- PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
- EDIT Edit this Article
- EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Forums Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
- Browse Articles
- Learn Something New
- Quizzes Hot
- Happiness Hub
- This Or That Game
- Train Your Brain
- Explore More
- Support wikiHow
- About wikiHow
- Log in / Sign up
- Education and Communications
How to Develop a Questionnaire for Research
Last Updated: July 21, 2024 Fact Checked
This article was co-authored by Alexander Ruiz, M.Ed. . Alexander Ruiz is an Educational Consultant and the Educational Director of Link Educational Institute, a tutoring business based in Claremont, California that provides customizable educational plans, subject and test prep tutoring, and college application consulting. With over a decade and a half of experience in the education industry, Alexander coaches students to increase their self-awareness and emotional intelligence while achieving skills and the goal of achieving skills and higher education. He holds a BA in Psychology from Florida International University and an MA in Education from Georgia Southern University. There are 12 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 594,947 times.
A questionnaire is a technique for collecting data in which a respondent provides answers to a series of questions. [1] X Research source To develop a questionnaire that will collect the data you want takes effort and time. However, by taking a step-by-step approach to questionnaire development, you can come up with an effective means to collect data that will answer your unique research question.
Designing Your Questionnaire
- Come up with a research question. It can be one question or several, but this should be the focal point of your questionnaire.
- Develop one or several hypotheses that you want to test. The questions that you include on your questionnaire should be aimed at systematically testing these hypotheses.
- Dichotomous question: this is a question that will generally be a “yes/no” question, but may also be an “agree/disagree” question. It is the quickest and simplest question to analyze, but is not a highly sensitive measure.
- Open-ended questions: these questions allow the respondent to respond in their own words. They can be useful for gaining insight into the feelings of the respondent, but can be a challenge when it comes to analysis of data. It is recommended to use open-ended questions to address the issue of “why.” [2] X Research source
- Multiple choice questions: these questions consist of three or more mutually-exclusive categories and ask for a single answer or several answers. [3] X Research source Multiple choice questions allow for easy analysis of results, but may not give the respondent the answer they want.
- Rank-order (or ordinal) scale questions: this type of question asks your respondent to rank items or choose items in a particular order from a set. For example, it might ask your respondents to order five things from least to most important. These types of questions forces discrimination among alternatives, but does not address the issue of why the respondent made these discriminations. [4] X Research source
- Rating scale questions: these questions allow the respondent to assess a particular issue based on a given dimension. You can provide a scale that gives an equal number of positive and negative choices, for example, ranging from “strongly agree” to “strongly disagree.” [5] X Research source These questions are very flexible, but also do not answer the question “why.”
- Write questions that are succinct and simple. You should not be writing complex statements or using technical jargon, as it will only confuse your respondents and lead to incorrect responses.
- Ask only one question at a time. This will help avoid confusion
- Asking questions such as these usually require you to anonymize or encrypt the demographic data you collect.
- Determine if you will include an answer such as “I don’t know” or “Not applicable to me.” While these can give your respondents a way of not answering certain questions, providing these options can also lead to missing data, which can be problematic during data analysis.
- Put the most important questions at the beginning of your questionnaire. This can help you gather important data even if you sense that your respondents may be becoming distracted by the end of the questionnaire.
- Only include questions that are directly useful to your research question. [8] X Trustworthy Source Food and Agricultural Organization of the United Nations Specialized agency of the United Nations responsible for leading international efforts to end world hunger and improve nutrition Go to source A questionnaire is not an opportunity to collect all kinds of information about your respondents.
- Avoid asking redundant questions. This will frustrate those who are taking your questionnaire.
- Consider if you want your questionnaire to collect information from both men and women. Some studies will only survey one sex.
- Consider including a range of ages in your target demographic. For example, you can consider young adult to be 18-29 years old, adults to be 30-54 years old, and mature adults to be 55+. Providing the an age range will help you get more respondents than limiting yourself to a specific age.
- Consider what else would make a person a target for your questionnaire. Do they need to drive a car? Do they need to have health insurance? Do they need to have a child under 3? Make sure you are very clear about this before you distribute your questionnaire.
- Consider an anonymous questionnaire. You may not want to ask for names on your questionnaire. This is one step you can take to prevent privacy, however it is often possible to figure out a respondent’s identity using other demographic information (such as age, physical features, or zipcode).
- Consider de-identifying the identity of your respondents. Give each questionnaire (and thus, each respondent) a unique number or word, and only refer to them using that new identifier. Shred any personal information that can be used to determine identity.
- Remember that you do not need to collect much demographic information to be able to identify someone. People may be wary to provide this information, so you may get more respondents by asking less demographic questions (if it is possible for your questionnaire).
- Make sure you destroy all identifying information after your study is complete.
Writing your questionnaire
- My name is Jack Smith and I am one of the creators of this questionnaire. I am part of the Department of Psychology at the University of Michigan, where I am focusing in developing cognition in infants.
- I’m Kelly Smith, a 3rd year undergraduate student at the University of New Mexico. This questionnaire is part of my final exam in statistics.
- My name is Steve Johnson, and I’m a marketing analyst for The Best Company. I’ve been working on questionnaire development to determine attitudes surrounding drug use in Canada for several years.
- I am collecting data regarding the attitudes surrounding gun control. This information is being collected for my Anthropology 101 class at the University of Maryland.
- This questionnaire will ask you 15 questions about your eating and exercise habits. We are attempting to make a correlation between healthy eating, frequency of exercise, and incidence of cancer in mature adults.
- This questionnaire will ask you about your recent experiences with international air travel. There will be three sections of questions that will ask you to recount your recent trips and your feelings surrounding these trips, as well as your travel plans for the future. We are looking to understand how a person’s feelings surrounding air travel impact their future plans.
- Beware that if you are collecting information for a university or for publication, you may need to check in with your institution’s Institutional Review Board (IRB) for permission before beginning. Most research universities have a dedicated IRB staff, and their information can usually be found on the school’s website.
- Remember that transparency is best. It is important to be honest about what will happen with the data you collect.
- Include an informed consent for if necessary. Note that you cannot guarantee confidentiality, but you will make all reasonable attempts to ensure that you protect their information. [11] X Research source
- Time yourself taking the survey. Then consider that it will take some people longer than you, and some people less time than you.
- Provide a time range instead of a specific time. For example, it’s better to say that a survey will take between 15 and 30 minutes than to say it will take 15 minutes and have some respondents quit halfway through.
- Use this as a reason to keep your survey concise! You will feel much better asking people to take a 20 minute survey than you will asking them to take a 3 hour one.
- Incentives can attract the wrong kind of respondent. You don’t want to incorporate responses from people who rush through your questionnaire just to get the reward at the end. This is a danger of offering an incentive. [12] X Research source
- Incentives can encourage people to respond to your survey who might not have responded without a reward. This is a situation in which incentives can help you reach your target number of respondents. [13] X Research source
- Consider the strategy used by SurveyMonkey. Instead of directly paying respondents to take their surveys, they offer 50 cents to the charity of their choice when a respondent fills out a survey. They feel that this lessens the chances that a respondent will fill out a questionnaire out of pure self-interest. [14] X Research source
- Consider entering each respondent in to a drawing for a prize if they complete the questionnaire. You can offer a 25$ gift card to a restaurant, or a new iPod, or a ticket to a movie. This makes it less tempting just to respond to your questionnaire for the incentive alone, but still offers the chance of a pleasant reward.
- Always proof read. Check for spelling, grammar, and punctuation errors.
- Include a title. This is a good way for your respondents to understand the focus of the survey as quickly as possible.
- Thank your respondents. Thank them for taking the time and effort to complete your survey.
Distributing Your Questionnaire
- Was the questionnaire easy to understand? Were there any questions that confused you?
- Was the questionnaire easy to access? (Especially important if your questionnaire is online).
- Do you feel the questionnaire was worth your time?
- Were you comfortable answering the questions asked?
- Are there any improvements you would make to the questionnaire?
- Use an online site, such as SurveyMonkey.com. This site allows you to write your own questionnaire with their survey builder, and provides additional options such as the option to buy a target audience and use their analytics to analyze your data. [18] X Research source
- Consider using the mail. If you mail your survey, always make sure you include a self-addressed stamped envelope so that the respondent can easily mail their responses back. Make sure that your questionnaire will fit inside a standard business envelope.
- Conduct face-to-face interviews. This can be a good way to ensure that you are reaching your target demographic and can reduce missing information in your questionnaires, as it is more difficult for a respondent to avoid answering a question when you ask it directly.
- Try using the telephone. While this can be a more time-effective way to collect your data, it can be difficult to get people to respond to telephone questionnaires.
- Make your deadline reasonable. Giving respondents up to 2 weeks to answer should be more than sufficient. Anything longer and you risk your respondents forgetting about your questionnaire.
- Consider providing a reminder. A week before the deadline is a good time to provide a gentle reminder about returning the questionnaire. Include a replacement of the questionnaire in case it has been misplaced by your respondent.
Community Q&A
You Might Also Like
- ↑ https://www.questionpro.com/blog/what-is-a-questionnaire/
- ↑ https://www.hotjar.com/blog/open-ended-questions/
- ↑ https://www.questionpro.com/a/showArticle.do?articleID=survey-questions
- ↑ https://surveysparrow.com/blog/ranking-questions-examples/
- ↑ https://www.lumoa.me/blog/rating-scale/
- ↑ http://www.sciencebuddies.org/science-fair-projects/project_ideas/Soc_survey.shtml
- ↑ http://www.fao.org/docrep/W3241E/w3241e05.htm
- ↑ http://managementhelp.org/businessresearch/questionaires.htm
- ↑ https://www.surveymonkey.com/mp/survey-rewards/
- ↑ http://www.ideafit.com/fitness-library/how-to-develop-a-questionnaire
- ↑ https://www.surveymonkey.com/mp/take-a-tour/?ut_source=header
About This Article
To develop a questionnaire for research, identify the main objective of your research to act as the focal point for the questionnaire. Then, choose the type of questions that you want to include, and come up with succinct, straightforward questions to gather the information that you need to answer your questions. Keep your questionnaire as short as possible, and identify a target demographic who you would like to answer the questions. Remember to make the questionnaires as anonymous as possible to protect the integrity of the person answering the questions! For tips on writing out your questions and distributing the questionnaire, keep reading! Did this summary help you? Yes No
- Send fan mail to authors
Reader Success Stories
Abdul Bari Khan
Nov 11, 2020
Did this article help you?
Jul 25, 2023
Iman Ilhusadi
Nov 26, 2016
Jaydeepa Das
Aug 21, 2018
Atefeh Abdollahi
Jan 3, 2017
Featured Articles
Trending Articles
Watch Articles
- Terms of Use
- Privacy Policy
- Do Not Sell or Share My Info
- Not Selling Info
wikiHow Tech Help Pro:
Level up your tech skills and stay ahead of the curve
Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
13.1 Writing effective survey questions and questionnaires
Learning objectives.
Learners will be able to…
- Describe some of the ways that survey questions might confuse respondents and how to word questions and responses clearly
- Create mutually exclusive, exhaustive, and balanced response options
- Define fence-sitting and floating
- Describe the considerations involved in constructing a well-designed questionnaire
- Discuss why pilot testing is important
In the previous chapter, we reviewed how researchers collect data using surveys. Guided by their sampling approach and research context, researchers should choose the survey approach that provides the most favorable tradeoffs in strengths and challenges. With this information in hand, researchers need to write their questionnaire and revise it before beginning data collection. Each method of delivery requires a questionnaire, but they vary a bit based on how they will be used by the researcher. Since phone surveys are read aloud, researchers will pay more attention to how the questionnaire sounds than how it looks. Online surveys can use advanced tools to require the completion of certain questions, present interactive questions and answers, and otherwise afford greater flexibility in how questionnaires are designed. As you read this chapter, consider how your method of delivery impacts the type of questionnaire you will design.
Start with operationalization
The first thing you need to do to write effective survey questions is identify what exactly you wish to know. As silly as it sounds to state what seems so completely obvious, we can’t stress enough how easy it is to forget to include important questions when designing a survey. Begin by looking at your research question and refreshing your memory of the operational definitions you developed for those variables from Chapter 11. You should have a pretty firm grasp of your operational definitions before starting the process of questionnaire design. You may have taken those operational definitions from other researchers’ methods, found established scales and indices for your measures, or created your own questions and answer options.
TRACK 1 (IF YOU ARE CREATING A RESEARCH PROPOSAL FOR THIS CLASS)
STOP! Make sure you have a complete operational definition for the dependent and independent variables in your research question. A complete operational definition contains the variable being measured, the measure used, and how the researcher interprets the measure. Let’s make sure you have what you need from Chapter 11 to begin writing your questionnaire.
List all of the dependent and independent variables in your research question.
- It’s normal to have one dependent or independent variable. It’s also normal to have more than one of either.
- Make sure that your research question (and this list) contain all of the variables in your hypothesis. Your hypothesis should only include variables from you research question.
For each variable in your list:
- If you don’t have questions and answers finalized yet, write a first draft and revise it based on what you read in this section.
- If you are using a measure from another researcher, you should be able to write out all of the questions and answers associated with that measure. If you only have the name of a scale or a few questions, you need to access to the full text and some documentation on how to administer and interpret it before you can finish your questionnaire.
- For example, an interpretation might be “there are five 7-point Likert scale questions…point values are added across all five items for each participant…and scores below 10 indicate the participant has low self-esteem”
- Don’t introduce other variables into the mix here. All we are concerned with is how you will measure each variable by itself. The connection between variables is done using statistical tests, not operational definitions.
- Detail any validity or reliability issues uncovered by previous researchers using the same measures. If you have concerns about validity and reliability, note them, as well.
TRACK 2 (IF YOU AREN’T CREATING A RESEARCH PROPOSAL FOR THIS CLASS)
You are interested in researching the decision-making processes of parents of elementary-aged children during the beginning of the COVID-19 pandemic in 2020. Specifically, you want to if and how parents’ socioeconomic class impacted their decisions about whether to send their children to school in-person or instead opt for online classes or homeschooling.
