• COVID-19 Tracker
  • Biochemistry
  • Anatomy & Physiology
  • Microbiology
  • Neuroscience
  • Animal Kingdom
  • NGSS High School
  • Latest News
  • Editors’ Picks
  • Weekly Digest
  • Quotes about Biology

Biology Dictionary

Photosynthesis

BD Editors

Reviewed by: BD Editors

Photosynthesis Definition

Photosynthesis is the biochemical pathway which converts the energy of light into the bonds of glucose molecules. The process of photosynthesis occurs in two steps. In the first step, energy from light is stored in the bonds of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH). These two energy-storing cofactors are then used in the second step of photosynthesis to produce organic molecules by combining carbon molecules derived from carbon dioxide (CO 2 ). The second step of photosynthesis is known as the Calvin Cycle. These organic molecules can then be used by mitochondria to produce ATP, or they can be combined to form glucose, sucrose, and other carbohydrates. The chemical equation for the entire process can be seen below.

Photosynthesis Equation

Above is the overall reaction for photosynthesis. Using the energy from light and the hydrogens and electrons from water, the plant combines the carbons found in carbon dioxide into more complex molecules. While a 3-carbon molecule is the direct result of photosynthesis, glucose is simply two of these molecules combined and is often represented as the direct result of photosynthesis due to glucose being a foundational molecule in many cellular systems. You will also notice that 6 gaseous oxygen molecules are produced, as a by-produce. The plant can use this oxygen in its mitochondria during oxidative phosphorylation . While some of the oxygen is used for this purpose, a large portion is expelled into the atmosphere and allows us to breathe and undergo our own oxidative phosphorylation, on sugar molecules derived from plants. You will also notice that this equation shows water on both sides. That is because 12 water molecules are split during the light reactions, while 6 new molecules are produced during and after the Calvin cycle. While this is the general equation for the entire process, there are many individual reactions which contribute to this pathway.

Stages of Photosynthesis

The light reactions.

The light reactions happen in the thylakoid membranes of the chloroplasts of plant cells. The thylakoids have densely packed protein and enzyme clusters known as photosystems . There are two of these systems, which work in conjunction with each other to remove electrons and hydrogens from water and transfer them to the cofactors ADP and NADP + . These photosystems were named in the order of which they were discovered, which is opposite of how electrons flow through them. As seen in the image below, electrons excited by light energy flow first through photosystem II (PSII), and then through photosystem I (PSI) as they create NADPH. ATP is created by the protein ATP synthase , which uses the build-up of hydrogen atoms to drive the addition of phosphate groups to ADP.

Thylakoid membrane

The entire system works as follows. A photosystem is comprised of various proteins that surround and connect a series of pigment molecules . Pigments are molecules that absorb various photons, allowing their electrons to become excited. Chlorophyll a is the main pigment used in these systems, and collects the final energy transfer before releasing an electron. Photosystem II starts this process of electrons by using the light energy to split a water molecule, which releases the hydrogen while siphoning off the electrons. The electrons are then passed through plastoquinone, an enzyme complex that releases more hydrogens into the thylakoid space . The electrons then flow through a cytochrome complex and plastocyanin to reach photosystem I. These three complexes form an electron transport chain , much like the one seen in mitochondria. Photosystem I then uses these electrons to drive the reduction of NADP + to NADPH. The additional ATP made during the light reactions comes from ATP synthase, which uses the large gradient of hydrogen molecules to drive the formation of ATP.

The Calvin Cycle

With its electron carriers NADPH and ATP all loaded up with electrons, the plant is now ready to create storable energy. This happens during the Calvin Cycle , which is very similar to the citric acid cycle seen in mitochondria. However, the citric acid cycle creates ATP other electron carriers from 3-carbon molecules, while the Calvin cycle produces these products with the use of NADPH and ATP. The cycle has 3 phases, as seen in the graphic below.

Calvin cycle

During the first phase, a carbon is added to a 5-carbon sugar, creating an unstable 6-carbon sugar. In phase two, this sugar is reduced into two stable 3-carbon sugar molecules. Some of these molecules can be used in other metabolic pathways, and are exported. The rest remain to continue cycling through the Calvin cycle. During the third phase, the five-carbon sugar is regenerated to start the process over again. The Calvin cycle occurs in the stroma of a chloroplast. While not considered part of the Calvin cycle, these products can be used to create a variety of sugars and structural molecules.

Products of Photosynthesis

The direct products of the light reactions and the Calvin cycle are 3-phosphoglycerate and G3P, two different forms of a 3-carbon sugar molecule. Two of these molecules combined equals one glucose molecule, the product seen in the photosynthesis equation. While this is the main food source for plants and animals, these 3-carbon skeletons can be combined into many different forms. A structural form worth note is cellulose , and extremely strong fibrous material made essentially of strings of glucose. Besides sugars and sugar-based molecules, oxygen is the other main product of photosynthesis. Oxygen created from photosynthesis fuels every respiring organism on the planet.

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., . . . Matsudaira, P. (2008). Molecular Cell Biology 6th. ed . New York: W.H. Freeman and Company. Nelson, D. L., & Cox, M. M. (2008). Principles of Biochemistry . New York: W.H. Freeman and Company.

Cite This Article

Subscribe to our newsletter, privacy policy, terms of service, scholarship, latest posts, white blood cell, t cell immunity, satellite cells, embryonic stem cells, popular topics, acetic acid, homeostasis, amino acids, endocrine system.

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions

Development of the idea

Overall reaction of photosynthesis.

  • Basic products of photosynthesis
  • Evolution of the process
  • Light intensity and temperature
  • Carbon dioxide
  • Internal factors
  • Energy efficiency of photosynthesis
  • Structural features
  • Light absorption and energy transfer
  • The pathway of electrons
  • Evidence of two light reactions
  • Photosystems I and II
  • Quantum requirements
  • The process of photosynthesis: the conversion of light energy to ATP
  • Elucidation of the carbon pathway
  • Carboxylation
  • Isomerization/condensation/dismutation
  • Phosphorylation
  • Regulation of the cycle
  • Products of carbon reduction
  • Photorespiration
  • Carbon fixation in C 4 plants
  • Carbon fixation via crassulacean acid metabolism (CAM)
  • Differences in carbon fixation pathways
  • The molecular biology of photosynthesis

Photosynthesis

Why is photosynthesis important?

What is the basic formula for photosynthesis, which organisms can photosynthesize.

Chlorophyll pigment in chloroplasts within plant cells. Microscopic organelles photosynthesis green

photosynthesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Khan Academy - Photosynthesis
  • Biology LibreTexts - Photosynthesis
  • University of Florida - Institute of Food and Agricultural Sciences - Photosynthesis
  • Milne Library - Inanimate Life - Photosynthesis
  • National Center for Biotechnology Information - Chloroplasts and Photosynthesis
  • Roger Williams University Pressbooks - Introduction to Molecular and Cell Biology - Photosynthesis
  • BCcampus Open Publishing - Concepts of Biology – 1st Canadian Edition - Overview of Photosynthesis
  • photosynthesis - Children's Encyclopedia (Ages 8-11)
  • photosynthesis - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Photosynthesis

Photosynthesis is critical for the existence of the vast majority of life on Earth. It is the way in which virtually all energy in the biosphere becomes available to living things. As primary producers, photosynthetic organisms form the base of Earth’s food webs and are consumed directly or indirectly by all higher life-forms. Additionally, almost all the oxygen in the atmosphere is due to the process of photosynthesis. If photosynthesis ceased, there would soon be little food or other organic matter on Earth, most organisms would disappear, and Earth’s atmosphere would eventually become nearly devoid of gaseous oxygen.

The process of photosynthesis is commonly written as: 6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2 . This means that the reactants, six carbon dioxide molecules and six water molecules, are converted by light energy captured by chlorophyll (implied by the arrow) into a sugar molecule and six oxygen molecules, the products. The sugar is used by the organism, and the oxygen is released as a by-product.

