readability.
  • Matching Lengths : Be cautious of the sequence length. The number of elements must match the number of variables being assigned.

Multiple variable assignment in Python is a testament to the language’s design philosophy of simplicity and elegance. By understanding and effectively utilizing this feature, you can write more concise, readable, and Pythonic code. Whether unpacking sequences or swapping values, multiple variable assignment is a technique that can significantly improve the efficiency of your Python programming.


On-line Guides

How To Guides

  




 

 

  Chapter 6. Variables, Assignment and Input  

Multiple Assignment Statement

The basic assignment statement does more than assign the result of a single expression to a single variable. The assignment satement also copes nicely with assigning multiple variables at one time. The left and right side must have the same number of elements. For example, the following script has several examples of multiple assignment.

Example 6.7. line.py

When we run this program, we get the following output

We set variables x1 , y1 , x2 and y2 . Then we computed m and b from those four variables. Then we printed the m and b .

The basic rule is that Python evaluates the entire right-hand side of the = statement. Then it matches values with destinations on the left-hand side. If the lists are different lengths, an exception is raised and the program stops.

Because of the complete evaluation of the right-hand side, the following construct works nicely to swap to variables. This is often quite a bit more complicated in other languages.

We'll return to this in Chapter 13, Tuples , where we'll see additional uses for this feature.

   
Input Functions   The Statement

multiple assignment statement python

  Published under the terms of the Open Publication License   

The Walrus Operator: Python's Assignment Expressions

The Walrus Operator: Python's Assignment Expressions

Table of Contents

Hello, Walrus!

Implementation, lists and dictionaries, list comprehensions, while loops, witnesses and counterexamples, walrus operator syntax, walrus operator pitfalls.

Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Python Assignment Expressions and Using the Walrus Operator

Each new version of Python adds new features to the language. Back when Python 3.8 was released, the biggest change was the addition of assignment expressions . Specifically, the := operator gave you a new syntax for assigning variables in the middle of expressions. This operator is colloquially known as the walrus operator .

This tutorial is an in-depth introduction to the walrus operator. You’ll learn some of the motivations for the syntax update and explore examples where assignment expressions can be useful.

In this tutorial, you’ll learn how to:

  • Identify the walrus operator and understand its meaning
  • Understand use cases for the walrus operator
  • Avoid repetitive code by using the walrus operator
  • Convert between code using the walrus operator and code using other assignment methods
  • Use appropriate style in your assignment expressions

Note that all walrus operator examples in this tutorial require Python 3.8 or later to work.

Get Your Code: Click here to download the free sample code that shows you how to use Python’s walrus operator.

Take the Quiz: Test your knowledge with our interactive “The Walrus Operator: Python's Assignment Expressions” quiz. You’ll receive a score upon completion to help you track your learning progress:

Interactive Quiz

In this quiz, you'll test your understanding of the Python Walrus Operator. This operator was introduced in Python 3.8, and understanding it can help you write more concise and efficient code.

Walrus Operator Fundamentals

First, look at some different terms that programmers use to refer to this new syntax. You’ve already seen a few in this tutorial.

The := operator is officially known as the assignment expression operator . During early discussions, it was dubbed the walrus operator because the := syntax resembles the eyes and tusks of a walrus lying on its side. You may also see the := operator referred to as the colon equals operator . Yet another term used for assignment expressions is named expressions .

To get a first impression of what assignment expressions are all about, start your REPL and play around with the following code:

Line 1 shows a traditional assignment statement where the value False is assigned to walrus . Next, on line 5, you use an assignment expression to assign the value True to walrus . After both lines 1 and 5, you can refer to the assigned values by using the variable name walrus .

You might be wondering why you’re using parentheses on line 5, and you’ll learn why the parentheses are needed later on in this tutorial .

Note: A statement in Python is a unit of code. An expression is a special statement that can be evaluated to some value.

For example, 1 + 2 is an expression that evaluates to the value 3 , while number = 1 + 2 is an assignment statement that doesn’t evaluate to a value. Although running the statement number = 1 + 2 doesn’t evaluate to 3 , it does assign the value 3 to number .

In Python, you often see simple statements like return statements and import statements , as well as compound statements like if statements and function definitions . These are all statements, not expressions.

There’s a subtle—but important—difference between the two types of assignments with the walrus variable. An assignment expression returns the value, while a traditional assignment doesn’t. You can see this in action when the REPL doesn’t print any value after walrus = False on line 1 but prints out True after the assignment expression on line 5.

You can see another important aspect about walrus operators in this example. Though it might look new, the := operator does not do anything that isn’t possible without it. It only makes certain constructs more convenient and can sometimes communicate the intent of your code more clearly.

Now you have a basic idea of what the := operator is and what it can do. It’s an operator used in assignment expressions, which can return the value being assigned, unlike traditional assignment statements. To get deeper and really learn about the walrus operator, continue reading to see where you should and shouldn’t use it.

Like most new features in Python, assignment expressions were introduced through a Python Enhancement Proposal (PEP). PEP 572 describes the motivation for introducing the walrus operator, the details of the syntax, and examples where the := operator can be used to improve your code.

This PEP was originally written by Chris Angelico in February 2018. Following some heated discussion, PEP 572 was accepted by Guido van Rossum in July 2018.

Since then, Guido announced that he was stepping down from his role as benevolent dictator for life (BDFL) . Since early 2019, the Python language has been governed by an elected steering council instead.