- Create a working research question for this topic.
- What is the dependent variable in this research question? The independent variable? What other variables might you want to control?
For the independent variable, dependent variable, and at least one control variable from your list:
- What measure (the specific question and answers) might you use for each one? Write out a first draft based on what you read in this section.
If you completed the exercise above and listed out all of the questions and answer choices you will use to measure the variables in your research question, you have already produced a pretty solid first draft of your questionnaire! Congrats! In essence, questionnaires are all of the self-report measures in your operational definitions for the independent, dependent, and control variables in your study arranged into one document and administered to participants. There are a few questions on a questionnaire (like name or ID#) that are not associated with the measurement of variables. These are the exception, and it’s useful to think of a questionnaire as a list of measures for variables. Of course, researchers often use more than one measure of a variable (i.e., triangulation ) so they can more confidently assert that their findings are true. A questionnaire should contain all of the measures researchers plan to collect about their variables by asking participants to self-report.
Sticking close to your operational definitions is important because it helps you avoid an everything-but-the-kitchen-sink approach that includes every possible question that occurs to you. Doing so puts an unnecessary burden on your survey respondents. Remember that you have asked your participants to give you their time and attention and to take care in responding to your questions; show them your respect by only asking questions that you actually plan to use in your analysis. For each question in your questionnaire, ask yourself how this question measures a variable in your study. An operational definition should contain the questions, response options, and how the researcher will draw conclusions about the variable based on participants’ responses.
Writing questions
So, almost all of the questions on a questionnaire are measuring some variable. For many variables, researchers will create their own questions rather than using one from another researcher. This section will provide some tips on how to create good questions to accurately measure variables in your study. First, questions should be as clear and to the point as possible. This is not the time to show off your creative writing skills; a survey is a technical instrument and should be written in a way that is as direct and concise as possible. As I’ve mentioned earlier, your survey respondents have agreed to give their time and attention to your survey. The best way to show your appreciation for their time is to not waste it. Ensuring that your questions are clear and concise will go a long way toward showing your respondents the gratitude they deserve. Pilot testing the questionnaire with friends or colleagues can help identify these issues. This process is commonly called pretesting, but to avoid any confusion with pretesting in experimental design, we refer to it as pilot testing.
Related to the point about not wasting respondents’ time, make sure that every question you pose will be relevant to every person you ask to complete it. This means two things: first, that respondents have knowledge about whatever topic you are asking them about, and second, that respondents have experienced the events, behaviors, or feelings you are asking them to report. If you are asking participants for second-hand knowledge—asking clinicians about clients’ feelings, asking teachers about students’ feelings, and so forth—you may want to clarify that the variable you are asking about is the key informant’s perception of what is happening in the target population. A well-planned sampling approach ensures that participants are the most knowledgeable population to complete your survey.
If you decide that you do wish to include questions about matters with which only a portion of respondents will have had experience, make sure you know why you are doing so. For example, if you are asking about MSW student study patterns, and you decide to include a question on studying for the social work licensing exam, you may only have a small subset of participants who have begun studying for the graduate exam or took the bachelor’s-level exam. If you decide to include this question that speaks to a minority of participants’ experiences, think about why you are including it. Are you interested in how studying for class and studying for licensure differ? Are you trying to triangulate study skills measures? Researchers should carefully consider whether questions relevant to only a subset of participants is likely to produce enough valid responses for quantitative analysis.
Many times, questions that are relevant to a subsample of participants are conditional on an answer to a previous question. A participant might select that they rent their home, and as a result, you might ask whether they carry renter’s insurance. That question is not relevant to homeowners, so it would be wise not to ask them to respond to it. In that case, the question of whether someone rents or owns their home is a filter question , designed to identify some subset of survey respondents who are asked additional questions that are not relevant to the entire sample. Figure 13.1 presents an example of how to accomplish this on a paper survey by adding instructions to the participant that indicate what question to proceed to next based on their response to the first one. Using online survey tools, researchers can use filter questions to only present relevant questions to participants.
Researchers should eliminate questions that ask about things participants don’t know to minimize confusion. Assuming the question is relevant to the participant, other sources of confusion come from how the question is worded. The use of negative wording can be a source of potential confusion. Taking the question from Figure 13.1 about drinking as our example, what if we had instead asked, “Did you not abstain from drinking during your first semester of college?” This is a double negative, and it’s not clear how to answer the question accurately. It is a good idea to avoid negative phrasing, when possible. For example, “did you not drink alcohol during your first semester of college?” is less clear than “did you drink alcohol your first semester of college?”
Another 877777771`issue arises when you use jargon, or technical language, that people do not commonly know. For example, if you asked adolescents how they experience imaginary audience , they would find it difficult to link those words to the concepts from David Elkind’s theory. The words you use in your questions must be understandable to your participants. If you find yourself using jargon or slang, break it down into terms that are more universal and easier to understand.
Asking multiple questions as though they are a single question can also confuse survey respondents. There’s a specific term for this sort of question; it is called a double-barreled question . Figure 13.2 shows a double-barreled question. Do you see what makes the question double-barreled? How would someone respond if they felt their college classes were more demanding but also more boring than their high school classes? Or less demanding but more interesting? Because the question combines “demanding” and “interesting,” there is no way to respond yes to one criterion but no to the other.
Another thing to avoid when constructing survey questions is the problem of social desirability . We all want to look good, right? And we all probably know the politically correct response to a variety of questions whether we agree with the politically correct response or not. In survey research, social desirability refers to the idea that respondents will try to answer questions in a way that will present them in a favorable light. (You may recall we covered social desirability bias in Chapter 11. )
Perhaps we decide that to understand the transition to college, we need to know whether respondents ever cheated on an exam in high school or college for our research project. We all know that cheating on exams is generally frowned upon (at least I hope we all know this). So, it may be difficult to get people to admit to cheating on a survey. But if you can guarantee respondents’ confidentiality, or even better, their anonymity, chances are much better that they will be honest about having engaged in this socially undesirable behavior. Another way to avoid problems of social desirability is to try to phrase difficult questions in the most benign way possible. Earl Babbie (2010) [1] offers a useful suggestion for helping you do this—simply imagine how you would feel responding to your survey questions. If you would be uncomfortable, chances are others would as well.
Try to step outside your role as researcher for a second, and imagine you were one of your participants. Evaluate the following:
- Is the question too general? Sometimes, questions that are too general may not accurately convey respondents’ perceptions. If you asked someone how they liked a certain book and provide a response scale ranging from “not at all” to “extremely well”, and if that person selected “extremely well,” what do they mean? Instead, ask more specific behavioral questions, such as “Will you recommend this book to others?” or “Do you plan to read other books by the same author?”
- Is the question too detailed? Avoid unnecessarily detailed questions that serve no specific research purpose. For instance, do you need the age of each child in a household or is just the number of children in the household acceptable? However, if unsure, it is better to err on the side of details than generality.
- Is the question presumptuous? Does your question make assumptions? For instance, if you ask, “what do you think the benefits of a tax cut would be?” you are presuming that the participant sees the tax cut as beneficial. But many people may not view tax cuts as beneficial. Some might see tax cuts as a precursor to less funding for public schools and fewer public services such as police, ambulance, and fire department. Avoid questions with built-in presumptions.
- Does the question ask the participant to imagine something? Is the question imaginary? A popular question on many television game shows is “if you won a million dollars on this show, how will you plan to spend it?” Most participants have never been faced with this large amount of money and have never thought about this scenario. In fact, most don’t even know that after taxes, the value of the million dollars will be greatly reduced. In addition, some game shows spread the amount over a 20-year period. Without understanding this “imaginary” situation, participants may not have the background information necessary to provide a meaningful response.
Try to step outside your role as researcher for a second, and imagine you were one of your participants. Use the following prompts to evaluate your draft questions from the previous exercise:
Cultural considerations
When researchers write items for questionnaires, they must be conscientious to avoid culturally biased questions that may be inappropriate or difficult for certain populations.
[insert information related to asking about demographics and how this might make some people uncomfortable based on their identity(ies) and how to potentially address]
You should also avoid using terms or phrases that may be regionally or culturally specific (unless you are absolutely certain all your respondents come from the region or culture whose terms you are using). When I first moved to southwest Virginia, I didn’t know what a holler was. Where I grew up in New Jersey, to holler means to yell. Even then, in New Jersey, we shouted and screamed, but we didn’t holler much. In southwest Virginia, my home at the time, a holler also means a small valley in between the mountains. If I used holler in that way on my survey, people who live near me may understand, but almost everyone else would be totally confused.
Testing questionnaires before using them
Finally, it is important to get feedback on your survey questions from as many people as possible, especially people who are like those in your sample. Now is not the time to be shy. Ask your friends for help, ask your mentors for feedback, ask your family to take a look at your survey as well. The more feedback you can get on your survey questions, the better the chances that you will come up with a set of questions that are understandable to a wide variety of people and, most importantly, to those in your sample.
In sum, in order to pose effective survey questions, researchers should do the following:
- Identify how each question measures an independent, dependent, or control variable in their study.
- Keep questions clear and succinct.
- Make sure respondents have relevant lived experience to provide informed answers to your questions.
- Use filter questions to avoid getting answers from uninformed participants.
- Avoid questions that are likely to confuse respondents—including those that use double negatives, use culturally specific terms or jargon, and pose more than one question at a time.
- Imagine how respondents would feel responding to questions.
- Get feedback, especially from people who resemble those in the researcher’s sample.
Table 13.1 offers one model for writing effective questionnaire items.
Let’s complete a first draft of your questions.
- In the first exercise, you wrote out the questions and answers for each measure of your independent and dependent variables. Evaluate each question using the criteria listed above on effective survey questions.
- Type out questions for your control variables and evaluate them, as well. Consider what response options you want to offer participants.
Now, let’s revise any questions that do not meet your standards!
- Use the BRUSO model in Table 13.1 for an illustration of how to address deficits in question wording. Keep in mind that you are writing a first draft in this exercise, and it will take a few drafts and revisions before your questions are ready to distribute to participants.
- In the first exercise, you wrote out the question and answers for your independent, dependent, and at least one control variable. Evaluate each question using the criteria listed above on effective survey questions.
- Use the BRUSO model in Table 13.1 for an illustration of how to address deficits in question wording. In real research, it will take a few drafts and revisions before your questions are ready to distribute to participants.
Writing response options
While posing clear and understandable questions in your survey is certainly important, so too is providing respondents with unambiguous response options. Response options are the answers that you provide to the people completing your questionnaire. Generally, respondents will be asked to choose a single (or best) response to each question you pose. We call questions in which the researcher provides all of the response options closed-ended questions . Keep in mind, closed-ended questions can also instruct respondents to choose multiple response options, rank response options against one another, or assign a percentage to each response option. But be cautious when experimenting with different response options! Accepting multiple responses to a single question may add complexity when it comes to quantitatively analyzing and interpreting your data.
Surveys need not be limited to closed-ended questions. Sometimes survey researchers include open-ended questions in their survey instruments as a way to gather additional details from respondents. An open-ended question does not include response options; instead, respondents are asked to reply to the question in their own way, using their own words. These questions are generally used to find out more about a survey participant’s experiences or feelings about whatever they are being asked to report in the survey. If, for example, a survey includes closed-ended questions asking respondents to report on their involvement in extracurricular activities during college, an open-ended question could ask respondents why they participated in those activities or what they gained from their participation. While responses to such questions may also be captured using a closed-ended format, allowing participants to share some of their responses in their own words can make the experience of completing the survey more satisfying to respondents and can also reveal new motivations or explanations that had not occurred to the researcher. This is particularly important for mixed-methods research. It is possible to analyze open-ended response options quantitatively using content analysis (i.e., counting how often a theme is represented in a transcript looking for statistical patterns). However, for most researchers, qualitative data analysis will be needed to analyze open-ended questions, and researchers need to think through how they will analyze any open-ended questions as part of their data analysis plan. Open-ended questions cannot be operationally defined because you don’t know what responses you will get. We will address qualitative data analysis in greater detail in Chapter 19.
To write an effective response options for closed-ended questions, there are a couple of guidelines worth following. First, be sure that your response options are mutually exclusive . Look back at Figure 13.1, which contains questions about how often and how many drinks respondents consumed. Do you notice that there are no overlapping categories in the response options for these questions? This is another one of those points about question construction that seems fairly obvious but that can be easily overlooked. Response options should also be exhaustive . In other words, every possible response should be covered in the set of response options that you provide. For example, note that in question 10a in Figure 13.1, we have covered all possibilities—those who drank, say, an average of once per month can choose the first response option (“less than one time per week”) while those who drank multiple times a day each day of the week can choose the last response option (“7+”). All the possibilities in between these two extremes are covered by the middle three response options, and every respondent fits into one of the response options we provided.
Earlier in this section, we discussed double-barreled questions. Response options can also be double barreled, and this should be avoided. Figure 13.3 is an example of a question that uses double-barreled response options. Other tips about questions are also relevant to response options, including that participants should be knowledgeable enough to select or decline a response option as well as avoiding jargon and cultural idioms.
Even if you phrase questions and response options clearly, participants are influenced by how many response options are presented on the questionnaire. For Likert scales, five or seven response options generally allow about as much precision as respondents are capable of. However, numerical scales with more options can sometimes be appropriate. For dimensions such as attractiveness, pain, and likelihood, a 0-to-10 scale will be familiar to many respondents and easy for them to use. Regardless of the number of response options, the most extreme ones should generally be “balanced” around a neutral or modal midpoint. An example of an unbalanced rating scale measuring perceived likelihood might look like this:
Unlikely | Somewhat Likely | Likely | Very Likely | Extremely Likely
Because we have four rankings of likely and only one ranking of unlikely, the scale is unbalanced and most responses will be biased toward “likely” rather than “unlikely.” A balanced version might look like this:
Extremely Unlikely | Somewhat Unlikely | As Likely as Not | Somewhat Likely | Extremely Likely
In this example, the midpoint is halfway between likely and unlikely. Of course, a middle or neutral response option does not have to be included. Researchers sometimes choose to leave it out because they want to encourage respondents to think more deeply about their response and not simply choose the middle option by default. Fence-sitters are respondents who choose neutral response options, even if they have an opinion. Some people will be drawn to respond, “no opinion” even if they have an opinion, particularly if their true opinion is the not a socially desirable opinion. Floaters , on the other hand, are those that choose a substantive answer to a question when really, they don’t understand the question or don’t have an opinion.