The ability to photosynthesize is found in both eukaryotic and prokaryotic organisms. The most well-known examples are plants, as all but a very few parasitic or mycoheterotrophic species contain chlorophyll and produce their own food. Algae are the other dominant group of eukaryotic photosynthetic organisms. All algae, which include massive kelps and microscopic diatoms , are important primary producers.  Cyanobacteria and certain sulfur bacteria are photosynthetic prokaryotes, in whom photosynthesis evolved. No animals are thought to be independently capable of photosynthesis, though the emerald green sea slug can temporarily incorporate algae chloroplasts in its body for food production.

Recent News

Trusted Britannica articles, summarized using artificial intelligence, to provide a quicker and simpler reading experience. This is a beta feature. Please verify important information in our full article.

This summary was created from our Britannica article using AI. Please verify important information in our full article.

photosynthesis , the process by which green plants and certain other organisms transform light energy into chemical energy . During photosynthesis in green plants, light energy is captured and used to convert water , carbon dioxide , and minerals into oxygen and energy-rich organic compounds .

It would be impossible to overestimate the importance of photosynthesis in the maintenance of life on Earth . If photosynthesis ceased, there would soon be little food or other organic matter on Earth. Most organisms would disappear, and in time Earth’s atmosphere would become nearly devoid of gaseous oxygen. The only organisms able to exist under such conditions would be the chemosynthetic bacteria , which can utilize the chemical energy of certain inorganic compounds and thus are not dependent on the conversion of light energy.

How are plant cells different from animal cells?

Energy produced by photosynthesis carried out by plants millions of years ago is responsible for the fossil fuels (i.e., coal , oil , and gas ) that power industrial society . In past ages, green plants and small organisms that fed on plants increased faster than they were consumed, and their remains were deposited in Earth’s crust by sedimentation and other geological processes. There, protected from oxidation , these organic remains were slowly converted to fossil fuels. These fuels not only provide much of the energy used in factories, homes, and transportation but also serve as the raw material for plastics and other synthetic products. Unfortunately, modern civilization is using up in a few centuries the excess of photosynthetic production accumulated over millions of years. Consequently, the carbon dioxide that has been removed from the air to make carbohydrates in photosynthesis over millions of years is being returned at an incredibly rapid rate. The carbon dioxide concentration in Earth’s atmosphere is rising the fastest it ever has in Earth’s history, and this phenomenon is expected to have major implications on Earth’s climate .

Requirements for food, materials, and energy in a world where human population is rapidly growing have created a need to increase both the amount of photosynthesis and the efficiency of converting photosynthetic output into products useful to people. One response to those needs—the so-called Green Revolution , begun in the mid-20th century—achieved enormous improvements in agricultural yield through the use of chemical fertilizers , pest and plant- disease control, plant breeding , and mechanized tilling, harvesting, and crop processing. This effort limited severe famines to a few areas of the world despite rapid population growth , but it did not eliminate widespread malnutrition . Moreover, beginning in the early 1990s, the rate at which yields of major crops increased began to decline. This was especially true for rice in Asia. Rising costs associated with sustaining high rates of agricultural production, which required ever-increasing inputs of fertilizers and pesticides and constant development of new plant varieties, also became problematic for farmers in many countries.

Photosynthesis diagram showing how water, light, and carbon dioxide are absorbed by a plant and that oxygen and sugars are produced. Also show a person to illustrate the oxygen/carbon dioxide cycle between plants and animals.

A second agricultural revolution , based on plant genetic engineering , was forecast to lead to increases in plant productivity and thereby partially alleviate malnutrition. Since the 1970s, molecular biologists have possessed the means to alter a plant’s genetic material (deoxyribonucleic acid, or DNA ) with the aim of achieving improvements in disease and drought resistance, product yield and quality, frost hardiness, and other desirable properties. However, such traits are inherently complex, and the process of making changes to crop plants through genetic engineering has turned out to be more complicated than anticipated. In the future such genetic engineering may result in improvements in the process of photosynthesis, but by the first decades of the 21st century, it had yet to demonstrate that it could dramatically increase crop yields.

Another intriguing area in the study of photosynthesis has been the discovery that certain animals are able to convert light energy into chemical energy. The emerald green sea slug ( Elysia chlorotica ), for example, acquires genes and chloroplasts from Vaucheria litorea , an alga it consumes, giving it a limited ability to produce chlorophyll . When enough chloroplasts are assimilated , the slug may forgo the ingestion of food. The pea aphid ( Acyrthosiphon pisum ) can harness light to manufacture the energy-rich compound adenosine triphosphate (ATP); this ability has been linked to the aphid’s manufacture of carotenoid pigments.

General characteristics

The study of photosynthesis began in 1771 with observations made by the English clergyman and scientist Joseph Priestley . Priestley had burned a candle in a closed container until the air within the container could no longer support combustion . He then placed a sprig of mint plant in the container and discovered that after several days the mint had produced some substance (later recognized as oxygen) that enabled the confined air to again support combustion. In 1779 the Dutch physician Jan Ingenhousz expanded upon Priestley’s work, showing that the plant had to be exposed to light if the combustible substance (i.e., oxygen) was to be restored. He also demonstrated that this process required the presence of the green tissues of the plant.

In 1782 it was demonstrated that the combustion-supporting gas (oxygen) was formed at the expense of another gas, or “fixed air,” which had been identified the year before as carbon dioxide. Gas-exchange experiments in 1804 showed that the gain in weight of a plant grown in a carefully weighed pot resulted from the uptake of carbon, which came entirely from absorbed carbon dioxide, and water taken up by plant roots; the balance is oxygen, released back to the atmosphere. Almost half a century passed before the concept of chemical energy had developed sufficiently to permit the discovery (in 1845) that light energy from the sun is stored as chemical energy in products formed during photosynthesis.

Chemical equation.

This equation is merely a summary statement, for the process of photosynthesis actually involves numerous reactions catalyzed by enzymes (organic catalysts ). These reactions occur in two stages: the “light” stage, consisting of photochemical (i.e., light-capturing) reactions; and the “dark” stage, comprising chemical reactions controlled by enzymes . During the first stage, the energy of light is absorbed and used to drive a series of electron transfers, resulting in the synthesis of ATP and the electron-donor-reduced nicotine adenine dinucleotide phosphate (NADPH). During the dark stage, the ATP and NADPH formed in the light-capturing reactions are used to reduce carbon dioxide to organic carbon compounds. This assimilation of inorganic carbon into organic compounds is called carbon fixation.

Chemical equation.

Van Niel’s proposal was important because the popular (but incorrect) theory had been that oxygen was removed from carbon dioxide (rather than hydrogen from water, releasing oxygen) and that carbon then combined with water to form carbohydrate (rather than the hydrogen from water combining with CO 2 to form CH 2 O).

By 1940 chemists were using heavy isotopes to follow the reactions of photosynthesis. Water marked with an isotope of oxygen ( 18 O) was used in early experiments. Plants that photosynthesized in the presence of water containing H 2 18 O produced oxygen gas containing 18 O; those that photosynthesized in the presence of normal water produced normal oxygen gas. These results provided definitive support for van Niel’s theory that the oxygen gas produced during photosynthesis is derived from water.

ENCYCLOPEDIC ENTRY

Photosynthesis.

Photosynthesis is the process by which plants use sunlight, water, and carbon dioxide to create oxygen and energy in the form of sugar.

Loading ...

Learning materials, instructional links.

  • Photosynthesis (Google doc)

Most life on Earth depends on photosynthesis .The process is carried out by plants, algae, and some types of bacteria, which capture energy from sunlight to produce oxygen (O 2 ) and chemical energy stored in glucose (a sugar). Herbivores then obtain this energy by eating plants, and carnivores obtain it by eating herbivores.