The walrus operator was implemented by Emily Morehouse , and made available in the first alpha release of Python 3.8.

In many languages, including C and its derivatives, assignment statements are also expressions. This can be both very powerful and a source of confusing bugs. For example, the following code is valid C but doesn’t execute as intended:

Here, if (x = y) will evaluate to true, and the code snippet will print out x and y are equal (x = 8, y = 8) . Is this the result you were expecting? You were trying to compare x and y . How did the value of x change from 3 to 8 ?

The problem is that you’re using the assignment operator ( = ) instead of the equality comparison operator ( == ). In C, x = y is an expression that evaluates to the value of y . In this example, x = y is evaluated as 8 , which is considered truthy in the context of the if statement.

Take a look at a corresponding example in Python. This code causes a SyntaxError :

Unlike the C example, this Python code gives you an explicit error instead of a bug.

The distinction between assignment statements and assignment expressions in Python is useful in order to avoid these kinds of hard-to-find bugs. PEP 572 argues that Python is better suited to having different syntax for assignment statements and expressions instead of turning the existing assignment statements into expressions.

One design principle underpinning the walrus operator is that there are no identical code contexts where both an assignment statement using the = operator and an assignment expression using the := operator would be valid. For example, you can’t do a plain assignment with the walrus operator:

In many cases, you can add parentheses ( () ) around the assignment expression to make it valid Python:

Writing a traditional assignment statement with = isn’t allowed inside such parentheses. This helps you catch potential bugs.

Later on in this tutorial , you’ll learn more about situations where the walrus operator isn’t allowed, but first you’ll learn about the situations where you might want to use it.

Walrus Operator Use Cases

In this section, you’ll see several examples where the walrus operator can simplify your code. A general theme in all these examples is that you’ll avoid different kinds of repetition:

  • Repeated function calls can make your code slower than necessary.
  • Repeated statements can make your code hard to maintain.
  • Repeated calls that exhaust iterators can make your code overly complex.

You’ll see how the walrus operator can help in each of these situations.

Arguably one of the best use cases for the walrus operator is when debugging complex expressions. Say that you want to find the distance between two locations along the earth’s surface. One way to do this is to use the haversine formula :

The haversine formula

ϕ represents the latitude, and λ represents the longitude of each location. To demonstrate this formula, you can calculate the distance between Oslo (59.9°N 10.8°E) and Vancouver (49.3°N 123.1°W) as follows:

As you can see, the distance from Oslo to Vancouver is just under 7,200 kilometers.

Note: Python source code is typically written using UTF-8 Unicode . This allows you to use Greek letters like ϕ and λ in your code, which may be useful when translating mathematical formulas. Wikipedia shows some alternatives for using Unicode on your system.

While UTF-8 is supported (in string literals, for instance), Python’s variable names use a more limited character set . For example, you can’t use emojis while naming your variables. That’s a good restriction !

Now, say that you need to double-check your implementation and want to see how much the haversine terms contribute to the final result. You could copy and paste the term from your main code to evaluate it separately. However, you could also use the := operator to give a name to the subexpression that you’re interested in:

The advantage of using the walrus operator here is that you calculate the value of the full expression and keep track of the value of ϕ_hav at the same time. This allows you to confirm that you didn’t introduce any errors while debugging.

Lists are powerful data structures in Python that often represent a series of related attributes. Similarly, dictionaries are used all over Python and are great for structuring information.

Sometimes when setting up these data structures, you end up performing the same operation several times. As a first example, calculate some basic descriptive statistics of a list of numbers and store them in a dictionary:

Note that both the sum and the length of the numbers list are calculated twice. The consequences are not too bad in this simple example, but if the list were larger or the calculations were more complicated, you might want to optimize the code. To do this, you can first move the function calls out of the dictionary definition:

The variables num_length and num_sum are only used to optimize the calculations inside the dictionary. By using the walrus operator, you can make this role clearer:

You’ve now defined num_length and num_sum inside the definition of description . This is a clear hint to anybody reading this code that these variables are just used to optimize these calculations and aren’t used again later.

Note: The scope of the num_length and num_sum variables is the same in the example with the walrus operator and in the example without. This means that in both examples, the variables are available after the definition of description .

Even though both examples are very similar functionally, a benefit of using the assignment expressions is that the := operator communicates the intent of these variables as throwaway optimizations.

In the next example, you’ll work with a bare-bones implementation of the wc utility for counting lines, words, and characters in a text file:

This script can read one or several text files and report how many lines, words, and characters each of them contains. Here’s a breakdown of what’s happening in the code:

  • Line 4 loops over each filename provided by the user. The sys.argv list contains each argument given on the command line, starting with the name of your script. For more information about sys.argv , you can check out Python Command Line Arguments .
  • Line 5 converts each filename string to a pathlib.Path object . Storing a filename in a Path object allows you to conveniently read the text file in the next lines.
  • Lines 6 to 10 construct a tuple of counts to represent the number of lines, words, and characters in one text file.
  • Line 7 reads a text file and calculates the number of lines by counting newlines.
  • Line 8 reads a text file and calculates the number of words by splitting on whitespace.
  • Line 9 reads a text file and calculates the number of characters by finding the length of the string.
  • Line 11 prints all three counts together with the filename to the console. The *counts syntax unpacks the counts tuple. In this case, the print() statement is equivalent to print(counts[0], counts[1], counts[2], path) .