As you can see, floating is the flip side of fence-sitting. Thus, the solution to one problem is often the cause of the other. How you decide which approach to take depends on the goals of your research. Sometimes researchers specifically want to learn something about people who claim to have no opinion. In this case, allowing for fence-sitting would be necessary. Other times researchers feel confident their respondents will all be familiar with every topic in their survey. In this case, perhaps it is okay to force respondents to choose one side or another (e.g., agree or disagree) without a middle option (e.g., neither agree nor disagree) or to not include an option like “don’t know enough to say” or “not applicable.” There is no always-correct solution to either problem. But in general, including middle option in a response set provides a more exhaustive set of response options than one that excludes one.
==This came from 10.3 under “Measuring unidimensional concepts” but it seems more appropriate in the chapter about writing survey questions. We need to make sure this section flows well. Maybe there should be a better organized subsection on rating scales? Where does this go? Does it need any revision?===
The number of response options on a typical rating scale is usually five or seven, though it can range from three to 11. Five-point scales are best for unipolar scales where only one construct is tested, such as frequency (Never, Rarely, Sometimes, Often, Always). Seven-point scales are best for bipolar scales where there is a dichotomous spectrum, such as liking (Like very much, Like somewhat, Like slightly, Neither like nor dislike, Dislike slightly, Dislike somewhat, Dislike very much). For bipolar questions, it is useful to offer an earlier question that branches them into an area of the scale; if asking about liking ice cream, first ask “Do you generally like or dislike ice cream?” Once the respondent chooses like or dislike, refine it by offering them relevant choices from the seven-point scale. Branching improves both reliability and validity (Krosnick & Berent, 1993). [2] Although you often see scales with numerical labels, it is best to only present verbal labels to the respondents but convert them to numerical values in the analyses. Avoid partial labels or length or overly specific labels. In some cases, the verbal labels can be supplemented with (or even replaced by) meaningful graphics. The last rating scale shown in Figure 10.1 is a visual-analog scale, on which participants make a mark somewhere along the horizontal line to indicate the magnitude of their response.
Finalizing Response Options
The most important check before your finalize your response options is to align them with your operational definitions. As we’ve discussed before, your operational definitions include your measures (questions and responses options) as well as how to interpret those measures in terms of the variable being measured. In particular, you should be able to interpret all response options to a question based on your operational definition of the variable it measures. If you wanted to measure the variable “social class,” you might ask one question about a participant’s annual income and another about family size. Your operational definition would need to provide clear instructions on how to interpret response options. Your operational definition is basically like this social class calculator from Pew Research , though they include a few more questions in their definition.
To drill down a bit more, as Pew specifies in the section titled “how the income calculator works,” the interval/ratio data respondents enter is interpreted using a formula combining a participant’s four responses to the questions posed by Pew categorizing their household into three categories—upper, middle, or lower class. So, the operational definition includes the four questions comprising the measure and the formula or interpretation which converts responses into the three final categories that we are familiar with: lower, middle, and upper class.
It’s perfectly normal for operational definitions to change levels of measurement, and it’s also perfectly normal for the level of measurement to stay the same. The important thing is that each response option a participant can provide is accounted for by the operational definition. Throw any combination of family size, location, or income at the Pew calculator, and it will define you into one of those three social class categories.
Unlike Pew’s definition, the operational definitions in your study may not need their own webpage to define and describe. For many questions and answers, interpreting response options is easy. If you were measuring “income” instead of “social class,” you could simply operationalize the term by asking people to list their total household income before taxes are taken out. Higher values indicate higher income, and lower values indicate lower income. Easy. Regardless of whether your operational definitions are simple or more complex, every response option to every question on your survey (with a few exceptions) should be interpretable using an operational definition of a variable. Just like we want to avoid an everything-but-the-kitchen-sink approach to questions on our questionnaire, you want to make sure your final questionnaire only contains response options that you will use in your study.
One note of caution on interpretation (sorry for repeating this). We want to remind you again that an operational definition should not mention more than one variable. In our example above, your operational definition could not say “a family of three making under $50,000 is lower class; therefore, they are more likely to experience food insecurity.” That last clause about food insecurity may well be true, but it’s not a part of the operational definition for social class. Each variable (food insecurity and class) should have its own operational definition. If you are talking about how to interpret the relationship between two variables, you are talking about your data analysis plan . We will discuss how to create your data analysis plan beginning in Chapter 14 . For now, one consideration is that depending on the statistical test you use to test relationships between variables, you may need nominal, ordinal, or interval/ratio data. Your questions and response options should match the level of measurement you need with the requirements of the specific statistical tests in your data analysis plan. Once you finalize your data analysis plan, return to your questionnaire to confirm the level of measurement matches with the statistical test you’ve chosen.
In summary, to write effective response options researchers should do the following:
- Avoid wording that is likely to confuse respondents—including double negatives, use culturally specific terms or jargon, and double-barreled response options.
- Ensure response options are relevant to participants’ knowledge and experience so they can make an informed and accurate choice.
- Present mutually exclusive and exhaustive response options.
- Consider fence-sitters and floaters, and the use of neutral or “not applicable” response options.
- Define how response options are interpreted as part of an operational definition of a variable.
- Check level of measurement matches operational definitions and the statistical tests in the data analysis plan (once you develop one in the future)
Look back at the response options you drafted in the previous exercise. Make sure you have a first draft of response options for each closed-ended question on your questionnaire.
- Using the criteria above, evaluate the wording of the response options for each question on your questionnaire.
- Revise your questions and response options until you have a complete first draft.
- Do your first read-through and provide a dummy answer to each question. Make sure you can link each response option and each question to an operational definition.
Look back at the response options you drafted in the previous exercise.
From this discussion, we hope it is clear why researchers using quantitative methods spell out all of their plans ahead of time. Ultimately, there should be a straight line from operational definition through measures on your questionnaire to the data analysis plan. If your questionnaire includes response options that are not aligned with operational definitions or not included in the data analysis plan, the responses you receive back from participants won’t fit with your conceptualization of the key variables in your study. If you do not fix these errors and proceed with collecting unstructured data, you will lose out on many of the benefits of survey research and face overwhelming challenges in answering your research question.
Designing questionnaires
Based on your work in the previous section, you should have a first draft of the questions and response options for the key variables in your study. Now, you’ll also need to think about how to present your written questions and response options to survey respondents. It’s time to write a final draft of your questionnaire and make it look nice. Designing questionnaires takes some thought. First, consider the route of administration for your survey. What we cover in this section will apply equally to paper and online surveys, but if you are planning to use online survey software, you should watch tutorial videos and explore the features of of the survey software you will use.
Informed consent & instructions
Writing effective items is only one part of constructing a survey. For one thing, every survey should have a written or spoken introduction that serves two basic functions (Peterson, 2000) . [3] One is to encourage respondents to participate in the survey. In many types of research, such encouragement is not necessary either because participants do not know they are in a study (as in naturalistic observation) or because they are part of a subject pool and have already shown their willingness to participate by signing up and showing up for the study. Survey research usually catches respondents by surprise when they answer their phone, go to their mailbox, or check their e-mail—and the researcher must make a good case for why they should agree to participate. Thus, the introduction should briefly explain the purpose of the survey and its importance, provide information about the sponsor of the survey (university-based surveys tend to generate higher response rates), acknowledge the importance of the respondent’s participation, and describe any incentives for participating.
The second function of the introduction is to establish informed consent . Remember that this involves describing to respondents everything that might affect their decision to participate. This includes the topics covered by the survey, the amount of time it is likely to take, the respondent’s option to withdraw at any time, confidentiality issues, and other ethical considerations we covered in Chapter 6. Written consent forms are not always used in survey research (when the research is of minimal risk and completion of the survey instrument is often accepted by the IRB as evidence of consent to participate), so it is important that this part of the introduction be well documented and presented clearly and in its entirety to every respondent.
Organizing items to be easy and intuitive to follow
The introduction should be followed by the substantive questionnaire items. But first, it is important to present clear instructions for completing the questionnaire, including examples of how to use any unusual response scales. Remember that the introduction is the point at which respondents are usually most interested and least fatigued, so it is good practice to start with the most important items for purposes of the research and proceed to less important items. Items should also be grouped by topic or by type. For example, items using the same rating scale (e.g., a 5-point agreement scale) should be grouped together if possible to make things faster and easier for respondents. Demographic items are often presented last. This can be because they are easy to answer in the event respondents have become tired or bored, because they are least interesting to participants, or because they can raise concerns for respondents from marginalized groups who may see questions about their identities as a potential red flag. Of course, any survey should end with an expression of appreciation to the respondent.
Questions are often organized thematically. If our survey were measuring social class, perhaps we’d have a few questions asking about employment, others focused on education, and still others on housing and community resources. Those may be the themes around which we organize our questions. Or perhaps it would make more sense to present any questions we had about parents’ income and then present a series of questions about estimated future income. Grouping by theme is one way to be deliberate about how you present your questions. Keep in mind that you are surveying people, and these people will be trying to follow the logic in your questionnaire. Jumping from topic to topic can give people a bit of whiplash and may make participants less likely to complete it.
Using a matrix is a nice way of streamlining response options for similar questions. A matrix is a question type that lists a set of questions for which the answer categories are all the same. If you have a set of questions for which the response options are the same, it may make sense to create a matrix rather than posing each question and its response options individually. Not only will this save you some space in your survey but it will also help respondents progress through your survey more easily. A sample matrix can be seen in Figure 13.4.
Once you have grouped similar questions together, you’ll need to think about the order in which to present those question groups. Most survey researchers agree that it is best to begin a survey with questions that will want to make respondents continue (Babbie, 2010; Dillman, 2000; Neuman, 2003). [4] In other words, don’t bore respondents, but don’t scare them away either. There’s some disagreement over where on a survey to place demographic questions, such as those about a person’s age, gender, and race. On the one hand, placing them at the beginning of the questionnaire may lead respondents to think the survey is boring, unimportant, and not something they want to bother completing. On the other hand, if your survey deals with some very sensitive topic, such as child sexual abuse or criminal convictions, you don’t want to scare respondents away or shock them by beginning with your most intrusive questions.
Your participants are human. They will react emotionally to questionnaire items, and they will also try to uncover your research questions and hypotheses. In truth, the order in which you present questions on a survey is best determined by the unique characteristics of your research. When feasible, you should consult with key informants from your target population determine how best to order your questions. If it is not feasible to do so, think about the unique characteristics of your topic, your questions, and most importantly, your sample. Keeping in mind the characteristics and needs of the people you will ask to complete your survey should help guide you as you determine the most appropriate order in which to present your questions. None of your decisions will be perfect, and all studies have limitations.
Questionnaire length
You’ll also need to consider the time it will take respondents to complete your questionnaire. Surveys vary in length, from just a page or two to a dozen or more pages, which means they also vary in the time it takes to complete them. How long to make your survey depends on several factors. First, what is it that you wish to know? Wanting to understand how grades vary by gender and year in school certainly requires fewer questions than wanting to know how people’s experiences in college are shaped by demographic characteristics, college attended, housing situation, family background, college major, friendship networks, and extracurricular activities. Keep in mind that even if your research question requires a sizable number of questions be included in your questionnaire, do your best to keep the questionnaire as brief as possible. Any hint that you’ve thrown in a bunch of useless questions just for the sake of it will turn off respondents and may make them not want to complete your survey.
Second, and perhaps more important, how long are respondents likely to be willing to spend completing your questionnaire? If you are studying college students, asking them to use their very limited time to complete your survey may mean they won’t want to spend more than a few minutes on it. But if you ask them to complete your survey during down-time between classes and there is little work to be done, students may be willing to give you a bit more of their time. Think about places and times that your sampling frame naturally gathers and whether you would be able to either recruit participants or distribute a survey in that context. Estimate how long your participants would reasonably have to complete a survey presented to them during this time. The more you know about your population (such as what weeks have less work and more free time), the better you can target questionnaire length.
The time that survey researchers ask respondents to spend on questionnaires varies greatly. Some researchers advise that surveys should not take longer than about 15 minutes to complete (as cited in Babbie 2010), [5] whereas others suggest that up to 20 minutes is acceptable (Hopper, 2010). [6] As with question order, there is no clear-cut, always-correct answer about questionnaire length. The unique characteristics of your study and your sample should be considered to determine how long to make your questionnaire. For example, if you planned to distribute your questionnaire to students in between classes, you will need to make sure it is short enough to complete before the next class begins.
When designing a questionnaire, a researcher should consider:
- Weighing strengths and limitations of the method of delivery, including the advanced tools in online survey software or the simplicity of paper questionnaires.
- Grouping together items that ask about the same thing.
- Moving any questions about sensitive items to the end of the questionnaire, so as not to scare respondents off.
- Moving any questions that engage the respondent to answer the questionnaire at the beginning, so as not to bore them.
- Timing the length of the questionnaire with a reasonable length of time you can ask of your participants.
- Dedicating time to visual design and ensure the questionnaire looks professional.
Type out a final draft of your questionnaire in a word processor or online survey tool.
- Evaluate your questionnaire using the guidelines above, revise it, and get it ready to share with other student researchers.
- Take a look at the question drafts you have completed and decide on an order for your questions. E valuate your draft questionnaire using the guidelines above, and revise as needed.
Pilot testing and revising questionnaires
A good way to estimate the time it will take respondents to complete your questionnaire (and other potential challenges) is through pilot testing . Pilot testing allows you to get feedback on your questionnaire so you can improve it before you actually administer it. It can be quite expensive and time consuming if you wish to pilot test your questionnaire on a large sample of people who very much resemble the sample to whom you will eventually administer the finalized version of your questionnaire. But you can learn a lot and make great improvements to your questionnaire simply by pilot testing with a small number of people to whom you have easy access (perhaps you have a few friends who owe you a favor). By pilot testing your questionnaire, you can find out how understandable your questions are, get feedback on question wording and order, find out whether any of your questions are boring or offensive, and learn whether there are places where you should have included filter questions. You can also time pilot testers as they take your survey. This will give you a good idea about the estimate to provide respondents when you administer your survey and whether you have some wiggle room to add additional items or need to cut a few items.