The process

During photosynthesis, plants take in carbon dioxide (CO 2 ) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose. The plant then releases the oxygen back into the air, and stores energy within the glucose molecules.

Chlorophyll

Inside the plant cell are small organelles called chloroplasts , which store the energy of sunlight. Within the thylakoid membranes of the chloroplast is a light-absorbing pigment called chlorophyll , which is responsible for giving the plant its green color. During photosynthesis , chlorophyll absorbs energy from blue- and red-light waves, and reflects green-light waves, making the plant appear green.

Light-dependent Reactions vs. Light-independent Reactions

While there are many steps behind the process of photosynthesis, it can be broken down into two major stages: light-dependent reactions and light-independent reactions. The light-dependent reaction takes place within the thylakoid membrane and requires a steady stream of sunlight, hence the name light- dependent reaction. The chlorophyll absorbs energy from the light waves, which is converted into chemical energy in the form of the molecules ATP and NADPH . The light-independent stage, also known as the Calvin cycle , takes place in the stroma , the space between the thylakoid membranes and the chloroplast membranes, and does not require light, hence the name light- independent reaction. During this stage, energy from the ATP and NADPH molecules is used to assemble carbohydrate molecules, like glucose, from carbon dioxide.

C3 and C4 Photosynthesis

Not all forms of photosynthesis are created equal, however. There are different types of photosynthesis, including C3 photosynthesis and C4 photosynthesis. C3 photosynthesis is used by the majority of plants. It involves producing a three-carbon compound called 3-phosphoglyceric acid during the Calvin Cycle, which goes on to become glucose. C4 photosynthesis, on the other hand, produces a four-carbon intermediate compound, which splits into carbon dioxide and a three-carbon compound during the Calvin Cycle. A benefit of C4 photosynthesis is that by producing higher levels of carbon, it allows plants to thrive in environments without much light or water. The National Geographic Society is making this content available under a Creative Commons CC-BY-NC-SA license . The License excludes the National Geographic Logo (meaning the words National Geographic + the Yellow Border Logo) and any images that are included as part of each content piece. For clarity the Logo and images may not be removed, altered, or changed in any way.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

June 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

8.1 Overview of Photosynthesis

Learning objectives.

  • Explain the relevance of photosynthesis to other living things
  • Describe the main structures involved in photosynthesis
  • Identify the substrates and products of photosynthesis
  • Summarize the process of photosynthesis

Photosynthesis is essential to all life on earth; both plants and animals depend on it. It is the only biological process that can capture energy that originates in outer space (sunlight) and convert it into chemical compounds (carbohydrates) that every organism uses to power its metabolism. In brief, the energy of sunlight is captured and used to energize electrons, which are then stored in the covalent bonds of sugar molecules. How long lasting and stable are those covalent bonds? The energy extracted today by the burning of coal and petroleum products represents sunlight energy captured and stored by photosynthesis almost 200 million years ago.

Plants, algae, and a group of bacteria called cyanobacteria are the only organisms capable of performing photosynthesis ( Figure 8.2 ). Because they use light to manufacture their own food, they are called photoautotrophs (literally, “self-feeders using light”). Other organisms, such as animals, fungi, and most other bacteria, are termed heterotrophs (“other feeders”), because they must rely on the sugars produced by photosynthetic organisms for their energy needs. A third very interesting group of bacteria synthesize sugars, not by using sunlight’s energy, but by extracting energy from inorganic chemical compounds; hence, they are referred to as chemoautotrophs .

The importance of photosynthesis is not just that it can capture sunlight’s energy. A lizard sunning itself on a cold day can use the sun’s energy to warm up. Photosynthesis is vital because it evolved as a way to store the energy in solar radiation (the “photo-” part) as high-energy electrons in the carbon-carbon bonds of carbohydrate molecules (the “-synthesis” part). Those carbohydrates are the energy source that heterotrophs use to power the synthesis of ATP via respiration. Therefore, photosynthesis powers 99 percent of Earth’s ecosystems. When a top predator, such as a wolf, preys on a deer ( Figure 8.3 ), the wolf is at the end of an energy path that went from nuclear reactions on the surface of the sun, to light, to photosynthesis, to vegetation, to deer, and finally to wolf.

Main Structures and Summary of Photosynthesis

Photosynthesis is a multi-step process that requires sunlight, carbon dioxide (which is low in energy), and water as substrates ( Figure 8.4 ). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), simple carbohydrate molecules (which are high in energy) that can subsequently be converted into glucose, sucrose, or any of dozens of other sugar molecules. These sugar molecules contain energy and the energized carbon that all living things need to survive.

The following is the chemical equation for photosynthesis ( Figure 8.5 ):

Although the equation looks simple, the many steps that take place during photosynthesis are actually quite complex. Before learning the details of how photoautotrophs turn sunlight into food, it is important to become familiar with the structures involved.

In plants, photosynthesis generally takes place in leaves, which consist of several layers of cells. The process of photosynthesis occurs in a middle layer called the mesophyll . The gas exchange of carbon dioxide and oxygen occurs through small, regulated openings called stomata (singular: stoma), which also play roles in the regulation of gas exchange and water balance. The stomata are typically located on the underside of the leaf, which helps to minimize water loss. Each stoma is flanked by guard cells that regulate the opening and closing of the stomata by swelling or shrinking in response to osmotic changes.

In all autotrophic eukaryotes, photosynthesis takes place inside an organelle called a chloroplast . For plants, chloroplast-containing cells exist in the mesophyll. Chloroplasts have a double membrane envelope (composed of an outer membrane and an inner membrane). Within the chloroplast are stacked, disc-shaped structures called thylakoids . Embedded in the thylakoid membrane is chlorophyll, a pigment (molecule that absorbs light) responsible for the initial interaction between light and plant material, and numerous proteins that make up the electron transport chain. The thylakoid membrane encloses an internal space called the thylakoid lumen . As shown in Figure 8.6 , a stack of thylakoids is called a granum , and the liquid-filled space surrounding the granum is called stroma or “bed” (not to be confused with stoma or “mouth,” an opening on the leaf epidermis).

Visual Connection

Art connection.

On a hot, dry day, plants close their stomata to conserve water. What impact will this have on photosynthesis?

The Two Parts of Photosynthesis

Photosynthesis takes place in two sequential stages: the light-dependent reactions and the light independent-reactions. In the light-dependent reactions , energy from sunlight is absorbed by chlorophyll and that energy is converted into stored chemical energy. In the light-independent reactions , the chemical energy harvested during the light-dependent reactions drive the assembly of sugar molecules from carbon dioxide. Therefore, although the light-independent reactions do not use light as a reactant, they require the products of the light-dependent reactions to function. In addition, several enzymes of the light-independent reactions are activated by light. The light-dependent reactions utilize certain molecules to temporarily store the energy: These are referred to as energy carriers. The energy carriers that move energy from light-dependent reactions to light-independent reactions can be thought of as “full” because they are rich in energy. After the energy is released, the “empty” energy carriers return to the light-dependent reaction to obtain more energy. Figure 8.7 illustrates the components inside the chloroplast where the light-dependent and light-independent reactions take place.

Link to Learning

Click the link to learn more about photosynthesis.

Everyday Connection

Photosynthesis at the Grocery Store

Major grocery stores in the United States are organized into departments, such as dairy, meats, produce, bread, cereals, and so forth. Each aisle ( Figure 8.8 ) contains hundreds, if not thousands, of different products for customers to buy and consume.