To see wc.py in action, you can use the script on itself as follows:

In other words, the wc.py file consists of 11 lines, 32 words, and 307 characters.

If you look closely at this implementation, then you’ll notice that it’s far from optimal. In particular, it repeats the call to path.read_text() three times. That means that the program reads each text file three times. You can use the walrus operator to avoid the repetition:

You assign the contents of the file to text , which you reuse in the next two calculations. Note the placement of parentheses that help scope that text will refer to the text in the file and not the number of lines.

The program still functions the same, although the word and character counts have changed:

As in the earlier examples, an alternative approach is to define text before the definition of counts :

While this is one line longer than the previous implementation, it probably provides the best balance between readability and efficiency. The := assignment expression operator isn’t always the most readable solution even when it makes your code more concise.

List comprehensions are great for constructing and filtering lists. They clearly state the intent of the code and will usually run quite fast.

There’s one list comprehension use case where the walrus operator can be particularly useful. Say that you want to apply some computationally expensive function, slow() , to the elements in your list and filter on the resulting values. You could do something like the following:

Here, you filter the numbers list and leave the positive results from applying slow() . The problem with this code is that this expensive function is called twice.

A very common solution for this type of situation is rewriting your code to use an explicit for loop:

This will only call slow() once. Unfortunately, the code is now more verbose, and the intent of the code is harder to understand. The list comprehension had clearly signaled that you were creating a new list, while this is more hidden in the explicit for loop since several lines of code separate the list creation and the use of .append() . Additionally, a list comprehension runs faster than the repeated calls to .append() .

You can code some other solutions by using a filter() expression or a kind of double list comprehension:

The good news is that there’s only one call to slow() for each number. The bad news is that the code’s readability has suffered in both expressions.

Figuring out what’s actually happening in the double list comprehension takes a fair amount of head-scratching. Essentially, the second for statement is used only to give the name value to the return value of slow(num) . Fortunately, that sounds like something that you can accomplish with an assignment expression!

You can rewrite the list comprehension using the walrus operator as follows:

Note that the parentheses around value := slow(num) are required. This version is effective and readable, and it communicates the intent of the code well.

Note: You need to add the assignment expression on the if clause of the list comprehension. If you try to define value with the other call to slow() , then it won’t work:

This will raise a NameError because the if clause is evaluated before the expression at the beginning of the comprehension.

Next, look at a slightly more involved and practical example. Say that you want to use the Real Python feed to find the titles of the last episodes of the Real Python Podcast .

You can use the Real Python Feed Reader to download information about the latest Real Python publications. In order to find the podcast episode titles, you’ll use the third-party Parse package. Start by creating a virtual environment and installing both packages:

You can now read the latest titles published by Real Python:

Podcast titles start with "The Real Python Podcast" , so here you can create a pattern that Parse can use to identify them:

Compiling the pattern beforehand speeds up later comparisons, especially when you want to match the same pattern over and over. You can check if a string matches your pattern using either pattern.parse() or pattern.search() :

Note that Parse is able to pick out the podcast episode number and the episode name. The episode number is converted to an integer data type because you used the :d format specifier .

Time to get back to the task at hand. In order to list all the recent podcast titles, you need to check whether each string matches your pattern and then parse out the episode title. A first attempt may look something like this:

Though it works, you might notice the same problem you saw earlier. You’re parsing each title twice because you filter out titles that match your pattern and then use that same pattern to pick out the episode title.

Like you did earlier, you can avoid the double work by rewriting the list comprehension using either an explicit for loop or a double list comprehension. Using the walrus operator, however, is even more straightforward:

Assignment expressions work well to simplify these kinds of list comprehensions. They keep your code readable and save you from doing a potentially expensive operation twice.

Note: The Real Python Podcast has its own separate RSS feed , which you should use if you want to play around with information about the podcast only. You can get all the episode titles with the following code:

See The Real Python Podcast for options to listen to it using your podcast player.

In this section, you’ve focused on examples where you can rewrite list comprehensions using the walrus operator. The same principles also apply if you see that you need to repeat an operation in a dictionary comprehension , a set comprehension , or a generator expression .

The following example uses a generator expression to calculate the average length of episode titles that are over 50 characters long:

The generator expression uses an assignment expression to avoid calculating the length of each episode title twice.

Python has two different loop constructs: for loops and while loops . You typically use a for loop when you need to iterate over a known sequence of elements. A while loop, on the other hand, is for when you don’t know beforehand how many times you’ll need to repeat the loop.

In while loops, you need to define and check the ending condition at the top of the loop. This sometimes leads to some awkward code when you need to do some setup before performing the check. Here’s a snippet from a multiple-choice quiz program that asks the user to answer a question with one of several valid answers:

This works but has an unfortunate repetition of two identical input() lines. It’s necessary to get at least one answer from the user before checking whether it’s valid or not. You then have a second call to input() inside the while loop to ask for a second answer in case the original user_answer wasn’t valid.

If you want to make your code more maintainable, it’s quite common to rewrite this kind of logic with a while True loop. Instead of making the check part of the main while statement, the check is performed later in the loop together with an explicit break :

This has the advantage of avoiding the repetition. However, the actual check is now harder to spot.

Assignment expressions can simplify these kinds of loops. In this example, you can now put the check back together with while where it makes more sense:

The while statement is a bit denser, but the code now communicates the intent more clearly without repeated lines or seemingly infinite loops.