Perhaps this goes without saying, but your questionnaire should also have an attractive design. A messy presentation style can confuse respondents or, at the very least, annoy them. Be brief, to the point, and as clear as possible. Avoid cramming too much into a single page. Make your font size readable (at least 12 point or larger, depending on the characteristics of your sample), leave a reasonable amount of space between items, and make sure all instructions are exceptionally clear. If you are using an online survey, ensure that participants can complete it via mobile, computer, and tablet devices. Think about books, documents, articles, or web pages that you have read yourself—which were relatively easy to read and easy on the eyes and why? Try to mimic those features in the presentation of your survey questions. While online survey tools automate much of visual design, word processors are designed for writing all kinds of documents and may need more manual adjustment as part of visual design.
Realistically, your questionnaire will continue to evolve as you develop your data analysis plan over the next few chapters. By now, you should have a complete draft of your questionnaire grounded in an underlying logic that ties together each question and response option to a variable in your study. Once your questionnaire is finalized, you will need to submit it for ethical approval from your IRB. If your study requires IRB approval, it may be worthwhile to submit your proposal before your questionnaire is completely done. Revisions to IRB protocols are common and it takes less time to review a few changes to questions and answers than it does to review the entire study, so give them the whole study as soon as you can. Once the IRB approves your questionnaire, you cannot change it without their okay.
Key Takeaways
- A questionnaire is comprised of self-report measures of variables in a research study.
- Make sure your survey questions will be relevant to all respondents and that you use filter questions when necessary.
- Effective survey questions and responses take careful construction by researchers, as participants may be confused or otherwise influenced by how items are phrased.
- The questionnaire should start with informed consent and instructions, flow logically from one topic to the next, engage but not shock participants, and thank participants at the end.
- Pilot testing can help identify any issues in a questionnaire before distributing it to participants, including language or length issues.
It’s a myth that researchers work alone! Get together with a few of your fellow students and swap questionnaires for pilot testing.
- Use the criteria in each section above (questions, response options, questionnaires) and provide your peers with the strengths and weaknesses of their questionnaires.
- See if you can guess their research question and hypothesis based on the questionnaire alone.
It’s a myth that researchers work alone! Get together with a few of your fellow students and compare draft questionnaires.
- What are the strengths and limitations of your questionnaire as compared to those of your peers?
- Is there anything you would like to use from your peers’ questionnaires in your own?
- Babbie, E. (2010). The practice of social research (12th ed.). Belmont, CA: Wadsworth. ↵
- Krosnick, J.A. & Berent, M.K. (1993). Comparisons of party identification and policy preferences: The impact of survey question format. American Journal of Political Science, 27(3), 941-964. ↵
- Peterson, R. A. (2000). Constructing effective questionnaires . Thousand Oaks, CA: Sage. ↵
- Babbie, E. (2010). The practice of social research (12th ed.). Belmont, CA: Wadsworth; Dillman, D. A. (2000). Mail and Internet surveys: The tailored design method (2nd ed.). New York, NY: Wiley; Neuman, W. L. (2003). Social research methods: Qualitative and quantitative approaches (5th ed.). Boston, MA: Pearson. ↵
- Babbie, E. (2010). The practice of social research (12th ed.). Belmont, CA: Wadsworth. ↵
- Hopper, J. (2010). How long should a survey be? Retrieved from http://www.verstaresearch.com/blog/how-long-should-a-survey-be ↵
According to the APA Dictionary of Psychology, an operational definition is "a description of something in terms of the operations (procedures, actions, or processes) by which it could be observed and measured. For example, the operational definition of anxiety could be in terms of a test score, withdrawal from a situation, or activation of the sympathetic nervous system. The process of creating an operational definition is known as operationalization."
Triangulation of data refers to the use of multiple types, measures or sources of data in a research project to increase the confidence that we have in our findings.
Testing out your research materials in advance on people who are not included as participants in your study.
items on a questionnaire designed to identify some subset of survey respondents who are asked additional questions that are not relevant to the entire sample
a question that asks more than one thing at a time, making it difficult to respond accurately
When a participant answers in a way that they believe is socially the most acceptable answer.
the answers researchers provide to participants to choose from when completing a questionnaire
questions in which the researcher provides all of the response options
Questions for which the researcher does not include response options, allowing for respondents to answer the question in their own words
respondents to a survey who choose neutral response options, even if they have an opinion
respondents to a survey who choose a substantive answer to a question when really, they don’t understand the question or don’t have an opinion
An ordered outline that includes your research question, a description of the data you are going to use to answer it, and the exact analyses, step-by-step, that you plan to run to answer your research question.
A process through which the researcher explains the research process, procedures, risks and benefits to a potential participant, usually through a written document, which the participant than signs, as evidence of their agreement to participate.
a type of survey question that lists a set of questions for which the response options are all the same in a grid layout
Doctoral Research Methods in Social Work Copyright © by Mavs Open Press. All Rights Reserved.
Share This Book
Numbers, Facts and Trends Shaping Your World
Read our research on:
Full Topic List
Regions & Countries
- Publications
- Our Methods
- Short Reads
- Tools & Resources
Read Our Research On:
Writing Survey Questions
Perhaps the most important part of the survey process is the creation of questions that accurately measure the opinions, experiences and behaviors of the public. Accurate random sampling will be wasted if the information gathered is built on a shaky foundation of ambiguous or biased questions. Creating good measures involves both writing good questions and organizing them to form the questionnaire.
Questionnaire design is a multistage process that requires attention to many details at once. Designing the questionnaire is complicated because surveys can ask about topics in varying degrees of detail, questions can be asked in different ways, and questions asked earlier in a survey may influence how people respond to later questions. Researchers are also often interested in measuring change over time and therefore must be attentive to how opinions or behaviors have been measured in prior surveys.
Surveyors may conduct pilot tests or focus groups in the early stages of questionnaire development in order to better understand how people think about an issue or comprehend a question. Pretesting a survey is an essential step in the questionnaire design process to evaluate how people respond to the overall questionnaire and specific questions, especially when questions are being introduced for the first time.
For many years, surveyors approached questionnaire design as an art, but substantial research over the past forty years has demonstrated that there is a lot of science involved in crafting a good survey questionnaire. Here, we discuss the pitfalls and best practices of designing questionnaires.
Question development
There are several steps involved in developing a survey questionnaire. The first is identifying what topics will be covered in the survey. For Pew Research Center surveys, this involves thinking about what is happening in our nation and the world and what will be relevant to the public, policymakers and the media. We also track opinion on a variety of issues over time so we often ensure that we update these trends on a regular basis to better understand whether people’s opinions are changing.
At Pew Research Center, questionnaire development is a collaborative and iterative process where staff meet to discuss drafts of the questionnaire several times over the course of its development. We frequently test new survey questions ahead of time through qualitative research methods such as focus groups , cognitive interviews, pretesting (often using an online, opt-in sample ), or a combination of these approaches. Researchers use insights from this testing to refine questions before they are asked in a production survey, such as on the ATP.
Measuring change over time
Many surveyors want to track changes over time in people’s attitudes, opinions and behaviors. To measure change, questions are asked at two or more points in time. A cross-sectional design surveys different people in the same population at multiple points in time. A panel, such as the ATP, surveys the same people over time. However, it is common for the set of people in survey panels to change over time as new panelists are added and some prior panelists drop out. Many of the questions in Pew Research Center surveys have been asked in prior polls. Asking the same questions at different points in time allows us to report on changes in the overall views of the general public (or a subset of the public, such as registered voters, men or Black Americans), or what we call “trending the data”.
When measuring change over time, it is important to use the same question wording and to be sensitive to where the question is asked in the questionnaire to maintain a similar context as when the question was asked previously (see question wording and question order for further information). All of our survey reports include a topline questionnaire that provides the exact question wording and sequencing, along with results from the current survey and previous surveys in which we asked the question.
The Center’s transition from conducting U.S. surveys by live telephone interviewing to an online panel (around 2014 to 2020) complicated some opinion trends, but not others. Opinion trends that ask about sensitive topics (e.g., personal finances or attending religious services ) or that elicited volunteered answers (e.g., “neither” or “don’t know”) over the phone tended to show larger differences than other trends when shifting from phone polls to the online ATP. The Center adopted several strategies for coping with changes to data trends that may be related to this change in methodology. If there is evidence suggesting that a change in a trend stems from switching from phone to online measurement, Center reports flag that possibility for readers to try to head off confusion or erroneous conclusions.
Open- and closed-ended questions
One of the most significant decisions that can affect how people answer questions is whether the question is posed as an open-ended question, where respondents provide a response in their own words, or a closed-ended question, where they are asked to choose from a list of answer choices.
For example, in a poll conducted after the 2008 presidential election, people responded very differently to two versions of the question: “What one issue mattered most to you in deciding how you voted for president?” One was closed-ended and the other open-ended. In the closed-ended version, respondents were provided five options and could volunteer an option not on the list.
When explicitly offered the economy as a response, more than half of respondents (58%) chose this answer; only 35% of those who responded to the open-ended version volunteered the economy. Moreover, among those asked the closed-ended version, fewer than one-in-ten (8%) provided a response other than the five they were read. By contrast, fully 43% of those asked the open-ended version provided a response not listed in the closed-ended version of the question. All of the other issues were chosen at least slightly more often when explicitly offered in the closed-ended version than in the open-ended version. (Also see “High Marks for the Campaign, a High Bar for Obama” for more information.)
Researchers will sometimes conduct a pilot study using open-ended questions to discover which answers are most common. They will then develop closed-ended questions based off that pilot study that include the most common responses as answer choices. In this way, the questions may better reflect what the public is thinking, how they view a particular issue, or bring certain issues to light that the researchers may not have been aware of.
When asking closed-ended questions, the choice of options provided, how each option is described, the number of response options offered, and the order in which options are read can all influence how people respond. One example of the impact of how categories are defined can be found in a Pew Research Center poll conducted in January 2002. When half of the sample was asked whether it was “more important for President Bush to focus on domestic policy or foreign policy,” 52% chose domestic policy while only 34% said foreign policy. When the category “foreign policy” was narrowed to a specific aspect – “the war on terrorism” – far more people chose it; only 33% chose domestic policy while 52% chose the war on terrorism.
In most circumstances, the number of answer choices should be kept to a relatively small number – just four or perhaps five at most – especially in telephone surveys. Psychological research indicates that people have a hard time keeping more than this number of choices in mind at one time. When the question is asking about an objective fact and/or demographics, such as the religious affiliation of the respondent, more categories can be used. In fact, they are encouraged to ensure inclusivity. For example, Pew Research Center’s standard religion questions include more than 12 different categories, beginning with the most common affiliations (Protestant and Catholic). Most respondents have no trouble with this question because they can expect to see their religious group within that list in a self-administered survey.
In addition to the number and choice of response options offered, the order of answer categories can influence how people respond to closed-ended questions. Research suggests that in telephone surveys respondents more frequently choose items heard later in a list (a “recency effect”), and in self-administered surveys, they tend to choose items at the top of the list (a “primacy” effect).
Because of concerns about the effects of category order on responses to closed-ended questions, many sets of response options in Pew Research Center’s surveys are programmed to be randomized to ensure that the options are not asked in the same order for each respondent. Rotating or randomizing means that questions or items in a list are not asked in the same order to each respondent. Answers to questions are sometimes affected by questions that precede them. By presenting questions in a different order to each respondent, we ensure that each question gets asked in the same context as every other question the same number of times (e.g., first, last or any position in between). This does not eliminate the potential impact of previous questions on the current question, but it does ensure that this bias is spread randomly across all of the questions or items in the list. For instance, in the example discussed above about what issue mattered most in people’s vote, the order of the five issues in the closed-ended version of the question was randomized so that no one issue appeared early or late in the list for all respondents. Randomization of response items does not eliminate order effects, but it does ensure that this type of bias is spread randomly.
Questions with ordinal response categories – those with an underlying order (e.g., excellent, good, only fair, poor OR very favorable, mostly favorable, mostly unfavorable, very unfavorable) – are generally not randomized because the order of the categories conveys important information to help respondents answer the question. Generally, these types of scales should be presented in order so respondents can easily place their responses along the continuum, but the order can be reversed for some respondents. For example, in one of Pew Research Center’s questions about abortion, half of the sample is asked whether abortion should be “legal in all cases, legal in most cases, illegal in most cases, illegal in all cases,” while the other half of the sample is asked the same question with the response categories read in reverse order, starting with “illegal in all cases.” Again, reversing the order does not eliminate the recency effect but distributes it randomly across the population.
Question wording
The choice of words and phrases in a question is critical in expressing the meaning and intent of the question to the respondent and ensuring that all respondents interpret the question the same way. Even small wording differences can substantially affect the answers people provide.
[View more Methods 101 Videos ]
An example of a wording difference that had a significant impact on responses comes from a January 2003 Pew Research Center survey. When people were asked whether they would “favor or oppose taking military action in Iraq to end Saddam Hussein’s rule,” 68% said they favored military action while 25% said they opposed military action. However, when asked whether they would “favor or oppose taking military action in Iraq to end Saddam Hussein’s rule even if it meant that U.S. forces might suffer thousands of casualties, ” responses were dramatically different; only 43% said they favored military action, while 48% said they opposed it. The introduction of U.S. casualties altered the context of the question and influenced whether people favored or opposed military action in Iraq.