Although there is a large variety, each item links back to photosynthesis. Meats and dairy link, because the animals were fed plant-based foods. The breads, cereals, and pastas come largely from starchy grains, which are the seeds of photosynthesis-dependent plants. What about desserts and drinks? All of these products contain sugar—sucrose is a plant product, a disaccharide, a carbohydrate molecule, which is built directly from photosynthesis. Moreover, many items are less obviously derived from plants: For instance, paper goods are generally plant products, and many plastics (abundant as products and packaging) are derived from algae. Virtually every spice and flavoring in the spice aisle was produced by a plant as a leaf, root, bark, flower, fruit, or stem. Ultimately, photosynthesis connects to every meal and every food a person consumes.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/biology/pages/1-introduction
  • Authors: Connie Rye, Robert Wise, Vladimir Jurukovski, Jean DeSaix, Jung Choi, Yael Avissar
  • Publisher/website: OpenStax
  • Book title: Biology
  • Publication date: Oct 21, 2016
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/biology/pages/1-introduction
  • Section URL: https://openstax.org/books/biology/pages/8-1-overview-of-photosynthesis

© Feb 14, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

This page has been archived and is no longer updated

Photosynthetic Cells

Cells get nutrients from their environment, but where do those nutrients come from? Virtually all organic material on Earth has been produced by cells that convert energy from the Sun into energy-containing macromolecules. This process, called photosynthesis, is essential to the global carbon cycle and organisms that conduct photosynthesis represent the lowest level in most food chains (Figure 1).

View Terms of Use

What Is Photosynthesis? Why Is it Important?

Most living things depend on photosynthetic cells to manufacture the complex organic molecules they require as a source of energy. Photosynthetic cells are quite diverse and include cells found in green plants, phytoplankton, and cyanobacteria. During the process of photosynthesis, cells use carbon dioxide and energy from the Sun to make sugar molecules and oxygen. These sugar molecules are the basis for more complex molecules made by the photosynthetic cell, such as glucose. Then, via respiration processes, cells use oxygen and glucose to synthesize energy-rich carrier molecules, such as ATP, and carbon dioxide is produced as a waste product. Therefore, the synthesis of glucose and its breakdown by cells are opposing processes.

However, photosynthesis doesn't just drive the carbon cycle — it also creates the oxygen necessary for respiring organisms. Interestingly, although green plants contribute much of the oxygen in the air we breathe, phytoplankton and cyanobacteria in the world's oceans are thought to produce between one-third and one-half of atmospheric oxygen on Earth.

What Cells and Organelles Are Involved in Photosynthesis?

Chlorophyll A is the major pigment used in photosynthesis, but there are several types of chlorophyll and numerous other pigments that respond to light, including red, brown, and blue pigments. These other pigments may help channel light energy to chlorophyll A or protect the cell from photo-damage. For example, the photosynthetic protists called dinoflagellates, which are responsible for the "red tides" that often prompt warnings against eating shellfish, contain a variety of light-sensitive pigments, including both chlorophyll and the red pigments responsible for their dramatic coloration.

What Are the Steps of Photosynthesis?

Photosynthesis consists of both light-dependent reactions and light-independent reactions . In plants, the so-called "light" reactions occur within the chloroplast thylakoids, where the aforementioned chlorophyll pigments reside. When light energy reaches the pigment molecules, it energizes the electrons within them, and these electrons are shunted to an electron transport chain in the thylakoid membrane. Every step in the electron transport chain then brings each electron to a lower energy state and harnesses its energy by producing ATP and NADPH. Meanwhile, each chlorophyll molecule replaces its lost electron with an electron from water; this process essentially splits water molecules to produce oxygen (Figure 5).

Once the light reactions have occurred, the light-independent or "dark" reactions take place in the chloroplast stroma. During this process, also known as carbon fixation, energy from the ATP and NADPH molecules generated by the light reactions drives a chemical pathway that uses the carbon in carbon dioxide (from the atmosphere) to build a three-carbon sugar called glyceraldehyde-3-phosphate (G3P). Cells then use G3P to build a wide variety of other sugars (such as glucose) and organic molecules. Many of these interconversions occur outside the chloroplast, following the transport of G3P from the stroma. The products of these reactions are then transported to other parts of the cell, including the mitochondria, where they are broken down to make more energy carrier molecules to satisfy the metabolic demands of the cell. In plants, some sugar molecules are stored as sucrose or starch.

This page appears in the following eBook

Topic rooms within Cell Biology

Topic Rooms

Within this Subject (25)

  • Basic (25)

Other Topic Rooms

  • Gene Inheritance and Transmission
  • Gene Expression and Regulation
  • Nucleic Acid Structure and Function
  • Chromosomes and Cytogenetics
  • Evolutionary Genetics
  • Population and Quantitative Genetics
  • Genes and Disease
  • Genetics and Society
  • Cell Origins and Metabolism
  • Proteins and Gene Expression
  • Subcellular Compartments
  • Cell Communication
  • Cell Cycle and Cell Division

ScholarCast

© 2014 Nature Education

  • Press Room |
  • Terms of Use |
  • Privacy Notice |

Send

Visual Browse

What is photosynthesis?

Photosynthesis is the process plants, algae and some bacteria use to turn sunlight, carbon dioxide and water into sugar and oxygen.

close up of an avocado leaf with a stem running diagonally from left to right

  • Photosynthetic processes
  • Photosynthesis equation
  • The carbon exchange
  • How do plants absorb sunlight?

How does photosynthesis start?

  • Location of photosynthesis

Light-dependent reactions

  • The Calvin cycle

Types of photosynthesis

Additional resources.

Photosynthesis is the process used by plants, algae and some bacteria to turn sunlight into energy. The process chemically converts carbon dioxide (CO2) and water into food (sugars) and oxygen . The chemical reaction often relies on a pigment called chlorophyll, which gives plants their green color.  Photosynthesis is also the reason our planet is blanketed in an oxygen-rich atmosphere.

Types of photosynthetic processes

There are two types of photosynthesis: oxygenic and anoxygenic. They both follow very similar principles, but the former is the most common and is seen in plants, algae and cyanobacteria. 

During oxygenic photosynthesis, light energy transfers electrons from water (H2O) taken up by plant roots to CO2 to produce carbohydrates . In this transfer, the CO2 is "reduced," or receives electrons, and the water is "oxidized," or loses electrons. Oxygen is produced along with carbohydrates.

This process creates a balance on Earth, in which the carbon dioxide produced by breathing organisms as they consume oxygen in respiration is converted back into oxygen by plants, algae and bacteria.

Anoxygenic photosynthesis, meanwhile, uses electron donors that are not water and the process does not generate oxygen, according to "Anoxygenic Photosynthetic Bacteria" by LibreTexts . The process typically occurs in bacteria such as green sulfur bacteria and phototrophic purple bacteria. 

The Photosynthesis equation

Though both types of photosynthesis are complex, multistep affairs, the overall process can be neatly summarized as a chemical equation.

The oxygenic photosynthesis equation is: 

6CO2 + 12H2O + Light Energy → C6H12O6 + 6O2 + 6H2O

Here, six molecules of carbon dioxide (CO2) combine with 12 molecules of water (H2O) using light energy. The end result is the formation of a single carbohydrate molecule (C6H12O6, or glucose) along with six molecules each of oxygen and water.

Similarly, the various anoxygenic photosynthesis reactions can be represented as a single generalized formula:

CO2 + 2H2A + Light Energy → [CH2O] + 2A + H2O

The letter A in the equation is a variable, and H2A represents the potential electron donor. For example, "A" may represent sulfur in the electron donor hydrogen sulfide (H2S), according to medical and life sciences news site News Medical Life Sciences . 

How is carbon dioxide and oxygen exchanged?

stomata are the gatekeepers of the leaf, allowing gas exchange between the leaf and surrounding air.

Plants absorb CO2 from the surrounding air and release water and oxygen via microscopic pores on their leaves called stomata. 

When stomata open, they let in CO2; however, while open, the stomata release oxygen and let water vapor escape. Stomata close to prevent water loss, but that means the plant can no longer gain CO2 for photosynthesis. This tradeoff between CO2 gain and water loss is a particular problem for plants growing in hot, dry environments. 