You can expand the box below to see the full code of the multiple-choice quiz program and try a couple of questions about the walrus operator yourself.

Full source code of multiple-choice quiz program Show/Hide

This script runs a multiple-choice quiz. You’ll be asked each of the questions in order, but the order of answers will be shuffled each time:

Note that the first answer is assumed to be the correct one, while the others serve as distractors. You can add more questions to the quiz yourself. Feel free to share your questions with the community in the comments section below the tutorial!

See Build a Quiz Application With Python if you want to dive deeper into using Python to quiz yourself or your friends. You can also quiz yourself on your knowledge of the walrus operator:

You can often simplify while loops by using assignment expressions. The original PEP shows an example from the standard library that makes the same point.

In the examples you’ve seen so far, the := assignment expression operator does essentially the same job as the = assignment operator in your old code. You’ve seen how to simplify code, and now you’ll learn about a different type of use case that this operator makes possible.

In this section, you’ll learn how you can find witnesses when calling any() by using a clever trick that isn’t immediately possible without using the walrus operator. A witness, in this context, is an element that satisfies the check and causes any() to return True .

By applying similar logic, you’ll also learn how you can find counterexamples when working with all() . A counterexample, in this context, is an element that doesn’t satisfy the check and causes all() to return False .

In order to have some data to work with, define the following list of city names:

You can use any() and all() to answer questions about your data:

In each of these cases, any() and all() give you plain True or False answers. What if you’re also interested in seeing an example or a counterexample of the city names? It could be nice to see what’s causing your True or False result:

Does any city name start with "B" ?

Yes, because "Berlin" starts with "B" .

Do all city names start with "B" ?

No, because "Oslo" doesn’t start with "B" .

In other words, you want a witness or a counterexample to justify the answer.

Capturing a witness to an any() expression has not been intuitive in earlier versions of Python. If you were calling any() on a list and then realized you also wanted a witness, you’d typically need to rewrite your code:

Here, you first capture all city names that start with "B" . Then, if there’s at least one such city name, you print out the first city name starting with "B" . Note that here you’re actually not using any() even though you’re doing a similar operation with the list comprehension.

By using the := operator, you can find witnesses directly in your any() expressions:

You can capture a witness inside the any() expression. The reason this works is a bit subtle and relies on any() and all() using short-circuit evaluation : they only check as many items as necessary to determine the result.

Note: If you want to check whether all city names start with the letter "B" , then you can look for a counterexample by replacing any() with all() and updating the print() functions to report the first item that doesn’t pass the check.

You can more clearly see what’s happening by wrapping .startswith("B") in a function that also prints out which item is being checked:

Note that any() doesn’t actually check all the items in cities . It only checks items until it finds one that satisfies the condition. Combining the := operator and any() works by iteratively assigning each item that is being checked to witness . However, only the last such item survives and shows which item was last checked by any() .

Even when any() returns False , a witness is found:

However, in this case, witness doesn’t give any insight. 'Belgrade' doesn’t contain ten or more characters. The witness only shows which item happened to be evaluated last.

One of the main reasons assignments weren’t expressions in Python from the beginning is that the visual similarity of the assignment operator ( = ) and the equality comparison operator ( == ) could potentially lead to bugs.

When introducing assignment expressions, the developers put a lot of thought into how to avoid similar bugs with the walrus operator. As mentioned earlier , one important feature is that the := operator is never allowed as a direct replacement for the = operator, and vice versa.

As you saw at the beginning of this tutorial, you can’t use a plain assignment expression to assign a value:

It’s syntactically legal to use an assignment expression to only assign a value, but you need to add parentheses:

Even though it’s possible, this is a prime example of where you should stay away from the walrus operator and use a traditional assignment statement instead.

PEP 572 shows several other examples where the := operator is either illegal or discouraged. The following examples all cause a SyntaxError :

In all these cases, you’re better served using = instead. The next examples are similar and are all legal code. However, the walrus operator doesn’t improve your code in any of these cases:

None of these examples make your code more readable. You should instead do the extra assignment separately by using a traditional assignment statement. See PEP 572 for more details about the reasoning.

There’s one use case where the := character sequence is already valid Python. In f-strings , you use a colon ( : ) to separate values from their format specification . For example:

The := in this case does look like a walrus operator, but the effect is quite different. To interpret x:=8 inside the f-string, the expression is broken into three parts: x , : , and =8 .

Here, x is the value, : acts as a separator, and =8 is a format specification. According to Python’s Format Specification Mini-Language , in this context = specifies an alignment option. In this case, the value is padded with spaces in a field of width 8 .

To use assignment expressions inside f-strings, you need to add parentheses:

This updates the value of x as expected. However, you’re probably better off using traditional assignments outside of your f-strings instead.

Now, look at some other situations where assignment expressions are illegal:

Attribute and item assignment: You can only assign to simple names, not dotted or indexed names:

This fails with a descriptive error message. There’s no straightforward workaround.

Iterable unpacking: You can’t unpack when using the walrus operator:

If you add parentheses around the whole expression, then Python will interpret it as a 3-tuple with the three elements lat , 59.9 , and 10.8 .

Augmented assignment: You can’t use the walrus operator combined with augmented assignment operators like += . This raises a SyntaxError :

The easiest workaround would be to do the augmentation explicitly. You could, for example, do (count := count + 1) . PEP 577 originally described how to add augmented assignment expressions to Python, but the proposal was withdrawn.