There has been a substantial amount of research to gauge the impact of different ways of asking questions and how to minimize differences in the way respondents interpret what is being asked. The issues related to question wording are more numerous than can be treated adequately in this short space, but below are a few of the important things to consider:
First, it is important to ask questions that are clear and specific and that each respondent will be able to answer. If a question is open-ended, it should be evident to respondents that they can answer in their own words and what type of response they should provide (an issue or problem, a month, number of days, etc.). Closed-ended questions should include all reasonable responses (i.e., the list of options is exhaustive) and the response categories should not overlap (i.e., response options should be mutually exclusive). Further, it is important to discern when it is best to use forced-choice close-ended questions (often denoted with a radio button in online surveys) versus “select-all-that-apply” lists (or check-all boxes). A 2019 Center study found that forced-choice questions tend to yield more accurate responses, especially for sensitive questions. Based on that research, the Center generally avoids using select-all-that-apply questions.
It is also important to ask only one question at a time. Questions that ask respondents to evaluate more than one concept (known as double-barreled questions) – such as “How much confidence do you have in President Obama to handle domestic and foreign policy?” – are difficult for respondents to answer and often lead to responses that are difficult to interpret. In this example, it would be more effective to ask two separate questions, one about domestic policy and another about foreign policy.
In general, questions that use simple and concrete language are more easily understood by respondents. It is especially important to consider the education level of the survey population when thinking about how easy it will be for respondents to interpret and answer a question. Double negatives (e.g., do you favor or oppose not allowing gays and lesbians to legally marry) or unfamiliar abbreviations or jargon (e.g., ANWR instead of Arctic National Wildlife Refuge) can result in respondent confusion and should be avoided.
Similarly, it is important to consider whether certain words may be viewed as biased or potentially offensive to some respondents, as well as the emotional reaction that some words may provoke. For example, in a 2005 Pew Research Center survey, 51% of respondents said they favored “making it legal for doctors to give terminally ill patients the means to end their lives,” but only 44% said they favored “making it legal for doctors to assist terminally ill patients in committing suicide.” Although both versions of the question are asking about the same thing, the reaction of respondents was different. In another example, respondents have reacted differently to questions using the word “welfare” as opposed to the more generic “assistance to the poor.” Several experiments have shown that there is much greater public support for expanding “assistance to the poor” than for expanding “welfare.”
We often write two versions of a question and ask half of the survey sample one version of the question and the other half the second version. Thus, we say we have two forms of the questionnaire. Respondents are assigned randomly to receive either form, so we can assume that the two groups of respondents are essentially identical. On questions where two versions are used, significant differences in the answers between the two forms tell us that the difference is a result of the way we worded the two versions.
One of the most common formats used in survey questions is the “agree-disagree” format. In this type of question, respondents are asked whether they agree or disagree with a particular statement. Research has shown that, compared with the better educated and better informed, less educated and less informed respondents have a greater tendency to agree with such statements. This is sometimes called an “acquiescence bias” (since some kinds of respondents are more likely to acquiesce to the assertion than are others). This behavior is even more pronounced when there’s an interviewer present, rather than when the survey is self-administered. A better practice is to offer respondents a choice between alternative statements. A Pew Research Center experiment with one of its routinely asked values questions illustrates the difference that question format can make. Not only does the forced choice format yield a very different result overall from the agree-disagree format, but the pattern of answers between respondents with more or less formal education also tends to be very different.
One other challenge in developing questionnaires is what is called “social desirability bias.” People have a natural tendency to want to be accepted and liked, and this may lead people to provide inaccurate answers to questions that deal with sensitive subjects. Research has shown that respondents understate alcohol and drug use, tax evasion and racial bias. They also may overstate church attendance, charitable contributions and the likelihood that they will vote in an election. Researchers attempt to account for this potential bias in crafting questions about these topics. For instance, when Pew Research Center surveys ask about past voting behavior, it is important to note that circumstances may have prevented the respondent from voting: “In the 2012 presidential election between Barack Obama and Mitt Romney, did things come up that kept you from voting, or did you happen to vote?” The choice of response options can also make it easier for people to be honest. For example, a question about church attendance might include three of six response options that indicate infrequent attendance. Research has also shown that social desirability bias can be greater when an interviewer is present (e.g., telephone and face-to-face surveys) than when respondents complete the survey themselves (e.g., paper and web surveys).
Lastly, because slight modifications in question wording can affect responses, identical question wording should be used when the intention is to compare results to those from earlier surveys. Similarly, because question wording and responses can vary based on the mode used to survey respondents, researchers should carefully evaluate the likely effects on trend measurements if a different survey mode will be used to assess change in opinion over time.
Question order
Once the survey questions are developed, particular attention should be paid to how they are ordered in the questionnaire. Surveyors must be attentive to how questions early in a questionnaire may have unintended effects on how respondents answer subsequent questions. Researchers have demonstrated that the order in which questions are asked can influence how people respond; earlier questions can unintentionally provide context for the questions that follow (these effects are called “order effects”).
One kind of order effect can be seen in responses to open-ended questions. Pew Research Center surveys generally ask open-ended questions about national problems, opinions about leaders and similar topics near the beginning of the questionnaire. If closed-ended questions that relate to the topic are placed before the open-ended question, respondents are much more likely to mention concepts or considerations raised in those earlier questions when responding to the open-ended question.
For closed-ended opinion questions, there are two main types of order effects: contrast effects ( where the order results in greater differences in responses), and assimilation effects (where responses are more similar as a result of their order).
An example of a contrast effect can be seen in a Pew Research Center poll conducted in October 2003, a dozen years before same-sex marriage was legalized in the U.S. That poll found that people were more likely to favor allowing gays and lesbians to enter into legal agreements that give them the same rights as married couples when this question was asked after one about whether they favored or opposed allowing gays and lesbians to marry (45% favored legal agreements when asked after the marriage question, but 37% favored legal agreements without the immediate preceding context of a question about same-sex marriage). Responses to the question about same-sex marriage, meanwhile, were not significantly affected by its placement before or after the legal agreements question.
Another experiment embedded in a December 2008 Pew Research Center poll also resulted in a contrast effect. When people were asked “All in all, are you satisfied or dissatisfied with the way things are going in this country today?” immediately after having been asked “Do you approve or disapprove of the way George W. Bush is handling his job as president?”; 88% said they were dissatisfied, compared with only 78% without the context of the prior question.
Responses to presidential approval remained relatively unchanged whether national satisfaction was asked before or after it. A similar finding occurred in December 2004 when both satisfaction and presidential approval were much higher (57% were dissatisfied when Bush approval was asked first vs. 51% when general satisfaction was asked first).
Several studies also have shown that asking a more specific question before a more general question (e.g., asking about happiness with one’s marriage before asking about one’s overall happiness) can result in a contrast effect. Although some exceptions have been found, people tend to avoid redundancy by excluding the more specific question from the general rating.
Assimilation effects occur when responses to two questions are more consistent or closer together because of their placement in the questionnaire. We found an example of an assimilation effect in a Pew Research Center poll conducted in November 2008 when we asked whether Republican leaders should work with Obama or stand up to him on important issues and whether Democratic leaders should work with Republican leaders or stand up to them on important issues. People were more likely to say that Republican leaders should work with Obama when the question was preceded by the one asking what Democratic leaders should do in working with Republican leaders (81% vs. 66%). However, when people were first asked about Republican leaders working with Obama, fewer said that Democratic leaders should work with Republican leaders (71% vs. 82%).
The order questions are asked is of particular importance when tracking trends over time. As a result, care should be taken to ensure that the context is similar each time a question is asked. Modifying the context of the question could call into question any observed changes over time (see measuring change over time for more information).
A questionnaire, like a conversation, should be grouped by topic and unfold in a logical order. It is often helpful to begin the survey with simple questions that respondents will find interesting and engaging. Throughout the survey, an effort should be made to keep the survey interesting and not overburden respondents with several difficult questions right after one another. Demographic questions such as income, education or age should not be asked near the beginning of a survey unless they are needed to determine eligibility for the survey or for routing respondents through particular sections of the questionnaire. Even then, it is best to precede such items with more interesting and engaging questions. One virtue of survey panels like the ATP is that demographic questions usually only need to be asked once a year, not in each survey.
U.S. Surveys
Other research methods.
901 E St. NW, Suite 300 Washington, DC 20004 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 | Media Inquiries
Research Topics
- Email Newsletters
ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan, nonadvocacy fact tank that informs the public about the issues, attitudes and trends shaping the world. It does not take policy positions. The Center conducts public opinion polling, demographic research, computational social science research and other data-driven research. Pew Research Center is a subsidiary of The Pew Charitable Trusts , its primary funder.
© 2024 Pew Research Center
An official website of the United States government
Official websites use .gov A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
- Publications
- Account settings
- Advanced Search
- Journal List
Practical Guidelines to Develop and Evaluate a Questionnaire
Kamal kishore, vidushi jaswal, vinay kulkarni, dipankar de.
- Author information
- Article notes
- Copyright and License information
Address for correspondence: Dr. Dipankar De, Additional Professor, Department of Dermatology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India. E-mail: [email protected]
Received 2020 Aug 21; Revised 2020 Dec 11; Accepted 2021 Jan 25; Collection date 2021 Mar-Apr.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Life expectancy is gradually increasing due to continuously improving medical and nonmedical interventions. The increasing life expectancy is desirable but brings in issues such as impairment of quality of life, disease perception, cognitive health, and mental health. Thus, questionnaire building and data collection through the questionnaires have become an active area of research. However, questionnaire development can be challenging and suboptimal in the absence of careful planning and user-friendly literature guide. Keeping in mind the intricacies of constructing a questionnaire, researchers need to carefully plan, document, and follow systematic steps to build a reliable and valid questionnaire. Additionally, questionnaire development is technical, jargon-filled, and is not a part of most of the graduate and postgraduate training. Therefore, this article is an attempt to initiate an understanding of the complexities of the questionnaire fundamentals, technical challenges, and sequential flow of steps to build a reliable and valid questionnaire.
Keywords: Instrument , psychometrics , questionnaire development , reliability , scale construction , validity
Introduction
There is an increase in the usage of the questionnaires to understand and measure patients' perception of medical and nonmedical care. Recently, with increased interest in quality of life associated with chronic diseases, there is a surge in the usage and types of questionnaires. The questionnaires are also known as scales and instruments. Their significant advantage is that they capture information about unobservable characteristics such as attitude, belief, intention, or behavior. The multiple items measuring specific domains of interest are required to obtain hidden (latent) information from participants. However, the importance of questions or items needs to be validated and evaluated individually and holistically.
The item formulation is an integral part of the scale construction. The literature consists of many approaches, such as Thurstone, Rasch, Gutmann, or Likert methods for framing an item. The Thurstone scale is labor intensive, time-consuming, and is practically not better than the Likert scale.[ 1 ] In the Guttman method, cumulative attributes of the respondents are measured with a group of items framed from the “easiest” to the “most difficult.” For example, for a stem, a participant may have to choose from options (a) stand, (b) walk, (c) jog, and (d) run. It requires a strict ordering of items. The Rasch method adds the stochastic component to the Guttman method which lay the foundation of modern and powerful technique item response theory for scale construction. All the approaches have their fair share of advantages and disadvantages. However, Likert scales based on classical testing theory are widely established and preferred by researchers to capture intrinsic characteristics. Therefore, in this article, we will discuss only psychometric properties required to build a Likert scale.
A hallmark of scientific research is that it needs to meet rigorous scientific standards. A questionnaire evaluates characteristics whose value can significantly change with time, place, and person. The error variance, along with systematic variation, plays a significant part in ascertaining unobservable characteristics. Therefore, it is critical to evaluate the instruments testing human traits rigorously. Such evaluations are known as psychometric evaluations in context to questionnaire development and validation. The scientific standards are available to select items, subscales, and entire scales. The researchers can broadly segment scientific criteria for a questionnaire into reliability and validity.
Despite increasing usage, many academicians grossly misunderstand the scales. The other complication is that many authors in the past did not adhere to the rigorous standards. Thus, the questionnaire-based research was criticized by many in the past for being a soft science.[ 2 ] The scale construction is also not a part of most of the graduate and postgraduate training. Given the previous discussion, the primary objective of this article is to sensitize researchers about the various intricacies and importance of each step for scale construction. The emphasis is also to make researcher aware and motivate to use multiple metrics to assess psychometric properties. Table 1 describes a glossary of essential terminologies used in context to questionnaire.
Glossary of important terms used in context to psychometric scale
The process of building a questionnaire starts with item generation, followed by questionnaire development, and concludes with rigorous scientific evaluation. Figure 1 summarizes the systematic steps and respective tasks at each stage to build a good questionnaire. There are specific essential requirements which are not directly a part of scale development and evaluation; however, these improve the utility of the instrument. The indirect but necessary conditions are documented and discussed under the miscellaneous category. We broadly segment and discuss the questionnaire development process under three domains, known as questionnaire development, questionnaire evaluation, and miscellaneous properties.
Flowchart demonstrating the various steps involved in the development of a questionnaire
Questionnaire Development
The development of the list of items is an essential and mandatory prerequisite for developing a good questionnaire. The researcher at this stage decides to utilize formats such as Guttman, Rasch, or Likert to frame items.[ 2 ] Further, the researcher carefully identifies the appropriate member of the expert panel group for face and content validity. Broadly, there are six steps in the scale development.
It is crucial to select appropriate questions (items) to capture the latent trait. An exhaustive list of items is the most critical and primary requisite to lay the foundation of a good questionnaire. It needs considerable work in terms of literature search, qualitative study, discussion with colleagues, other experts, general and targeted responders, and other questionnaires in and around the area of interest. General and targeted participants can also advise on items, wording, and smoothness of questionnaire as they will be the potential responders.
It is crucial to arrange and reword the pool of questions for eliminating ambiguity, technical jargon, and loading. Further, one should avoid using double-barreled, long, and negatively worded questions. Arrange all items systematically to form a preliminary draft of the questionnaire. After generating an initial draft, review the instrument for the flow of items, face validity and content validity before sending it to experts. The researcher needs to assess whether the items in the score are comprehensive (content validity) and appear to measure what it is supposed to measure (face validity). For example, does the scale measuring stress is measuring stress or is it measuring depression instead? There is no uniformity on the selection of a panel of experts. However, a general agreement is to use anywhere from a minimum of 5–15 experts in a group.[ 3 ] These experts will ascertain the face and content validity of the questionnaire. These are subjective and objective measures of validity, respectively.