How do plants absorb sunlight for photosynthesis?

Plants contain special pigments that absorb the light energy needed for photosynthesis.

Chlorophyll is the primary pigment used for photosynthesis and gives plants their green color, according to science education site Nature Education . Chlorophyll absorbs red and blue light and reflects green light. Chlorophyll is a large molecule and takes a lot of resources to make; as such, it breaks down towards the end of the leaf's life, and most of the pigment's nitrogen (one of the building blocks of chlorophyll) is resorbed back into the plant,  When leaves lose their chlorophyll in the fall, other leaf pigments such as carotenoids and anthocyanins begin to show. While carotenoids primarily absorb blue light and reflect yellow, anthocyanins absorb blue-green light and reflect red light, according to Harvard University's The Harvard Forest .

Related: What if humans had photosynthetic skin?

Pigment molecules are associated with proteins, which allow them the flexibility to move toward light and toward one another. A large collection of 100 to 5,000 pigment molecules constitutes an "antenna," according to an article by Wim Vermaas , a professor at Arizona State University. These structures effectively capture light energy from the sun, in the form of photons.

The situation is a little different for bacteria. While cyanobacteria contain chlorophyll, other bacteria, for example, purple bacteria and green sulfur bacteria, contain bacteriochlorophyll to absorb light for anoxygenic photosynthesis, according to " Microbiology for Dummies " (For Dummies, 2019). 

It was previously hypothesized that just a small number of photons would be needed to kickstart photosynthesis, but researchers never successfully observed this first step. However, in 2023, scientists discovered that photosynthesis appears to begin with a single photon. 

The researchers set up an experiment where a photon source spat out two photons at a time. One was absorbed by a detector, while the other hit a bacteria's chloroplast equivalent. When the second photon hit, photosynthesis began. 

After performing the test over 1.5 million times, the researchers confirmed that just one photon is needed to start photosynthesis.

Where in the plant does photosynthesis take place?

Plants need energy from sunlight for photosynthesis to occur.

Photosynthesis occurs in chloroplasts, a type of plastid (an organelle with a membrane) that contains chlorophyll and is primarily found in plant leaves. 

Chloroplasts are similar to mitochondria , the energy powerhouses of cells, in that they have their own genome, or collection of genes, contained within circular DNA. These genes encode proteins that are essential to the organelle and to photosynthesis.

Inside chloroplasts are plate-shaped structures called thylakoids that are responsible for harvesting photons of light for photosynthesis, according to the biology terminology website Biology Online . The thylakoids are stacked on top of each other in columns known as grana. In between the grana is the stroma — a fluid containing enzymes, molecules and ions, where sugar formation takes place. 

Ultimately, light energy must be transferred to a pigment-protein complex that can convert it to chemical energy, in the form of electrons. In plants, light energy is transferred to chlorophyll pigments. The conversion to chemical energy is accomplished when a chlorophyll pigment expels an electron, which can then move on to an appropriate recipient. 

The pigments and proteins that convert light energy to chemical energy and begin the process of electron transfer are known as reaction centers.

When a photon of light hits the reaction center, a pigment molecule such as chlorophyll releases an electron.

The released electron escapes  through a series of protein complexes linked together, known as an electron transport chain. As it moves through the chain, it generates the energy to produce ATP (adenosine triphosphate, a source of chemical energy for cells) and NADPH — both of which are required in the next stage of photosynthesis in the Calvin cycle. The "electron hole" in the original chlorophyll pigment is filled by taking an electron from water. This splitting of water molecules releases oxygen into the atmosphere.

Light-independent reactions: The Calvin cycle

Photosynthesis involves a process called the Calvin cycle to use energy stored from the light-dependent reactions to fix CO2 into sugars needed for plant growth.

The Calvin cycle is the three-step process that generates sugars for the plant, and is named after Melvin Calvin , the Nobel Prize -winning scientist who discovered it decades ago. The Calvin cycle uses the ATP and NADPH produced in chlorophyll to generate carbohydrates. It takes plate in the plant stroma, the inner space in chloroplasts.

In the first step of this cycle, called carbon fixation, an enzyme called RuBP carboxylase/oxygenase, also known as rubiso, helps incorporate CO2 into an organic molecule called 3-phosphoglyceric acid (3-PGA). In the process, it breaks off a phosphate group on six ATP molecules to convert them to ADP, releasing energy in the process, according to LibreTexts.

In the second step, 3-PGA is reduced, meaning it takes electrons from six NADPH molecules and produces two glyceraldehyde 3-phosphate (G3P) molecules.

One of these G3P molecules leaves the Calvin cycle to do other things in the plant. The remaining G3P molecules go into the third step, which is regenerating rubisco. In between these steps, the plant produces glucose, or sugar.

Three CO2 molecules are needed to produce six G3P molecules, and it takes six turns around the Calvin cycle to make one molecule of carbohydrate, according to educational website Khan Academy.

There are three main types of photosynthetic pathways: C3, C4 and CAM. They all produce sugars from CO2 using the Calvin cycle, but each pathway is slightly different.

The three main types of photosynthetic pathways are C3, C4 and CAM.

C3 photosynthesis

Most plants use C3 photosynthesis, according to the photosynthesis research project Realizing Increased Photosynthetic Efficiency (RIPE) . C3 plants include cereals (wheat and rice), cotton, potatoes and soybeans. This process is named for the three-carbon compound 3-PGA that it uses during the Calvin cycle. 

C4 photosynthesis

Plants such as maize and sugarcane use C4 photosynthesis. This process uses a four-carbon compound intermediate (called oxaloacetate) which is converted to malate , according to Biology Online. Malate is then transported into the bundle sheath where it breaks down and releases CO2, which is then fixed by rubisco and made into sugars in the Calvin cycle (just like C3 photosynthesis). C4 plants are better adapted to hot, dry environments and can continue to fix carbon even when their stomata are closed (as they have a clever storage solution), according to Biology Online. 

CAM photosynthesis

Crassulacean acid metabolism (CAM) is found in plants adapted to very hot and dry environments, such as cacti and pineapples, according to the Khan Academy. When stomata open to take in CO2, they risk losing water to the external environment. Because of this, plants in very arid and hot environments have adapted. One adaptation is CAM, whereby plants open stomata at night (when temperatures are lower and water loss is less of a risk). According to the Khan Academy, CO2 enters the plants via the stomata and is fixed into oxaloacetate and converted into malate or another organic acid (like in the C4 pathway). The CO2 is then available for light-dependent reactions in the daytime, and stomata close, reducing the risk of water loss. 

Discover more facts about photosynthesis with the educational science website sciencing.com . Explore how leaf structure affects photosynthesis with The University of Arizona . Learn about the different ways photosynthesis can be measured with the educational science website Science & Plants for Schools .  

This article was updated by Live Science managing editor Tia Ghose on Nov. 3, 2022.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Daisy Dobrijevic joined  Space.com  in February 2022 as a reference writer having previously worked for our sister publication  All About Space  magazine as a staff writer. Before joining us, Daisy completed an editorial internship with the BBC Sky at Night Magazine and worked at the  National Space Centre  in Leicester, U.K., where she enjoyed communicating space science to the public. In 2021, Daisy completed a PhD in plant physiology and also holds a Master's in Environmental Science, she is currently based in Nottingham, U.K.

100-foot 'walking tree' in New Zealand looks like an Ent from Lord of the Rings — and is the lone survivor of a lost forest

Bizarre evolutionary roots of Africa's iconic upside-down baobab trees revealed

How many moons are in the solar system?