When you’re using the walrus operator, it’ll behave similarly to traditional assignment statements in many respects:

The scope of the assignment target is the same as for assignments. It’ll follow the LEGB rule . Typically, the assignment will happen in the local scope, but if the target name is already declared global or nonlocal , that declaration is honored.

The precedence of the walrus operator can cause some confusion. It binds less tightly than all other operators except the comma, so you might need parentheses to delimit the expression that you’re assigning. As an example, note what happens when you don’t use parentheses:

square is bound to the whole expression number ** 2 > 5 . In other words, square gets the value True and not the value of number ** 2 , which was the intention. In this case, you can delimit the expression with parentheses:

The parentheses make the if statement both clearer and actually correct.

There’s one final gotcha. When assigning a tuple using the walrus operator, you always need to use parentheses around the tuple. Compare the following assignments:

Note that in the second example, walrus takes the value 3.8 and not the whole tuple 3.8, True . That’s because the := operator binds more tightly than the comma. This may seem a bit annoying. However, if the := operator bound less tightly than the comma, then it wouldn’t be possible to use the walrus operator in function calls with more than one argument.

The style recommendations for the walrus operator are mostly the same as for the = operator used for assignment. First, always add spaces around the := operator in your code. Second, use parentheses around the expression as necessary, but avoid adding extra parentheses that you don’t need.

The general design of assignment expressions is to make them easy to use when they’re helpful but to avoid overusing them when they might clutter up your code.

The walrus operator is a newer syntax that’s only available in Python 3.8 and later. This means that any code you write that uses the := syntax will only work on these versions of Python.

If you need to support legacy versions of Python, then you can’t ship code that uses assignment expressions. As you’ve learned in this tutorial, you can always write code without the walrus operator and stay compatible with older versions.

Experience with the walrus operator indicates that := will not revolutionize Python. Instead, using assignment expressions where they’re useful can help you make several small improvements to your code that could benefit your work overall.

You’ll run into several situations where it’s possible for you to use the walrus operator, but it won’t necessarily improve the readability or efficiency of your code. In those cases, you’re better off writing your code in a more traditional manner.

You now know how the walrus operator works and how you can use it in your own code. By using the := syntax, you can avoid different kinds of repetition in your code and make your code both more efficient and easier to read and maintain. At the same time, you shouldn’t use assignment expressions everywhere. They’ll only help you in specific use cases.

In this tutorial, you learned how to:

To learn more about the details of assignment expressions, see PEP 572 . You can also check out the PyCon 2019 talk PEP 572: The Walrus Operator , where Dustin Ingram gives an overview of both the walrus operator and the discussion around the PEP.

🐍 Python Tricks 💌

Get a short & sweet Python Trick delivered to your inbox every couple of days. No spam ever. Unsubscribe any time. Curated by the Real Python team.

Python Tricks Dictionary Merge

About Geir Arne Hjelle

Geir Arne Hjelle

Geir Arne is an avid Pythonista and a member of the Real Python tutorial team.

Each tutorial at Real Python is created by a team of developers so that it meets our high quality standards. The team members who worked on this tutorial are:

Aldren Santos

Master Real-World Python Skills With Unlimited Access to Real Python

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

What Do You Think?

What’s your #1 takeaway or favorite thing you learned? How are you going to put your newfound skills to use? Leave a comment below and let us know.

Commenting Tips: The most useful comments are those written with the goal of learning from or helping out other students. Get tips for asking good questions and get answers to common questions in our support portal . Looking for a real-time conversation? Visit the Real Python Community Chat or join the next “Office Hours” Live Q&A Session . Happy Pythoning!

Keep Learning

Related Topics: intermediate best-practices

Recommended Video Course: Python Assignment Expressions and Using the Walrus Operator

Related Tutorials:

  • Python Classes: The Power of Object-Oriented Programming
  • Primer on Jinja Templating
  • Lists vs Tuples in Python
  • Web Scraping With Scrapy and MongoDB
  • How to Install Python on Your System: A Guide

Keep reading Real Python by creating a free account or signing in:

Already have an account? Sign-In

Almost there! Complete this form and click the button below to gain instant access:

The Walrus Operator: Python's Assignment Expressions (Sample Code)

🔒 No spam. We take your privacy seriously.

multiple assignment statement python

Python Multiple Assignments

Table of Contents

In Python, you can use multiple assignments to assign values to multiple variables in a single line. This can make your code more concise and readable.

Multiple Assignments

Python allows us to assign the same value to multiple variables.

For Example

Consider the following statement:

This statement will assign value 5 to all three variables in a single statement.

In the normal approach, we use different statements to assign values.

# Assigning values in different statements a = 1 b = 2 c = 3

We can also assign different values to multiple variables. Assigning multiple values in a single statement.

For example :

# Multiple assignment a, b, c = 1, 2, 3

This statement will assign value 1 to a variable, value 2 to b variable, and 3  to the c variable.

This feature is also used for unpacking lists and tuples.

# Unpacking a list numbers = [1, 2, 3] x, y, z = numbers

Python Multiple Assignments

It’s a powerful feature that can enhance the readability of your code when used appropriately.