It is advisable to prepare an appealing, jargon-free, and nontechnical cover letter explaining the purpose and description of the instrument. Further, it is better to include the reason/s for selecting the expert, scoring format, and explanations of response categories for the scale. It is advantageous to speak with experts telephonically, face to face, or electronically, requesting their participation before mailing the questionnaire. It is good to explain to them right in the beginning that this process unfolds over phases. The time allowed to respond can vary from hours to weeks. It is recommended to give at least 7 days to respond. However, a nonresponse needs to be followed up by a reminder email or call. Usually, this stage takes two to three rounds. Therefore, it is essential to engage with experts regularly; else there is a risk of nonresponse from the study. Table 2 gives general advice to researchers for making a cover letter. The researcher can modify the cover letter appropriately for their studies. The authors can consult Rubio and coauthors for more details regarding the drafting of a cover letter.[ 4 ]
General overview and the instructions for rating in the cover letter to be accompanied by the questionnaire
The responses from each round will help in rewording, rephrasing, and reordering of the items in the scale. Few questions may need deletion in the different rounds of previous steps. Therefore, it is better to evaluate content validity ratio (CVR), content validity index (CVI), and interrater agreement before deleting any question in the instrument. Readers can consult formulae in Table 2 for calculating CVR and CVI for the instrument. CVR is calculated and reported for the overall scale, whereas CVI is computed for each item. Researchers need to consult Lawshe table to determine the cutoff value for CVR as the same depends on the number of experts in the panel.[ 5 ] CVI >0.80 is recommended. Researchers interested in detail regarding CVR and CVI can read excellent articles written by Zamanzadeh et al . and Rubio et al .[ 4 , 6 ] It is crucial to compute CVR, CVI, and kappa agreement for each item from the rating of importance, representativeness, and clarity by experts. The CVR and CVI do not account for a chance factor. Since interrater agreement (IRA) incorporates chance factor; it is better to report CVR, CVI, and IRA measures.
The scholars require to address subtle issues before administering a questionnaire to responders for pilot testing. The introduction and format of the scale play a crucial role in mitigating doubts and maximizing response. The front page of the questionnaire provides an overview of the research without using technical words. Further, it includes roles and responsibilities of the participants, contact details of researchers, list of research ethics (such as voluntary participation, confidentiality and withdrawal, risks and benefits), and informed consent for participation in the study. It is also better to incorporate anchors (levels of Likert item) in each page at the top or bottom or both for ease and maximizing response. Readers can refer to Table 3 for detail.
A random set of questions with anchors at the top and bottom row
Pilot testing of an instrument in the target population is an important and essential requirement before testing on a large sample of individuals. It helps in the elimination or revision of poorly worded items. At this stage, it is better to use floor and ceiling effects to eliminate poorly discriminating items. Further, random interviews of 5–10 participants can help to mitigate the problems such as difficulty, relevance, confusion, and order of the questions before testing it on the study population. The general recommendations are to recruit a sample size between 30 and 100 for pilot testing.[ 4 ] Inter-question (item) correlation (IQC) and Cronbach's α can be assessed at this stage. The values less than 0.3 and 0.7, respectively, for IQC and reliability, are suspicious and candidate for elimination from the questionnaire. Cronbach's α, a measure of internal consistency and IQC of a scale, indicates researcher about the quality of items in measuring latent attribute at the initial stage. This process is important to refine and finalize the questionnaire before starting the testing of a questionnaire in study participants.
Questionnaire Evaluation
The preliminary items and the questionnaire until this stage have addressed issues of reliability, validity, and overall appeal in the target population. However, researchers need to rigorously evaluate the psychometric properties of the primary instrument before finally adopting. The first step in this process is to calculate the appropriate sample size for administering a preliminary questionnaire in the target group. The evaluations of various measures do not follow a sequential order like the previous stage. Nevertheless, these measures are critical to evaluate the reliability and validity of the questionnaire.
Correct data entry is the first requirement to evaluate the characteristics of a manually administered questionnaire. The primary need is to enter the data into an appropriate spreadsheet. Subsequently, clean the data for cosmetic and logical errors. Finally, prepare a master sheet, and data dictionary for analysis and reference to coding, respectively. Authors interested in more detail can read “Biostatistics Series.”[ 7 , 8 ] The data entry process of the questionnaire is like other cross-sectional study designs. The rows and columns represent participants and variables, respectively. It is better to enter the set of items with item numbers. First, it is tedious and time-consuming to find suitable variable names for many questions. Second, item numbers help in quick identification of significantly contributing and non-contributing items of the scale during the assessment of psychometric properties. Readers can see Table 4 for more detail.
A sample of data entry format
Descriptive statistics
Spreadsheets are easy and flexible for routine data entry and cleaning. However, the same lack the features of advanced statistical analysis. Therefore, the master sheet needs to be exported to appropriate software for advanced statistical analysis. Descriptive analysis is the usual first step which helps in understanding the fundamental characteristics of the data. Thus, report appropriate descriptive measures such as mean and standard deviation, and median and interquartile/interdecile range for continuous symmetric and asymmetric data, respectively.[ 9 ] Utilize exploratory tabular and graphical display to inspect the distribution of various items in the questionnaire. A stacked bar chart is a handy tool to investigate the distribution of data graphically. Further, ascertain linearity and lack of extreme multicollinearity at this stage. Any value of IQC >0.7 warrants further inspection for deletion or modification. Help from a good biostatistician is of great assistance for data analysis and reporting.
Missing data analysis
Missing data is the rule, not the exception. Majority of the researchers face difficulties of finding missing values in the data. There are usually three approaches to analyze incomplete data. The first approach is to “take all” which use all the available data for analysis. In the second method, the analyst deletes the participants and variables with gross missingness or both from the analysis process. The third scenario consists of estimating the percentage and type of missingness. The typically recommended threshold for the missingness is 5%.[ 10 ] There are broadly three types of missingness, such as missing completely at random, missing at random, and not missing at random. After identification of a missing mechanism, impute the data with single or multiple imputation approaches. Readers can refer to an excellent article written by Graham for more details about missing data.[ 11 ]
Sample size
The optimum sample size is a vital requisite to build a good questionnaire. There are many guidelines in the literature regarding recruiting an appropriate sample size. Literature broadly segments sample size approaches into three domains known as subject to variables ratio (SVR), minimum sample size, and factor loadings (FL). The factor analysis (FA) is a crucial component of questionnaire designing. Therefore, recent recommendations are to use FLs to determine sample size. Readers can consult Table 5 for sample size recommendations under various domains. Interested readers can refer to Beavers and colleagues for more detail.[ 12 ] The stability of the factors is essential to determine sample size. Therefore, data analysis from questionnaires validates the sample size after data collection. The Kaiser–Meyer–Olkin (KMO) criterion testing the adequacy of sample size is available in the majority of the statistical software packages. A higher value of KMO is an indicator of sufficient sample size for stable factor solution.
Sample size recommendations in the literature
SVR→Subject to variable ratio, FL→Factor loading
Correlation measures
The strength of relationships between the items is an imperative requisite for a stable factor solution. Therefore, the correlation matrix is calculated and ascertained for same. There are various recommendations of correlation coefficient; however, a value greater than 0.3 is a must.[ 13 ] A lower value of the correlation coefficient will fail to form a stable factor due to lack of commonality. The determinant and Bartlett's test of sphericity can be used to ascertain the stability of the factors. The determinant is a single value which ranges from zero to one. A nonzero determinant indicates that factors are possible. However, it is small in most of the studies and not easy to interpret. Therefore, Bartlett's test of sphericity is routinely used to infer that determinant is significantly different than zero.
Physical quantities such as height and weight are observable and measurable with instruments. However, many tools need regular calibration to be precise and accurate. The standardization in context to the questionnaire development is known as reliability and validity. The validity is the property which indicates that an instrument is measuring what it is supposed to measure. Validation is a continuous process which begins with the identification of domains and goes on till generalization. There are various measures to establish the validity of the instrument. Authors can consult Table 6 for different types of validity and their metrics.
Scientific standards to evaluate and report for constructing a good scale
MCAR: Missing completely at random; MAR: Missing at random; NMAR: Not missing at random; KMO: Kaiser-Meyer-Olkin; SD: Standard deviation; IQR: Interquartile range
Exploratory FA
FA assumes that there are underlying constructs (factors) which cannot be measured directly. Therefore, the investigator collects the exhaustive list of observed variables or responses representing underlying constructs. Researchers expect that variables or questions in the questionnaire correlate among themselves and load on the corresponding but a small number of factors. FA can be broadly segmented in exploratory factor analysis (EFA) and confirmatory factor analysis. The EFA is applied on the master sheet after assessing descriptive statistics such as tabular and graphical display, missing mechanism, sample size adequacy, IQC, and Bartlett's test in step 7 [ Figure 1 ]. The value of EFA is used at the initial stages to extract factors while constructing a questionnaire. It is especially important to identify an adequate number of factors for building a decent scale. The factors represent latent variables that explain variance in the observed data. First and the last factor explain maximum and minimum variance, respectively. There are multiple factor selection criteria, each with its advantages and disadvantages. It is better to utilize more than one approach for retaining factors during the initial extraction phase. Readers can consult Sindhuja et al . for the practical application of more than one-factor selection criteria.[ 14 ]
Kaiser's criterion
Kaiser's criterion is one of the most popular factor retention criteria. The basis of the Kaiser criterion is to explain the variance through the eigenvalue approach. A factor with more than one eigenvalue is the candidate for retention.[ 15 ] An eigenvalue bigger than one simply means that a single factor is explaining variance for more than one observed variable. However, there is a dearth of scientifically rigorous studies to declare a cutoff value for Kaiser's criterion. Many authors highlighted that the Kaiser criterion over-extract and under-extract factors.[ 16 , 17 ] Therefore, investigators need to calculate and consider other measures for extraction of factors.
Cattell's scree plot
Cattell's scree plot is another widespread eigenvalue-based factor selection criterion used by researchers. It is popularly known as scree plot. The scree plot assigns the eigenvalues on the y -axis against the number of factors in the x -axis. The factors with highest to lowest eigenvalues are plotted from left to right on the x -axis. Usually, the scree plots form an elbow which indicates the cutoff point for factor extraction. The location or the bend at which the curve first begins to straighten out indicates the maximum number of factors to retain. A significant disadvantage of the scree plot is the subjectivity of the researcher's perception of the “elbow” in the plot. Researchers can see Figure 2 for detail.
A hypothetical example showing the researcher's dilemma of selecting 6, 10, or 15 factors through scree plot
Percentage of variance
The variance extraction criterion is another criterion to retain the number of factors. The literature recommendation varies from more than a minimum of 50–70% onward.[ 12 ] However, both the number of items and factors will increase dramatically if there are a large number of manifest (observed) variables. Practically, the percentage of variance explained mechanism should be used judiciously along with FL. The FLs with greater than 0.4 value are preferred; however, there are recommendations to use a value higher than 0.30.[ 3 , 15 , 18 ]
Very simple structure
Very simple structure (VSS) approach is a symbiosis of theory, psychometrics, and statistical analysis. The VSS criterion compares the fit of the simplified model to the original correlations. It plots the goodness-of-fit value as a function of several factors rather than statistical significance. The number of factors that maximizes the VSS criterion suggests the optimal number of factors to extract. VSS criterion facilitates comparison of a different number of factors for varying complexity. VSS will be highest at the optimum number of factors.[ 19 ] However, it is not efficient for factorially complex data.
Parallel analysis
Parallel analysis (PA) is a statistical theory-based robust technique to identify the appropriate number of factors. It is the only technique which accounts for the probability that a factor is due to chance. PA simulates data to generate 95 th percentile cutoff line on a scree plot restricted upon the number of items and sample size in original data. The factors above the cutoff line are not due to chance. PA is the most robust empirical technique to retain the appropriate number of factors.[ 16 , 20 ] However, it should be used cautiously for the eigenvalue near the 95 th percentile cutoff line. PA is also robust to distributional assumptions of the data. Since different techniques have their fair share of advantages and disadvantages, researchers need to assess information on the basis of multiple criteria.
Reliability
Reliability, an essential requisite of a scale, is also known as reproducibility, repeatability, and consistency. It identifies that the instrument is consistently measuring the attribute under identical conditions. Reliability is a necessary characteristic of a tool. The trustworthiness of a scale can be increased by increasing and decreasing the systematic and random component, respectively. The reliability of an instrument can be further segmented and measured with various indices. Reliability is important but it is secondary to validity. Therefore, it is ideal to calculate and report reliability after validity. However, there are no hard and fast rules except that both are necessary and important measures. Readers may consult Table 6 for multiple types of indices for reliability.
Internal consistency
Cronbach's alpha (α), also known as α-coefficient, is one of the most used statistics to report internal consistency reliability. The internal consistency using the interitem correlations suggests the cohesiveness of items in a questionnaire. However, the α-coefficient is sample-specific; thus, the literature recommends the same to calculate and report for all the studies. Ideally, a value of α >0.70 is preferred; however, the value of α >0.60 is also accepted for construction of new scale.[ 21 , 22 ] Researchers can increase the α-coefficient by adding items in the scale. However, a value can either reduce with the addition of non-correlated items or deletion of correlated items. Corrected interitem correlation is another popular measure to report for internal consistency. A value of α <0.3 indicates the presence of nonrelated items. The studies claim that coefficient beta (β) and omega (Ω) are better indices than coefficient-α, but there is a scarcity of literature reporting these indices.[ 23 ]
Test–retest
Test–retest reliability measures the stability of an instrument over time. In other words, it measures the consistency of scores over time. However, the appropriate time between repeated measures is a debatable issue. Pearson's product-moment and intraclass correlation coefficient measure and report test–retest reliability. A high value of correlation >0.70 represents high reliability.[ 21 ] The change in study condition (recovery of patients after intervention) over time can decrease test–retest reliability. Therefore, it is important to report the time between repeated measures while reporting test–retest reliability.