Most Popular

  • 2 'Exceptional' discovery reveals more than 30 ancient Egyptian tombs built into hillside
  • 3 Earth's rotating inner core is starting to slow down — and it could alter the length of our days
  • 4 Argyle mine: Earth's treasure trove of pink diamonds born during a supercontinent's break up
  • 5 'The early universe is nothing like we expected': James Webb telescope reveals 'new understanding' of how galaxies formed at cosmic dawn
  • 2 Single molecule reverses signs of aging in muscles and brains, mouse study reveals
  • 3 James Webb Space Telescope spies strange shapes above Jupiter's Great Red Spot
  • 4 2,000-year-old Roman military sandal with nails for traction found in Germany
  • 5 Shattered Russian satellite forces ISS astronauts to take shelter in stricken Starliner capsule

what is the definition of photosynthesis biology

  • Biology Article
  • What is Photosynthesis

What Is Photosynthesis?

“Photosynthesis is the process used by green plants and a few organisms that use sunlight, carbon dioxide and water to prepare their food.”

The process of photosynthesis is used by plants, algae and certain bacteria that convert light energy into chemical energy. The glucose formed during the process of photosynthesis provides two important resources to organisms: energy and fixed carbon.

Read on to explore what is photosynthesis and the processes associated with it.

Site of Photosynthesis

Photosynthesis takes place in special organelles known as chloroplast. This organelle has its own DNA, genes and hence can synthesize its own proteins. Chloroplasts consist of stroma, fluid, and stack of thylakoids known as grana. There are three important pigments present in the chloroplast that absorb light energy, chlorophyll a, chlorophyll b, and carotenoids.

Also Read: Photosynthesis Process

Types of Photosynthesis

There are two different types of photosynthesis:

  • Oxygenic photosynthesis
  • Anoxygenic photosynthesis

Oxygenic Photosynthesis

Oxygenic photosynthesis is more common in plants, algae and cyanobacteria. During this process, electrons are transferred from water to carbon dioxide by light energy, to produce energy. During this transfer of electrons, carbon dioxide is reduced while water is oxidized, and oxygen is produced along with carbohydrates.

During this process, plants take in carbon dioxide and expel oxygen into the atmosphere.

This process can be represented by the equation:

6CO2+ 12H2O + LIGHT ENERGY → C6H12O6 + 6O2 + 6H2O

Anoxygenic Photosynthesis

This type of photosynthesis is usually seen in certain bacteria, such as green sulphur bacteria and purple bacteria which dwell in various aquatic habitats. Oxygen is not produced during the process.

The anoxygenic photosynthesis can be represented by the equation:

CO2 + 2H2A + LIGHT ENERGY → [CH2O] + 2A + H2O

Also Read:  Difference between Photosynthesis and Respiration

Photosynthesis Apparatus

The photosynthesis apparatus includes the following essential components:

Pigments not only provide colour to the photosynthetic organisms, but are also responsible for trapping sunlight. The important pigments associated with photosynthesis include:

  • Chlorophyll: It is a green-coloured pigment that traps blue and red light. Chlorophyll is subdivided into, “chlorophyll a”, “chlorophyll b”, and “chlorophyll c”. “Chlorophyll a” is widely present in all the photosynthetic cells. A bacterial variant of chlorophyll known as bacteriochlorophyll can absorb infrared rays .
  • Carotenoids: These are yellow, orange or red-coloured pigments that absorb bluish-green light. Xanthophyll and carotenes are examples of carotenoids.
  • Phycobilins: These are present in bacteria and red algae . These are red and blue pigments that absorb wavelength of light that are not properly absorbed by carotenoids and chlorophyll.

Plastids are organelles found in the cytoplasm of eukaryotic photosynthetic organisms. They contain pigments and can also store nutrients. Plastids are of three types:

  • Leucoplast: These are colourless, non-pigmented and can store fats and starch.
  • Chromoplasts: They contain carotenoids.
  • Chloroplasts: These contain chlorophyll and are the site of photosynthesis.

Antennae is the collection of 100 to 5000 pigment molecules that capture light energy from the sun in the form of photons. The light energy is transferred to a pigment-protein complex that converts light energy to chemical energy.

Reaction Centers

The pigment-protein complex responsible for the conversion of light energy to chemical energy forms the reaction centre.

Also Read: Photosynthesis

To know more about what is photosynthesis and other topics related to it, keep visiting BYJU’S website or download BYJU’S app for further reference.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

BIOLOGY Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

what is the definition of photosynthesis biology

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

  • More from M-W
  • To save this word, you'll need to log in. Log In

photosynthesis

Definition of photosynthesis

Did you know.

Photosynthesis Has Greek Roots

The Greek roots of photosynthesis combine to produce the basic meaning "to put together with the help of light". Photosynthesis is what first produced oxygen in the atmosphere billions of years ago, and it's still what keeps it there. Sunlight splits the water molecules (made of hydrogen and oxygen) held in a plant's leaves and releases the oxygen in them into the air. The leftover hydrogen combines with carbon dioxide to produce carbohydrates, which the plant uses as food—as do any animals or humans who might eat the plant.

Examples of photosynthesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'photosynthesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

1898, in the meaning defined above

Dictionary Entries Near photosynthesis

photosynthate

photosynthetic ratio

Cite this Entry

“Photosynthesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/photosynthesis. Accessed 30 Jun. 2024.

Kids Definition

Kids definition of photosynthesis, medical definition, medical definition of photosynthesis, more from merriam-webster on photosynthesis.

Nglish: Translation of photosynthesis for Spanish Speakers

Britannica.com: Encyclopedia article about photosynthesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, your vs. you're: how to use them correctly, every letter is silent, sometimes: a-z list of examples, more commonly mispronounced words, how to use em dashes (—), en dashes (–) , and hyphens (-), popular in wordplay, it's a scorcher words for the summer heat, flower etymologies for your spring garden, 12 star wars words, 'swash', 'praya', and 12 more beachy words, 8 words for lesser-known musical instruments, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Photosynthesis – Photolysis and Carbon Fixation

The process of photosynthesis

The process of photosynthesis

Table of Contents

Photosynthesis is the means that primary producers (mostly plants) can obtain energy via light energy. The energy gained FROM light can be used in various processes mentioned below for the creation of energy that the plant will need to survive and grow.

Photosynthesis is a reduction process, where hydrogen is reduced by a coenzyme. This is in contrast to respiration where glucose is oxidized.

The process is split INTO two DISTINCT areas,  photolysis  (the photochemical stage) and the  Calvin Cycle  (the thermochemical stage). The diagram below gives a summary of the reaction, where light energy is used to initiate the reaction in its presence;

CO 2  + H 2 O > glucose + oxygen

This part of photosynthesis occurs in the  granum  of  a   chloroplast  where light is absorbed by  chlorophyll ; a type of photosynthetic pigment that converts the light to chemical energy. This reacts with water (H 2 O) and splits the oxygen and hydrogen molecules apart.

From this dissection of water, the oxygen is released as a by-product while the reduced hydrogen acceptor makes its way to the second stage of photosynthesis, the Calvin cycle.

Overall, since the water is oxidized (hydrogen is removed) and energy is gained in photolysis which is required in the Calvin cycle

The Calvin Cycle

Also known as the carbon fixation stage, this part of the photosynthetic process occurs in the  stroma  of chloroplasts. The carbon made available FROM breathing in carbon dioxide enters this cycle, which is illustrated below:

what is the definition of photosynthesis biology

Just like the  Kreb’s Cycle  in respiration, a substrate is manipulated INTO various carbon compounds to produce energy. In the case of photosynthesis, the following steps occur, which create glucose for respiration FROM the carbon dioxide introduced INTO the cycle;

  • Carbon FROM CO 2  enters the cycle combining with Ribulose Biphosphate (RuBP)
  • A compound formed is unstable and breaks down FROM its 6 carbon nature to a 3 carbon compound called glycerate phosphate (GP)
  • Energy is used to break down GP INTO triose phosphate, while a hydrogen acceptor reduces the compound, therefore, requiring energy
  • Triose Phosphate is the end product of this, a 3 carbon compound which can double up to form glucose, which can be used in respiration.
  • The cycle is completed when the leftover GP molecules are met with a carbon acceptor and then turned INTO RuBP, which is to be joined with the carbon dioxide molecules to re-begin the process.