Python Tutorials

Python Tutorial on this website can be found at:

https://www.testingdocs.com/python-tutorials/

More information on Python is available at the official website:

https://www.python.org

Related Posts

Python IDLE Interactive Shell

Popular Python IDEs [ 2023 ]

Differences between Python and C++

Python Language vs C++ Language

Python Anonymous Functions

Python Anonymous Functions

Python Libraries for Data Science

Python Libraries for Data Science

Download Python Windows 11

Install Python on Windows 11

plot simulating scatter chart

Python Scatter Plots

Python Label Widget

Python Label Widget

Python calculate simple interest.

Area of Rectangle Python Program

Python Area of a Rectangle

Addition of Two Numbers Python

Python Addition of Two Numbers

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

Is it possible to make multiple assignments using a conditional expression?

Here is the example:

Is it possible? Something like:

I am still having problems with understanding ternary operator in Python.

  • ternary-operator
  • conditional-operator

metazord's user avatar

  • The syntax you requested is not possible. The conditional expression syntax is true-expression if condition else false-expression . –  Terry Jan Reedy Commented Jun 1, 2017 at 21:55
  • @TerryJanReedy Well, you can actually bind names with expressions. globals().__setitem__('st', 'Kid') , for example. –  wim Commented Jun 1, 2017 at 22:03
  • Just use the if-else statement. There is no good reason to try to cram your code into a single line, especially if it requires weird, unidiomatic usage of language constructs not meant to achieve that. –  juanpa.arrivillaga Commented Jun 1, 2017 at 22:17

3 Answers 3

Assignment statements support multiple targets :

  • is there another possible way??? assuming that if kid < 20, if less than 20 ONLY assign "rejected=True" and for adult assign st="Adult" and Rejected=False –  metazord Commented Jun 1, 2017 at 21:55
  • 2 Technically possible, but ugly. Just use an if statement and stop trying to be so fancy. –  wim Commented Jun 1, 2017 at 21:59

You could do it like this:

rammelmueller's user avatar

  • is there another possible way??? assuming that if kid < 20, if less than 20 ONLY assign "rejected=True" and for adult st="Adult" and Rejected=False –  metazord Commented Jun 1, 2017 at 21:53
  • other than st, reject = (None, True) if age < 20 else ('Adult', False) i can't think of anything off the top of my head –  rammelmueller Commented Jun 1, 2017 at 21:58

You can use:

When you use:

You are doing the same as:

And when you use:

Your are doing the same as:

If you want with this define multiples variables you have to make a tuple () with the variables and they will be unpacked.

Ender Look's user avatar

Your Answer

Reminder: Answers generated by artificial intelligence tools are not allowed on Stack Overflow. Learn more

Sign up or log in

Post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged python ternary-operator conditional-operator or ask your own question .

  • The Overflow Blog
  • Looking under the hood at the tech stack that powers multimodal AI
  • Featured on Meta
  • Join Stack Overflow’s CEO and me for the first Stack IRL Community Event in...
  • User activation: Learnings and opportunities
  • What does a new user need in a homepage experience on Stack Overflow?
  • Announcing the new Staging Ground Reviewer Stats Widget

Hot Network Questions

  • Smallest prime q such that concatenation (p+q)"q is a prime
  • What's the origin and first meanings of the term "grand piano"?
  • Understanding “Your true airspeed will be the same, but your airspeed as opposed to the ground is much faster.” Bhutan Paro International Airport PBH
  • Use the lower of two voltages when one is active
  • When did St Peter receive the Keys of Heaven?
  • Simple XML string to user-friendly plain text converter method in Java
  • Can foreigners use Swedish app-driven self service stores?
  • Play the Final Fantasy Prelude
  • "00000000000000"
  • How can "chemical-free" surface cleaners work?
  • how do I fix \operatorname adding a space on the left
  • string quartet + chamber orchestra + symphonic orchestra. Why?
  • How can I assign a heredoc to a variable in a way that's portable across Unix and Mac?
  • Grid-based pathfinding for a lot of agents: how to implement "Tight-Following"?
  • What is an apologetic to confront Schellenberg's non-resistant divine hiddenness argument?
  • Build exterior cabin walls using plywood siding
  • Why is 'это' neuter in this expression?
  • Need help in tikzpicture
  • Hungarian Immigration wrote a code on my passport
  • Why does fdisk create a 512B partition when I enter +256K?
  • Calm and Insight is the Normative Meditative Practice in Buddhism
  • Why a relay frequently clicks when a battery is low?
  • How am I supposed to solder this tiny component with pads UNDER it?
  • Can this phrase "the Conservatives opposite" be regarded as apposition structure?

multiple assignment statement python

  • Python Course
  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Method Chaining in Python

Method chaining is a powerful technique in Python programming that allows us to call multiple methods on an object in a single, continuous line of code. This approach makes the code cleaner, more readable, and often easier to maintain. It is frequently used in data processing , object-oriented programming , and frameworks such as Pandas , Django ORM , and Flask .

For Example:

  • strip() removes whitespace from the beginning and end.
  • capitalize() capitalizes the first letter.
  • replace() replaces “ gfg ” with “ GeeksForGeeks “.

In this article, we’ll dive into the concept of method chaining, understand how it works, explore its benefits and drawbacks, and demonstrate examples of method chaining in Python using built-in types and libraries.

Table of Content

What is Method Chaining in Python?