Parallel forms and split-half reliability
Parallel form reliability is also known as an alternate form of consistency. There are two types of option to report parallel form reliability. In the first method, different but similar items make alternative forms of the test. The assumptions of both the assessment are that they measure the same phenomenon or underlying construct. It addresses the twin issues of time and knowledge acquisition of test in test–retest reliability. In the second approach, the researcher randomly divides the total items of an instrument into two halves. The calculation of parallel form from two halves is known as split-half reliability. However, randomly divided half may not be similar. The parallel from and split-half reliability are reported with the correlation coefficient. The recommendations are to use a value higher than 0.80 to assess the alternate form of consistency.[ 24 ] It is challenging to generate two types of tests in clinical studies. Therefore, researchers rarely report reliability from two analogous but separate tests.
General Questionnaire Properties
The major issues regarding the reliability and validity of scale development have already been discussed. However, there are many other subtle issues for developing a good questionnaire. These delicate issues may vary from a choice of Likert items, length of the instrument, cover letter, web or internet mode of data collection, and weighting of scale. The immediately preceding issues demand careful deliberation and attention from the researcher. Therefore, the researcher should carefully think through all these issues to build a good questionnaire.
Likert items
The Likert items are the fixed choice ordinal items which capture attitude, belief, and various other latent domains. The subsequent step is to rank the questions of the Likert scale for further analysis. The numerals for ranking can either start from 0 or 1. It does not make a difference. The Likert scale is primarily bipolar as opposite ends endorse the contrary idea.[ 2 ] These are the type of items which express opinions on a measure from strong disagreement to strong agreement. The adjectival scales are unipolar scale that tends to measure variables like pain intensity (no pain/mild pain/moderate pain/severe pain) in one direction. However, the Likert scale (most likely–least likely) can measure almost any attribute. The Likert scale can either have odd or even categories; however, odd categories are more popular. The number of classifications in the Likert scale can vary from anywhere between 3 and 11,[ 2 ] although the scale with 5 and 7 classes have displayed better statistical properties for discriminating between responses.[ 2 , 24 ]
Length of questionnaire
A good questionnaire needs to include many items to capture the construct of interest. Therefore, investigators need to collect as many questions as possible. However, the lengthier scale increases both time and cost. The response rate also decreases with an increase in the length of the questionnaire.[ 25 ] Although what is lengthy is debatable and varies from more than 4 pages to 12 pages in various studies,[ 26 ] the longer scales increase the false positivity rate.[ 27 ]
Translating a questionnaire
Many a time, there are already existing reliable and valid questionnaires for use. However, the expert needs to assess two immediate and important criteria of cultural sensitivity and language of the scale. Many sensitive questions on sexual preferences, political orientations, societal structure, and religion may be open for discussion in certain societies, religions, and cultures, whereas the same may be taboo or receive misreporting in others. The sensitive questions need to be reframed considering regional sentiments and culture in mind. Further, a questionnaire in different language needs to be translated by a minimum of two independent bilingual translators. Similarly, the translated questionnaire needs to be translated back into the original language by a minimum of two independent and different bilingual experts who converted the original questionnaire. The process of converting the original questionnaire to the targeted language and then back to the original language is known as forward and backward translation. The subsequent steps such as expert panel group, pilot testing, reliability, and validity for translating a questionnaire remain the same as in constructing a new scale.
Web-based or paper-based
Broadly, paper and electronic format are the two modes of administering a questionnaire to the participants. Both techniques have advantages and disadvantages. The response rate is a significant issue in self-administered scales. The significant benefits of electronic format are the reduction in cost, time, and data cleaning requirements. In contrast, paper-based administration of questionnaire increases external generalization, paper feel, and no need of internet. As per Greenlaw and Welty, the response rate improves with the availability of both the options to participants. However, cost and time increase in comparison to the usage of electronic format alone.[ 27 ]
Item order and weights
There are multiple ways to order an item in a questionnaire. The order of questions becomes more critical for a lengthy questionnaire. There are different opinions about either grouping or mixing the issues in an instrument.[ 24 ] Grouping inflates intra-scale correlation, whereas mixing inflates inter-scale correlation.[ 28 ] Both the approaches have empirically shown to give similar results for at least 20 or more items. The questions related to a particular domain can be assigned either equal or unequal weights. There are two mechanisms to assign unequal weights in a questionnaire. In the first situation, researchers affix different importance to items. In the second method, the investigators frame more or fewer questions as per the importance of subscales in the scale.
The fundamental triad of science is accuracy, precision, and objectivity. The increasing usage of questionnaires in medical sciences requires rigorous scientific evaluations before finally adopting it for routine use. There are no standard guidelines for questionnaire development, evaluation, and reporting in contrast to guidelines such as CONSORT, PRISMA, and STROBE for treatment development, evaluation, and reporting. In this article, we emphasize on the systematic and structured approach for building a good questionnaire. Failure to meet the questionnaire development standards may lead to biased, unreliable, and inaccurate study finding. Therefore, the general guidelines given in this article can be used to develop and validate an instrument before routine use.
Financial support and sponsorship
Conflicts of interest.
There are no conflicts of interest.
- 1. Streiner DL, Norman GR, Cairney J. Health Measurement Scales: A Practical Guide to their Development and Use. USA: Oxford University Press; 2015. [ Google Scholar ]
- 2. Chapple ILC. Questionnaire research: An easy option? Br Dent J. 2003;195:359. doi: 10.1038/sj.bdj.4810554. [ DOI ] [ PubMed ] [ Google Scholar ]
- 3. Boateng GO, Neilands TB, Frongillo EA, Melgar-Quiñonez HR, Young SL. Best practices for developing and validating scales for health, social, and behavioral research: A primer. Front Public Health. 2018;6:149. doi: 10.3389/fpubh.2018.00149. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 4. Rubio DM, Berg-Weger M, Tebb SS, Lee ES, Rauch S. Objectifying content validity: Conducting a content validity study in social work research. Soc Work Res. 2003;27:94–104. [ Google Scholar ]
- 5. Lawshe CH. A quantitative approach to content validity. Pers Pschol. 1975;28:563–75. [ Google Scholar ]
- 6. Zamanzadeh V, Ghahramanian A, Rassouli M, Abbaszadeh A, Alavi-Majd H, Nikanfar AR. Design and implementation content validity study: Development of an instrument for measuring patient-centered communication. J Caring Sci. 2015;4:165–78. doi: 10.15171/jcs.2015.017. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 7. Kishore K, Kapoor R. Statistics corner: Structured data entry. J Postgr Med Educ Res. 2019;53:94–7. [ Google Scholar ]
- 8. Kishore K, Kapoor R, Singh A. Statistics corner: Data cleaning-I. J Postgrad Med Educ Res. 2019;53:130–2. [ Google Scholar ]
- 9. Kishore K, Kapoor R. Statistics corner: Reporting descriptive statistics. J Postgrad Med Educ Res. 2020;54:66–8. [ Google Scholar ]
- 10. Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials–A practical guide with flowcharts. BMC Med Res Methodol. 2017;17:162. doi: 10.1186/s12874-017-0442-1. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 11. Graham JW. Missing data analysis: Making it work in the real world. Annu Rev Psychol. 2009;60:549–76. doi: 10.1146/annurev.psych.58.110405.085530. [ DOI ] [ PubMed ] [ Google Scholar ]
- 12. Beavers AS, Lounsbury JW, Richards JK, Huck SW. Practical considerations for using exploratory factor analysis in educational research. Pract Assessment Res Eval. 2013;18:6. [ Google Scholar ]
- 13. Rattray J, Jones MC. Essential elements of questionnaire design and development. J Clin Nurs. 2007;16:234–43. doi: 10.1111/j.1365-2702.2006.01573.x. [ DOI ] [ PubMed ] [ Google Scholar ]
- 14. Sindhuja T, De D, Handa S, Goel S, Mahajan R, Kishore K. Pemphigus oral lesions intensity score (POLIS): A novel scoring system for assessment of severity of oral lesions in pemphigus vulgaris. Front Med. 2020;7:449. doi: 10.3389/fmed.2020.00449. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 15. Costello AB, Osborne J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract assessment Res Eval. 2005;10:7. [ Google Scholar ]
- 16. Wood ND, Akloubou Gnonhosou DC, Bowling JW. Combining parallel and exploratory factor analysis in identifying relationship scales in secondary data. Marriage Fam Rev. 2015;51:385–95. doi: 10.1080/01494929.2015.1059785. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 17. Yang Y, Xia Y. On the number of factors to retain in exploratory factor analysis for ordered categorical data. Behav Res Methods. 2015;47:756–72. doi: 10.3758/s13428-014-0499-2. [ DOI ] [ PubMed ] [ Google Scholar ]
- 18. Revelle W, Rocklin T. Very simple structure: An alternative procedure for estimating the optimal number of interpretable factors. Multivariate Behav Res. 1979;14:403–14. doi: 10.1207/s15327906mbr1404_2. [ DOI ] [ PubMed ] [ Google Scholar ]
- 19. Dinno A. Exploring the sensitivity of Horn's parallel analysis to the distributional form of random data. Multivariate Behav Res. 2009;44:362–88. doi: 10.1080/00273170902938969. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 20. DeVon HA, Block ME, Moyle-Wright P, Ernst DM, Hayden SJ, Lazzara DJ, et al. A psychometric toolbox for testing validity and reliability. J Nurs Scholarsh. 2007;39:155–64. doi: 10.1111/j.1547-5069.2007.00161.x. [ DOI ] [ PubMed ] [ Google Scholar ]
- 21. Straub D, Boudreau MC, Gefen D. Validation guidelines for IS positivist research. Commun Assoc Inf Syst. 2004;13:24. [ Google Scholar ]
- 22. Revelle W, Zinbarg RE. Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika. 2009;74:145. [ Google Scholar ]
- 23. Robinson MA. Using multi-item psychometric scales for research and practice in human resource management. Hum Resour Manag. 2018;57:739–50. [ Google Scholar ]
- 24. Edwards P, Roberts I, Sandercock P, Frost C. Follow-up by mail in clinical trials: Does questionnaire length matter? Control Clin Trials. 2004;25:31–52. doi: 10.1016/j.cct.2003.08.013. [ DOI ] [ PubMed ] [ Google Scholar ]
- 25. Sahlqvist S, Song Y, Bull F, Adams E, Preston J, Ogilvie D, et al. Effect of questionnaire length, personalisation and reminder type on response rate to a complex postal survey: Randomised controlled trial. BMC Med Res Methodol. 2011;11:62. doi: 10.1186/1471-2288-11-62. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 26. Edwards P. Questionnaires in clinical trials: Guidelines for optimal design and administration. Trials. 2010;11:2. doi: 10.1186/1745-6215-11-2. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 27. Greenlaw C, Brown-Welty S. A comparison of web-based and paper-based survey methods: Testing assumptions of survey mode and response cost. Eval Rev. 2009;33:464–80. doi: 10.1177/0193841X09340214. [ DOI ] [ PubMed ] [ Google Scholar ]
- 28. Podsakoff PM, MacKenzie SB, Lee JY, Podsakoff NP. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J Appl Psychol. 2003;88:879–903. doi: 10.1037/0021-9010.88.5.879. [ DOI ] [ PubMed ] [ Google Scholar ]
- View on publisher site
- PDF (723.3 KB)
- Collections
Similar articles
Cited by other articles, links to ncbi databases.
- Download .nbib .nbib
- Format: AMA APA MLA NLM
Add to Collections
How to Design Effective Research Questionnaires for Robust Findings
As a staple in data collection, questionnaires help uncover robust and reliable findings that can transform industries, shape policies, and revolutionize understanding. Whether you are exploring societal trends or delving into scientific phenomena, the effectiveness of your research questionnaire can make or break your findings.
In this article, we aim to understand the core purpose of questionnaires, exploring how they serve as essential tools for gathering systematic data, both qualitative and quantitative, from diverse respondents. Read on as we explore the key elements that make up a winning questionnaire, the art of framing questions which are both compelling and rigorous, and the careful balance between simplicity and depth.
Table of Contents
The Role of Questionnaires in Research
So, what is a questionnaire? A questionnaire is a structured set of questions designed to collect information, opinions, attitudes, or behaviors from respondents. It is one of the most commonly used data collection methods in research. Moreover, questionnaires can be used in various research fields, including social sciences, market research, healthcare, education, and psychology. Their adaptability makes them suitable for investigating diverse research questions.
Questionnaire and survey are two terms often used interchangeably, but they have distinct meanings in the context of research. A survey refers to the broader process of data collection that may involve various methods. A survey can encompass different data collection techniques, such as interviews , focus groups, observations, and yes, questionnaires.
Pros and Cons of Using Questionnaires in Research:
While questionnaires offer numerous advantages in research, they also come with some disadvantages that researchers must be aware of and address appropriately. Careful questionnaire design, validation, and consideration of potential biases can help mitigate these disadvantages and enhance the effectiveness of using questionnaires as a data collection method.
Structured vs Unstructured Questionnaires
Structured questionnaire:.
A structured questionnaire consists of questions with predefined response options. Respondents are presented with a fixed set of choices and are required to select from those options. The questions in a structured questionnaire are designed to elicit specific and quantifiable responses. Structured questionnaires are particularly useful for collecting quantitative data and are often employed in surveys and studies where standardized and comparable data are necessary.
Advantages of Structured Questionnaires:
- Easy to analyze and interpret: The fixed response options facilitate straightforward data analysis and comparison across respondents.
- Efficient for large-scale data collection: Structured questionnaires are time-efficient, allowing researchers to collect data from a large number of respondents.
- Reduces response bias: The predefined response options minimize potential response bias and maintain consistency in data collection.
Limitations of Structured Questionnaires:
- Lack of depth: Structured questionnaires may not capture in-depth insights or nuances as respondents are limited to pre-defined response choices. Hence, they may not reveal the reasons behind respondents’ choices, limiting the understanding of their perspectives.
- Limited flexibility: The fixed response options may not cover all potential responses, therefore, potentially restricting respondents’ answers.