The energy that is used up in the Calvin cycle is the energy that is made available during photolysis. The glucose that is made via GP can be used in respiration or a building block in forming  starch  and  cellulose , materials that are commonly in demand in plants.

Limiting Factors in Photosynthesis

Some factors affect the rate of photosynthesis in plants, as follows

  • Temperature  plays a role in affecting the rate of photosynthesis. Enzymes involved in the photosynthetic process are directly affected by the temperature of the organism and its environment
  • Light Intensity is also a  limiting factor , if there is no sunlight, then the photolysis of water cannot occur without the light energy required.
  • Carbon Dioxide concentration also plays a factor, due to the supplies of carbon dioxide required in the Calvin cycle stage.

Overall, this is how a plant produces energy which supplies a rich source of glucose for respiration and the building blocks for more complex materials. While animals get their energy FROM food, plants get their energy FROM the sun.

The next tutorial investigates DNA structure and replication…

Select the letter of the best answer. Choices are in the box below.

Send Your Results (Optional)

clock.png

You will also like...

Sensory systems

Sensory Systems

A sensory system is a part of the nervous system consisting of sensory receptors that receive stimuli from the internal ..

Homeostatic Mechanisms and Cellular Communication

Homeostatic Mechanisms and Cellular Communication

Homeostasis is the relatively stable conditions of the internal environment that result from compensatory regulatory res..

Biosecurity and Biocontrol

Biosecurity and Biocontrol

This lesson explores the impact of biosecurity threats, and why they need to be identified and managed. Examples to incl..

dinosaurs

The Dinosaurs

Dinosaurs represented a major turn in the evolutionary development of organisms on Earth. The first dinosaurs were presu..

DNA carries genes coding for proteins

Genetic Information and Protein Synthesis

Genes are expressed through the process of protein synthesis. This elaborate tutorial provides an in-depth review of the..

Biological Cell Defense

Biological Cell Defense

Organisms employ different strategies to boost its defenses against antigens. Humans have an immune system to combat pat..

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

AP®︎/College Biology

Course: ap®︎/college biology   >   unit 3.

  • Photosynthesis
  • Intro to photosynthesis
  • Breaking down photosynthesis stages
  • Conceptual overview of light dependent reactions

The light-dependent reactions

  • The Calvin cycle
  • Photosynthesis evolution
  • Photosynthesis review

what is the definition of photosynthesis biology

Introduction

  • Plants carry out a form of photosynthesis called oxygenic photosynthesis . In oxygenic photosynthesis, water molecules are split to provide a source of electrons for the electron transport chain, and oxygen gas is released as a byproduct. Plants organize their photosynthetic pigments into two separate complexes called photosystems (photosystems I and II), and they use chlorophylls as their reaction center pigments.
  • Purple sulfur bacteria, in contrast, carry out anoxygenic photosynthesis , meaning that water is not used as an electron source and oxygen gas is not produced. Instead, these bacteria use hydrogen sulfide ( H 2 S ‍   ) as an electron source and produce elemental sulfur as a byproduct. In addition, purple sulfur bacteria have only one photosystem, and they use chlorophyll-like molecules called bacteriochlorophylls as reaction center pigments 1 , 2 , 3 ‍   .

Overview of the light-dependent reactions

  • Light absorption in PSII. When light is absorbed by one of the many pigments in photosystem II, energy is passed inward from pigment to pigment until it reaches the reaction center. There, energy is transferred to P680, boosting an electron to a high energy level. The high-energy electron is passed to an acceptor molecule and replaced with an electron from water. This splitting of water releases the O 2 ‍   we breathe.
  • ATP synthesis. The high-energy electron travels down an electron transport chain, losing energy as it goes. Some of the released energy drives pumping of H + ‍   ions from the stroma into the thylakoid interior, building a gradient. ( H + ‍   ions from the splitting of water also add to the gradient.) As H + ‍   ions flow down their gradient and into the stroma, they pass through ATP synthase, driving ATP production in a process known as chemiosmosis .
  • Light absorption in PSI. The electron arrives at photosystem I and joins the P700 special pair of chlorophylls in the reaction center. When light energy is absorbed by pigments and passed inward to the reaction center, the electron in P700 is boosted to a very high energy level and transferred to an acceptor molecule. The special pair's missing electron is replaced by a new electron from PSII (arriving via the electron transport chain).
  • NADPH formation. The high-energy electron travels down a short second leg of the electron transport chain. At the end of the chain, the electron is passed to NADP + ‍   (along with a second electron from the same pathway) to make NADPH.

What is a photosystem?

Photosystem i vs. photosystem ii.

  • Special pairs. The chlorophyll a special pairs of the two photosystems absorb different wavelengths of light. The PSII special pair absorbs best at 680 nm, while the PSI special absorbs best at 700 nm. Because of this, the special pairs are called P680 and P700 , respectively.
  • Primary acceptor . The special pair of each photosystem passes electrons to a different primary acceptor. The primary electron acceptor of PSII is pheophytin, an organic molecule that resembles chlorophyll, while the primary electron acceptor of PSI is a chlorophyll called A 0 ‍   7 , 8 ‍   .
  • Source of electrons . Once an electron is lost, each photosystem is replenished by electrons from a different source. The PSII reaction center gets electrons from water, while the PSI reaction center is replenished by electrons that flow down an electron transport chain from PSII.

Photosystem II

Electron transport chains and photosystem i, some electrons flow cyclically, attribution:, works cited:.

  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Molecular analysis of photosystems. In Molecular cell biology (4th ed., section 16.4). New York, NY: W. H. Freeman. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK21484/ .
  • Boundless. (2015, July 21). Anoxygenic photosynthetic bacteria. In Boundless microbiology . Retrieved from https://www.boundless.com/microbiology/textbooks/boundless-microbiology-textbook/microbial-evolution-phylogeny-and-diversity-8/nonproteobacteria-gram-negative-bacteria-105/anoxygenic-photosynthetic-bacteria-551-7338/ .
  • Purple sulfur bacteria. (2015, July 16). Retrieved October 24, 2015 from Wikipedia: https://en.wikipedia.org/wiki/Purple_sulfur_bacteria .
  • Soda lake. (2015, September 26). Retrieved October 24, 2015 from Wikipedia: https://en.wikipedia.org/wiki/Soda_lake .
  • Gutierrez, R. Bio41 Week 7 Biochemistry Lectures 11 and 12. Bio41. 2009.
  • Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). Accessory pigments funnel energy into reaction centers. In Biochemistry (5th ed., section 19.5). New York, NY: W. H. Freeman. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK22604/ .
  • Pheophytin. (2015, February 11). Retrieved October 28, 2015 from Wikipedia: https://en.wikipedia.org/wiki/Pheophytin .
  • Photosystem I. (2016, June 25). Retrieved from Wikipedia on July 22, 2016: https://en.wikipedia.org/wiki/Photosystem_I .
  • Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). Two photosystems generate a proton gradient and NADPH in oxygenic photosynthesis. In Biochemistry (5th ed., section 19.3). New York, NY: W. H. Freeman. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK22538/#_A2681_ .
  • Joliot, P. and Johnson, G. N. (2011). Regulation of cyclic and linear electron flow in higher plants. PNAS, 108(32), 13317-13322. http://dx.doi.org/10.1073/pnas.1110189108 .
  • Johnson, Giles N. (2011). Physiology of PSI cyclic electron transport in higher plants. Biochimica et Biophysica Acta - Bioenergetics , 1807 (8), 906-911. http://dx.doi.org/doi:10.1016/j.bbabio.2010.11.009 .
  • Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). A proton gradient across the thylakoid membrane drives ATP synthesis. In Biochemistry (5th ed., section 19.4). New York, NY: W. H. Freeman. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK22519/ .
  • Takahashi, S., Milward, S. E., Fan, D.-Y., Chow, W. S., and Badger, M. R. (2008). How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiology , 149 (3), 1560-1567. http://dx.doi.org/10.1104/pp.108.134122 .