How method chaining works in python, benefits and drawbacks of method chaining, 1. method chaining in strings, 2. method chaining in lists, 3. method chaining in pandas, 4. method chaining in object-oriented programming (oop), 5. implementing method chaining in our own classes, 6. method chaining in numpy, best practices of method chaining.

Method chaining refers to calling multiple methods sequentially on the same object in a single expression. Each method call returns an object, often the same object (modified or not), allowing the subsequent method to operate on that object.

In method chaining, the result of one method call becomes the context for the next method. This allows for concise and readable code, especially when working with objects that require several transformations or operations.

We can chain these calls together like so:

In Python, method chaining works by ensuring that the return value of a method is either the modified object itself or another object that can be further acted upon. Methods that return None cannot be chained directly because they end the chain of execution.

For method chaining to be effective, methods must return an object, usually self in the context of object-oriented programming. This enables further method calls on the same object.

  • strip () removes whitespace from the beginning and end.
  • title () capitalizes the first letter of each word.
  • split () splits the word and returns a list.
  • Conciseness : Code becomes shorter and easier to write.
  • Readability : Chained methods create a fluent, human-readable structure. When used carefully, method chains can resemble natural language.
  • Reduced Temporary Variables : There’s no need to create intermediary variables, as the methods directly operate on the object.
  • Expressive Code : Complex operations are expressed in a single line, making the intention of the code clear.
  • Debugging Difficulty : If one method in a chain fails, it can be harder to isolate the issue.
  • Readability Issues: Overly long method chains can become hard to follow, reducing clarity.
  • Side Effects : Methods that modify objects in place can lead to unintended side effects when used in long chains.

Let’s explore examples of method chaining and how method chaining is used in various contexts in Python.

In Python, string methods can be chained easily as they return modified strings rather than None.

  • zfill() returns 0000000100
  • replace() returns 9999999199

Lists in Python also support method chaining with methods that return new list objects.

Since append() returns None , it breaks the chain and the extends method raises an error. To fix this, method chaining requires non-mutating methods or a pattern where the method returns the object itself.

  • list(map(lambda x: x * 2, numbers)) – The map function maps each element of numbers list to the lambda function that multiplies each number with 2. The list constructor converts the map object to a Python list .
  • . copy () method returns a copy of the list.
  • . index () method returns the index of the element.

The Pandas library is known for its method chaining style, making data manipulation concise and readable.

  • dropna () removes missing values.
  • sort_values () sorts by age.
  • reset_index () resets the index after sorting.

Screenshot-2024-09-17-215736

In OOP, method chaining is implemented by returning self at the end of each method. Here’s an example:

Here, each method returns self, allowing further methods to be chained to the same object.

To implement method chaining in our own Python classes, ensure that each method in the chain returns the object itself ( self ).

Here is a practical example:

Each method ( add_item , remove_item , and checkout ) returns the same ShoppingCart object, allowing multiple methods to be called on it in a single chain.

Method chaining in NumPy is less common than in libraries like Pandas, but it can still be used effectively for certain operations.

Explanation:

  • np.reshape (arr, (9,)) : The array is reshaped into a 1D array (flattened).
  • . astype (float) : The array’s data type is converted to float .
  • .reshape((3, 3)) : The array is reshaped back into a 3×3 2D array.
  • . transpose () : The rows and columns of the 2D array are swapped.
  • . clip (3, 7) : Values in the array are clipped to the range between 3 and 7. Any value below 3 becomes 3, and any value above 7 becomes 7.
  • Limit the number of chained methods: Keep method chains short to maintain clarity.
  • Return meaningful values: Always ensure that methods return something useful—either self for chaining or the final result if needed.
  • Use chaining for fluent APIs: Method chaining works best for APIs where actions need to flow in sequence, such as query builders or data transformations.

Method chaining is a powerful technique in Python that can make our code more fluent, readable, and concise. While it offers many benefits, it is essential to balance readability with functionality to avoid overcomplicating our code. By returning self from methods and keeping chains short, we can harness the power of method chaining effectively in our Python programs.

Please Login to comment...

Similar reads.

  • iOS 18 Is Out Now: Best New Features and How to Install iOS 18
  • Best External Hard Drives for Mac in 2024: Top Picks for MacBook Pro, MacBook Air & More
  • How to Watch NFL Games Live Streams Free
  • OpenAI o1 AI Model Launched: Explore o1-Preview, o1-Mini, Pricing & Comparison
  • #geekstreak2024 – 21 Days POTD Challenge Powered By Deutsche Bank

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IMAGES

  1. 02 Multiple assignments in python

    multiple assignment statement python

  2. 4. Multiple Assignment Function in Python

    multiple assignment statement python

  3. Python Variables

    multiple assignment statement python

  4. PPT

    multiple assignment statement python

  5. Assignment Statement in Python

    multiple assignment statement python

  6. python

    multiple assignment statement python

VIDEO

  1. Assignment

  2. Python

  3. Variables and Multiple Assignment

  4. Python Assignment Statement And Its Various Forms

  5. introduction to python if statement #20

  6. Multi-line Statement in Python

COMMENTS

  1. Multiple assignment in Python: Assign multiple values or the same value

    How to flatten a list of lists in Python; None in Python; Create calendar as text, HTML, list in Python; NumPy: Insert elements, rows, and columns into an array with np.insert() Shuffle a list, string, tuple in Python (random.shuffle, sample) Add and update an item in a dictionary in Python; Cartesian product of lists in Python (itertools.product)

  2. Python Multiple Assignment Statements In One Line

    All credit goes to @MarkDickinson, who answered this in a comment: Notice the + in (target_list "=")+, which means one or more copies.In foo = bar = 5, there are two (target_list "=") productions, and the expression_list part is just 5. All target_list productions (i.e. things that look like foo =) in an assignment statement get assigned, from left to right, to the expression_list on the right ...