Unstructured Questionnaire:
An unstructured questionnaire consists of questions that allow respondents to provide detailed and unrestricted responses. Unlike structured questionnaires, there are no predefined response options, giving respondents the freedom to express their thoughts in their own words. Furthermore, unstructured questionnaires are valuable for collecting qualitative data and obtaining in-depth insights into respondents’ experiences, opinions, or feelings.
Advantages of Unstructured Questionnaires:
- Rich qualitative data: Unstructured questionnaires yield detailed and comprehensive qualitative data, providing valuable and novel insights into respondents’ perspectives.
- Flexibility in responses: Respondents have the freedom to express themselves in their own words. Hence, allowing for a wide range of responses.
Limitations of Unstructured Questionnaires:
- Time-consuming analysis: Analyzing open-ended responses can be time-consuming, since, each response requires careful reading and interpretation.
- Subjectivity in interpretation: The analysis of open-ended responses may be subjective, as researchers interpret and categorize responses based on their judgment.
- May require smaller sample size: Due to the depth of responses, researchers may need a smaller sample size for comprehensive analysis, making generalizations more challenging.
Types of Questions in a Questionnaire
In a questionnaire, researchers typically use the following most common types of questions to gather a variety of information from respondents:
1. Open-Ended Questions:
These questions allow respondents to provide detailed and unrestricted responses in their own words. Open-ended questions are valuable for gathering qualitative data and in-depth insights.
Example: What suggestions do you have for improving our product?
2. Multiple-Choice Questions
Respondents choose one answer from a list of provided options. This type of question is suitable for gathering categorical data or preferences.
Example: Which of the following social media/academic networking platforms do you use to promote your research?
- ResearchGate
- Academia.edu
3. Dichotomous Questions
Respondents choose between two options, typically “yes” or “no”, “true” or “false”, or “agree” or “disagree”.
Example: Have you ever published in open access journals before?
4. Scaling Questions
These questions, also known as rating scale questions, use a predefined scale that allows respondents to rate or rank their level of agreement, satisfaction, importance, or other subjective assessments. These scales help researchers quantify subjective data and make comparisons across respondents.
There are several types of scaling techniques used in scaling questions:
i. Likert Scale:
The Likert scale is one of the most common scaling techniques. It presents respondents with a series of statements and asks them to rate their level of agreement or disagreement using a range of options, typically from “strongly agree” to “strongly disagree”.For example: Please indicate your level of agreement with the statement: “The content presented in the webinar was relevant and aligned with the advertised topic.”
- Strongly Agree
- Strongly Disagree
ii. Semantic Differential Scale:
The semantic differential scale measures respondents’ perceptions or attitudes towards an item using opposite adjectives or bipolar words. Respondents rate the item on a scale between the two opposites. For example:
- Easy —— Difficult
- Satisfied —— Unsatisfied
- Very likely —— Very unlikely
iii. Numerical Rating Scale:
This scale requires respondents to provide a numerical rating on a predefined scale. It can be a simple 1 to 5 or 1 to 10 scale, where higher numbers indicate higher agreement, satisfaction, or importance.
iv. Ranking Questions:
Respondents rank items in order of preference or importance. Ranking questions help identify preferences or priorities.
Example: Please rank the following features of our app in order of importance (1 = Most Important, 5 = Least Important):
- User Interface
- Functionality
- Customer Support
By using a mix of question types, researchers can gather both quantitative and qualitative data, providing a comprehensive understanding of the research topic and enabling meaningful analysis and interpretation of the results. The choice of question types depends on the research objectives , the desired depth of information, and the data analysis requirements.
Methods of Administering Questionnaires
There are several methods for administering questionnaires, and the choice of method depends on factors such as the target population, research objectives , convenience, and resources available. Here are some common methods of administering questionnaires:
Each method has its advantages and limitations. Online surveys offer convenience and a large reach, but they may be limited to individuals with internet access. Face-to-face interviews allow for in-depth responses but can be time-consuming and costly. Telephone surveys have broad reach but may be limited by declining response rates. Researchers should choose the method that best suits their research objectives, target population, and available resources to ensure successful data collection.
How to Design a Questionnaire
Designing a good questionnaire is crucial for gathering accurate and meaningful data that aligns with your research objectives. Here are essential steps and tips to create a well-designed questionnaire:
1. Define Your Research Objectives : Clearly outline the purpose and specific information you aim to gather through the questionnaire.
2. Identify Your Target Audience : Understand respondents’ characteristics and tailor the questionnaire accordingly.
3. Develop the Questions :
- Write Clear and Concise Questions
- Avoid Leading or Biasing Questions
- Sequence Questions Logically
- Group Related Questions
- Include Demographic Questions
4. Provide Well-defined Response Options : Offer exhaustive response choices for closed-ended questions.
5. Consider Skip Logic and Branching : Customize the questionnaire based on previous answers.
6. Pilot Test the Questionnaire : Identify and address issues through a pilot study .
7. Seek Expert Feedback : Validate the questionnaire with subject matter experts.
8. Obtain Ethical Approval : Comply with ethical guidelines , obtain consent, and ensure confidentiality before administering the questionnaire.
9. Administer the Questionnaire : Choose the right mode and provide clear instructions.
10. Test the Survey Platform : Ensure compatibility and usability for online surveys.
By following these steps and paying attention to questionnaire design principles, you can create a well-structured and effective questionnaire that gathers reliable data and helps you achieve your research objectives.
Characteristics of a Good Questionnaire
A good questionnaire possesses several essential elements that contribute to its effectiveness. Furthermore, these characteristics ensure that the questionnaire is well-designed, easy to understand, and capable of providing valuable insights. Here are some key characteristics of a good questionnaire:
1. Clarity and Simplicity : Questions should be clear, concise, and unambiguous. Avoid using complex language or technical terms that may confuse respondents. Simple and straightforward questions ensure that respondents interpret them consistently.
2. Relevance and Focus : Each question should directly relate to the research objectives and contribute to answering the research questions. Consequently, avoid including extraneous or irrelevant questions that could lead to data clutter.
3. Mix of Question Types : Utilize a mix of question types, including open-ended, Likert scale, and multiple-choice questions. This variety allows for both qualitative and quantitative data collections .
4. Validity and Reliability : Ensure the questionnaire measures what it intends to measure (validity) and produces consistent results upon repeated administration (reliability). Validation should be conducted through expert review and previous research.
5. Appropriate Length : Keep the questionnaire’s length appropriate and manageable to avoid respondent fatigue or dropouts. Long questionnaires may result in incomplete or rushed responses.
6. Clear Instructions : Include clear instructions at the beginning of the questionnaire to guide respondents on how to complete it. Explain any technical terms, formats, or concepts if necessary.
7. User-Friendly Format : Design the questionnaire to be visually appealing and user-friendly. Use consistent formatting, adequate spacing, and a logical page layout.
8. Data Validation and Cleaning : Incorporate validation checks to ensure data accuracy and reliability. Consider mechanisms to detect and correct inconsistent or missing responses during data cleaning.
By incorporating these characteristics, researchers can create a questionnaire that maximizes data quality, minimizes response bias, and provides valuable insights for their research.
In the pursuit of advancing research and gaining meaningful insights, investing time and effort into designing effective questionnaires is a crucial step. A well-designed questionnaire is more than a mere set of questions; it is a masterpiece of precision and ingenuity. Each question plays a vital role in shaping the narrative of our research, guiding us through the labyrinth of data to meaningful conclusions. Indeed, a well-designed questionnaire serves as a powerful tool for unlocking valuable insights and generating robust findings that impact society positively.
Have you ever designed a research questionnaire? Reflect on your experience and share your insights with researchers globally through Enago Academy’s Open Blogging Platform . Join our diverse community of 1000K+ researchers and authors to exchange ideas, strategies, and best practices, and together, let’s shape the future of data collection and maximize the impact of questionnaires in the ever-evolving landscape of research.
Frequently Asked Questions
A research questionnaire is a structured tool used to gather data from participants in a systematic manner. It consists of a series of carefully crafted questions designed to collect specific information related to a research study.
Questionnaires play a pivotal role in both quantitative and qualitative research, enabling researchers to collect insights, opinions, attitudes, or behaviors from respondents. This aids in hypothesis testing, understanding, and informed decision-making, ensuring consistency, efficiency, and facilitating comparisons.
Questionnaires are a versatile tool employed in various research designs to gather data efficiently and comprehensively. They find extensive use in both quantitative and qualitative research methodologies, making them a fundamental component of research across disciplines. Some research designs that commonly utilize questionnaires include: a) Cross-Sectional Studies b) Longitudinal Studies c) Descriptive Research d) Correlational Studies e) Causal-Comparative Studies f) Experimental Research g) Survey Research h) Case Studies i) Exploratory Research
A survey is a comprehensive data collection method that can include various techniques like interviews and observations. A questionnaire is a specific set of structured questions within a survey designed to gather standardized responses. While a survey is a broader approach, a questionnaire is a focused tool for collecting specific data.
The choice of questionnaire type depends on the research objectives, the type of data required, and the preferences of respondents. Some common types include: • Structured Questionnaires: These questionnaires consist of predefined, closed-ended questions with fixed response options. They are easy to analyze and suitable for quantitative research. • Semi-Structured Questionnaires: These questionnaires combine closed-ended questions with open-ended ones. They offer more flexibility for respondents to provide detailed explanations. • Unstructured Questionnaires: These questionnaires contain open-ended questions only, allowing respondents to express their thoughts and opinions freely. They are commonly used in qualitative research.
Following these steps ensures effective questionnaire administration for reliable data collection: • Choose a Method: Decide on online, face-to-face, mail, or phone administration. • Online Surveys: Use platforms like SurveyMonkey • Pilot Test: Test on a small group before full deployment • Clear Instructions: Provide concise guidelines • Follow-Up: Send reminders if needed
Thank you, Riya. This is quite helpful. As discussed, response bias is one of the disadvantages in the use of questionnaires. One way to help limit this can be to use scenario based questions. These type of questions may help the respondents to be more reflective and active in the process.
Thank you, Dear Riya. This is quite helpful.
Great insights there Doc
Rate this article Cancel Reply
Your email address will not be published.
Enago Academy's Most Popular Articles
- Promoting Research
Graphical Abstracts Vs. Infographics: Best practices for using visual illustrations for increased research impact
Dr. Sarah Chen stared at her computer screen, her eyes staring at her recently published…
- Publishing Research
10 Tips to Prevent Research Papers From Being Retracted
Research paper retractions represent a critical event in the scientific community. When a published article…
- Industry News
Google Releases 2024 Scholar Metrics, Evaluates Impact of Scholarly Articles
Google has released its 2024 Scholar Metrics, assessing scholarly articles from 2019 to 2023. This…
Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers
Academic integrity is the foundation upon which the credibility and value of scientific findings are…
- Reporting Research
How to Optimize Your Research Process: A step-by-step guide
For researchers across disciplines, the path to uncovering novel findings and insights is often filled…
Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…
Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…
Research Recommendations – Guiding policy-makers for evidence-based decision making
Sign-up to read more
Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:
- 2000+ blog articles
- 50+ Webinars
- 10+ Expert podcasts
- 50+ Infographics
- 10+ Checklists
- Research Guides
We hate spam too. We promise to protect your privacy and never spam you.
- AI in Academia
- Career Corner
- Diversity and Inclusion
- Infographics
- Expert Video Library
- Other Resources
- Enago Learn
- Upcoming & On-Demand Webinars
- Open Access Week 2024
- Peer Review Week 2024
- Publication Integrity Week 2024
- Conference Videos
- Enago Report
- Journal Finder
- Enago Plagiarism & AI Grammar Check
- Editing Services
- Publication Support Services
- Research Impact
- Translation Services
- Publication solutions
- AI-Based Solutions
- Thought Leadership
- Call for Articles
- Call for Speakers
- Author Training
- Edit Profile
I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:
Which among these would you prefer the most for improving research integrity?
IMAGES
VIDEO
COMMENTS
Questionnaires vs. surveys. A survey is a research method where you collect and analyze data from a group of people. A questionnaire is a specific tool or instrument for collecting the data.. Designing a questionnaire means creating valid and reliable questions that address your research objectives, placing them in a useful order, and selecting an appropriate method for administration.
To develop a questionnaire for research, identify the main objective of your research to act as the focal point for the questionnaire. Then, choose the type of questions that you want to include, and come up with succinct, straightforward questions to gather the information that you need to answer your questions. ... Remember to make the ...
A questionnaire is comprised of self-report measures of variables in a research study. Make sure your survey questions will be relevant to all respondents and that you use filter questions when necessary. Effective survey questions and responses take careful construction by researchers, as participants may be confused or otherwise influenced by ...
Numerous research students and conference delegates provided methodological questions and case examples of real life questionnaire research, which provided the inspiration and raw material for this series. We also thank the hundreds of research participants who over the years have contributed data and given feedback to our students and ...
Accurate random sampling will be wasted if the information gathered is built on a shaky foundation of ambiguous or biased questions. Creating good measures involves both writing good questions and organizing them to form the questionnaire. Questionnaire design is a multistage process that requires attention to many details at once. Designing ...
A questionnaire is an important instrument in a research study to help the researcher collect relevant data regarding the research topic. It is significant to ensure that the design of the ...
Thus, questionnaire building and data collection through the questionnaires have become an active area of research. However, questionnaire development can be challenging and suboptimal in the absence of careful planning and user-friendly literature guide. Keeping in mind the intricacies of constructing a questionnaire, researchers need to ...
By incorporating these characteristics, researchers can create a questionnaire that maximizes data quality, minimizes response bias, and provides valuable insights for their research. Conclusion In the pursuit of advancing research and gaining meaningful insights, investing time and effort into designing effective questionnaires is a crucial step.
Knowing how to design a questionnaire or how to design a survey is an important skill for beginner researchers including students who are writing their disse...
writing questions and building the construct of the questionnaire. It also develops the demand to pre-test the questionnaire and finalizing the questionnaire to conduct the survey. Keywords: Questionnaire, Academic Survey, Questionnaire Design, Research Methodology I. INTRODUCTION A questionnaire, as heart of the survey is based on a set of