Additional references:

Want to join the conversation.

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

IMAGES

  1. Photosynthesis Explained

    what is the definition of photosynthesis biology

  2. PPT

    what is the definition of photosynthesis biology

  3. Photosynthesis Vector Art, Icons, and Graphics for Free Download

    what is the definition of photosynthesis biology

  4. Interesting Information & Facts About Photosynthesis for Children

    what is the definition of photosynthesis biology

  5. [Class 7] Photosynthesis

    what is the definition of photosynthesis biology

  6. Photosynthesis

    what is the definition of photosynthesis biology

VIDEO

  1. What is Photosynthesis 🍀🌿🌞

  2. what is photosynthesis? Class -10th science Biology chapter

  3. Photosynthesis: The Basis of Life on Earth

  4. PHOTOSYNTHESIS IN PLANTS/ CLASSVII/CHAPTER:-NUTRITION IN PLANTS

  5. mechanism of photosynthesis

  6. photosynthesis #biology science

COMMENTS

  1. Photosynthesis

    Photosynthesis Definition. Photosynthesis is the biochemical pathway which converts the energy of light into the bonds of glucose molecules. The process of photosynthesis occurs in two steps. In the first step, energy from light is stored in the bonds of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH).

  2. Photosynthesis

    In chemical terms, photosynthesis is a light-energized oxidation-reduction process. (Oxidation refers to the removal of electrons from a molecule; reduction refers to the gain of electrons by a molecule.) In plant photosynthesis, the energy of light is used to drive the oxidation of water (H 2 O), producing oxygen gas (O 2 ), hydrogen ions (H ...

  3. Photosynthesis

    Photosynthesis. Photosynthesis is a process by which phototrophs convert light energy into chemical energy, which is later used to fuel cellular activities. The chemical energy is stored in the form of sugars, which are created from water and carbon dioxide. 3,12,343.

  4. Photosynthesis

    The process. During photosynthesis, plants take in carbon dioxide (CO 2) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose.

  5. Photosynthesis

    Photosynthesis ( / ˌfoʊtəˈsɪnθəsɪs / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their activities.

  6. Intro to photosynthesis (article)

    Photosynthesis is the process in which light energy is converted to chemical energy in the form of sugars. In a process driven by light energy, glucose molecules (or other sugars) are constructed from water and carbon dioxide, and oxygen is released as a byproduct. The glucose molecules provide organisms with two crucial resources: energy and ...

  7. Photosynthesis review (article)

    Meaning. Photosynthesis. The process by which plants, algae, and some bacteria convert light energy to chemical energy in the form of sugars. Photoautotroph. An organism that produces its own food using light energy (like plants) ATP. Adenosine triphosphate, the primary energy carrier in living things. Chloroplast.

  8. Photosynthesis

    Photosynthesis definition: Photosynthesis is a physio-chemical process carried out by photo-auto-lithotrophs. In simpler language, photosynthesis is the process by which green plants convert light energy into 'chemical energy'. ... Biology Definition: Photosynthesis is the synthesis of complex organic material using carbon dioxide, water ...

  9. 5.1: Overview of Photosynthesis

    These sugar molecules contain the energy that living things need to survive. Figure 5.1.4 5.1. 4: Photosynthesis uses solar energy, carbon dioxide, and water to release oxygen and to produce energy-storing sugar molecules. The complex reactions of photosynthesis can be summarized by the chemical equation shown in Figure 5.1.5 5.1.

  10. Photosynthesis in organisms (article)

    Photosynthesis is a vital process that converts light energy into chemical energy and organic molecules. In this article, you will learn how different organisms perform photosynthesis, what types of pigments and reactions are involved, and how photosynthesis affects the biosphere. Khan Academy is a free online learning platform that offers courses in various subjects, including biology.

  11. 8.1: Overview of Photosynthesis

    Main Structures and Summary of Photosynthesis. Photosynthesis is a multi-step process that requires sunlight, carbon dioxide (which is low in energy), and water as substrates (Figure 8.1.3 8.1. 3 ). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), simple carbohydrate molecules (which are high in ...

  12. 8.1 Overview of Photosynthesis

    Photosynthesis is essential to all life on earth; both plants and animals depend on it. It is the only biological process that can capture energy that originates in outer space (sunlight) and convert it into chemical compounds (carbohydrates) that every organism uses to power its metabolism. In brief, the energy of sunlight is captured and used ...

  13. Photosynthesis, Chloroplast

    The chloroplast is involved in both stages of photosynthesis. The light reactions take place in the thylakoid. There, water (H 2 O) is oxidized, and oxygen (O 2) is released. The electrons that ...

  14. The Purpose and Process of Photosynthesis

    photosynthesis: the process by which plants and other photoautotrophs generate carbohydrates and oxygen from carbon dioxide, water, and light energy in chloroplasts. photoautotroph: an organism that can synthesize its own food by using light as a source of energy. chemoautotroph: a simple organism, such as a protozoan, that derives its energy ...

  15. Photosynthesis

    Photosynthesis is really important for the plant because it provides the plant with food: some of the glucose is used immediately, to give the plant energy in the process of respiration. some of ...

  16. What is photosynthesis?

    Photosynthesis is the process used by plants, algae and some bacteria to turn sunlight into energy. The process chemically converts carbon dioxide (CO2) and water into food (sugars) and oxygen ...

  17. Photosynthesis

    This unit is part of the Biology library. Browse videos, articles, and exercises by topic. ... Breaking down photosynthesis stages (Opens a modal) Intro to photosynthesis (Opens a modal) Practice. Photosynthesis Get 3 of 4 questions to level up! The light-dependent reactions. Learn.

  18. What Is Photosynthesis?

    What Is Photosynthesis? "Photosynthesis is the process used by green plants and a few organisms that use sunlight, carbon dioxide and water to prepare their food.". The process of photosynthesis is used by plants, algae and certain bacteria that convert light energy into chemical energy. The glucose formed during the process of ...

  19. Photosynthesis Definition & Meaning

    The meaning of PHOTOSYNTHESIS is synthesis of chemical compounds with the aid of radiant energy and especially light; especially : formation of carbohydrates from carbon dioxide and a source of hydrogen (such as water) in the chlorophyll-containing cells (as of green plants) exposed to light. Photosynthesis Has Greek Roots

  20. 5: Photosynthesis

    5: Photosynthesis. The energy that is harnessed from photosynthesis enters the ecosystems of our planet continuously and is transferred from one organism to another. Therefore, directly or indirectly, the process of photosynthesis provides most of the energy required by living things on earth. Photosynthesis also results in the release of ...

  21. Photosynthesis

    Photosynthesis is the means that primary producers (mostly plants) can obtain energy via light energy. The energy gained FROM light can be used in various processes mentioned below for the creation of energy that the plant will need to survive and grow. Photosynthesis is a reduction process, where hydrogen is reduced by a coenzyme.

  22. Photosynthesis

    Photosynthesis requires energy in the form of light to drive the chemical reaction. Photosynthesis is an. reaction. in the leaves. Chlorophyll is located in. Revise plant cells and their part in ...

  23. Light-dependent reactions (photosynthesis reaction) (article)

    The light-dependent reactions use light energy to make two molecules needed for the next stage of photosynthesis: the energy storage molecule ATP and the reduced electron carrier NADPH. In plants, the light reactions take place in the thylakoid membranes of organelles called chloroplasts.