  3. Assigning multiple variables in one line in Python

    Python assigns values from right to left. When assigning multiple variables in a single line, different variable names are provided to the left of the assignment operator separated by a comma. The same goes for their respective values except they should be to the right of the assignment operator. While declaring variables in this fashion one ...

  4. Python Variables

    W3Schools offers free online tutorials, references and exercises in all the major languages of the web. Covering popular subjects like HTML, CSS, JavaScript, Python, SQL, Java, and many, many more.

  5. 7. Simple statements

    With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary ...

  6. Python's Assignment Operator: Write Robust Assignments

    Python's assignment operators allow you to define assignment statements. This type of statement lets you create, initialize, and update variables throughout your code. Variables are a fundamental cornerstone in every piece of code, and assignment statements give you complete control over variable creation and mutation.

  7. Multiple Assignment Syntax in Python

    The multiple assignment syntax, often referred to as tuple unpacking or extended unpacking, is a powerful feature in Python. There are several ways to assign multiple values to variables at once. Let's start with a first example that uses extended unpacking. This syntax is used to assign values from an iterable (in this case, a string) to ...

  8. Multiple Assignment in Python

    In this video, we will explore how to assign multiple variables in one line in Python. This technique allows for concise and readable code, especially when you need to initialize multiple variables simultaneously. This tutorial is perfect for students, professionals, or anyone interested in enhancing their Python programming skills.

  9. Mastering Multiple Variable Assignment in Python

    Mastering Multiple Variable Assignment in Python. Python's ability to assign multiple variables in a single line is a feature that exemplifies the language's emphasis on readability and efficiency. In this detailed blog post, we'll explore the nuances of assigning multiple variables in Python, a technique that not only simplifies code but also ...

  10. Different Forms of Assignment Statements in Python

    Multiple- target assignment: x = y = 75. print(x, y) In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left. OUTPUT. 75 75. 7. Augmented assignment : The augmented assignment is a shorthand assignment that combines an expression and an assignment.

  11. Python

    The basic assignment statement does more than assign the result of a single expression to a single variable. The assignment satement also copes nicely with assigning multiple variables at one time. The left and right side must have the same number of elements. For example, the following script has several examples of multiple assignment.

  12. The Walrus Operator: Python's Assignment Expressions

    Each new version of Python adds new features to the language. Back when Python 3.8 was released, the biggest change was the addition of assignment expressions.Specifically, the := operator gave you a new syntax for assigning variables in the middle of expressions. This operator is colloquially known as the walrus operator.. This tutorial is an in-depth introduction to the walrus operator.

  13. Python Multiple Assignments

    In Python, you can use multiple assignments to assign values to multiple variables in a single line. This can make your code more concise and readable. Multiple Assignments. Python allows us to assign the same value to multiple variables. For Example. Consider the following statement: a=b=c=5. This statement will assign value 5 to all three ...

  14. Introduction into Python Statements: Assignment, Conditional Examples

    Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result. x = 5. y = x + 3. print(y) In this example, we assign the value 5 to the variable x, then add 3 to x and assign the result (8) to the variable y.

  15. Python Conditional Assignment (in 3 Ways)

    Let's see a code snippet to understand it better. a = 10. b = 20 # assigning value to variable c based on condition. c = a if a > b else b. print(c) # output: 20. You can see we have conditionally assigned a value to variable c based on the condition a > b. 2. Using if-else statement.

  16. Provide Multiple Statements on a Single Line in Python

    In this article, we are going to understand the concept of Multi-Line statements in the Python programming language. Statements in Python: In Python, a statement is a logical command that a Python interpreter can read and carry out. It might be an assignment statement or an expression in Python. Multi-line Statement in Python: In Python, the statem

  17. python

    One case when you need to include more structure on the left hand side of the assignment is when you're asking Python unpack a slightly more complicated sequence. E.g.: File "<stdin>", line 1, in <module>. This has proved useful for me in the past, for example, when using enumerate to iterate over a sequence of 2-tuples.

  18. PEP 572

    Conversely, assignment expressions don't support the advanced features found in assignment statements: Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0))) ... rather than a statement as is Python's way. This allows assignments in more contexts, including contexts where comparisons are more common.

  19. multi assignment vs multiple assignments use cases in python

    2. As with most questions like this, it's all about readability and changeability. Assigning each variable on its own line usually scores higher for changeability, but there are a few cases where multiple-assignment makes understanding easier (in my opinion) by conveying relationships through proximity. For example:

  20. python

    Just use the if-else statement. There is no good reason to try to cram your code into a single line, especially if it requires weird, unidiomatic usage of language constructs not meant to achieve that.

  21. Assignment Operators in Python

    The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression. Syntax: a := expression. Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop.

  22. Method Chaining in Python

    Method chaining is a powerful technique in Python programming that allows us to call multiple methods on an object in a single, continuous line of code. This approach makes the code cleaner, more readable, and often easier to maintain. It is frequently used in data processing, object-oriented programming, and frameworks such as Pandas, Django ORM, and Flask.