Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 27 May 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

the research proposal hypothesis

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

the research proposal hypothesis

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Rate this article Cancel Reply

Your email address will not be published.

the research proposal hypothesis

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

the research proposal hypothesis

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

the research proposal hypothesis

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

the research proposal hypothesis

As a researcher, what do you consider most when choosing an image manipulation detector?

How to Write a Research Hypothesis

  • Research Process
  • Peer Review

Since grade school, we've all been familiar with hypotheses. The hypothesis is an essential step of the scientific method. But what makes an effective research hypothesis, how do you create one, and what types of hypotheses are there? We answer these questions and more.

Updated on April 27, 2022

the word hypothesis being typed on white paper

What is a research hypothesis?

General hypothesis.

Since grade school, we've all been familiar with the term “hypothesis.” A hypothesis is a fact-based guess or prediction that has not been proven. It is an essential step of the scientific method. The hypothesis of a study is a drive for experimentation to either prove the hypothesis or dispute it.

Research Hypothesis

A research hypothesis is more specific than a general hypothesis. It is an educated, expected prediction of the outcome of a study that is testable.

What makes an effective research hypothesis?

A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven.

Research hypothesis checklist

Once you've written a possible hypothesis, make sure it checks the following boxes:

  • It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis.
  • It must include a dependent and independent variable: At least one independent variable ( cause ) and one dependent variable ( effect ) must be included.
  • The language must be easy to understand: Be as clear and concise as possible. Nothing should be left to interpretation.
  • It must be relevant to your research topic: You probably shouldn't be talking about cats and dogs if your research topic is outer space. Stay relevant to your topic.

How to create an effective research hypothesis

Pose it as a question first.

Start your research hypothesis from a journalistic approach. Ask one of the five W's: Who, what, when, where, or why.

A possible initial question could be: Why is the sky blue?

Do the preliminary research

Once you have a question in mind, read research around your topic. Collect research from academic journals.

If you're looking for information about the sky and why it is blue, research information about the atmosphere, weather, space, the sun, etc.

Write a draft hypothesis

Once you're comfortable with your subject and have preliminary knowledge, create a working hypothesis. Don't stress much over this. Your first hypothesis is not permanent. Look at it as a draft.

Your first draft of a hypothesis could be: Certain molecules in the Earth's atmosphere are responsive to the sky being the color blue.

Make your working draft perfect

Take your working hypothesis and make it perfect. Narrow it down to include only the information listed in the “Research hypothesis checklist” above.

Now that you've written your working hypothesis, narrow it down. Your new hypothesis could be: Light from the sun hitting oxygen molecules in the sky makes the color of the sky appear blue.

Write a null hypothesis

Your null hypothesis should be the opposite of your research hypothesis. It should be able to be disproven by your research.

In this example, your null hypothesis would be: Light from the sun hitting oxygen molecules in the sky does not make the color of the sky appear blue.

Why is it important to have a clear, testable hypothesis?

One of the main reasons a manuscript can be rejected from a journal is because of a weak hypothesis. “Poor hypothesis, study design, methodology, and improper use of statistics are other reasons for rejection of a manuscript,” says Dr. Ish Kumar Dhammi and Dr. Rehan-Ul-Haq in Indian Journal of Orthopaedics.

According to Dr. James M. Provenzale in American Journal of Roentgenology , “The clear declaration of a research question (or hypothesis) in the Introduction is critical for reviewers to understand the intent of the research study. It is best to clearly state the study goal in plain language (for example, “We set out to determine whether condition x produces condition y.”) An insufficient problem statement is one of the more common reasons for manuscript rejection.”

Characteristics that make a hypothesis weak include:

  • Unclear variables
  • Unoriginality
  • Too general
  • Too specific

A weak hypothesis leads to weak research and methods . The goal of a paper is to prove or disprove a hypothesis - or to prove or disprove a null hypothesis. If the hypothesis is not a dependent variable of what is being studied, the paper's methods should come into question.

A strong hypothesis is essential to the scientific method. A hypothesis states an assumed relationship between at least two variables and the experiment then proves or disproves that relationship with statistical significance. Without a proven and reproducible relationship, the paper feeds into the reproducibility crisis. Learn more about writing for reproducibility .

In a study published in The Journal of Obstetrics and Gynecology of India by Dr. Suvarna Satish Khadilkar, she reviewed 400 rejected manuscripts to see why they were rejected. Her studies revealed that poor methodology was a top reason for the submission having a final disposition of rejection.

Aside from publication chances, Dr. Gareth Dyke believes a clear hypothesis helps efficiency.

“Developing a clear and testable hypothesis for your research project means that you will not waste time, energy, and money with your work,” said Dyke. “Refining a hypothesis that is both meaningful, interesting, attainable, and testable is the goal of all effective research.”

Types of research hypotheses

There can be overlap in these types of hypotheses.

Simple hypothesis

A simple hypothesis is a hypothesis at its most basic form. It shows the relationship of one independent and one independent variable.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable).

Complex hypothesis

A complex hypothesis shows the relationship of two or more independent and dependent variables.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable) and heart disease (dependent variable).

Directional hypothesis

A directional hypothesis guesses which way the results of an experiment will go. It uses words like increase, decrease, higher, lower, positive, negative, more, or less. It is also frequently used in statistics.

Example: Humans exposed to radiation have a higher risk of cancer than humans not exposed to radiation.

Non-directional hypothesis

A non-directional hypothesis says there will be an effect on the dependent variable, but it does not say which direction.

Associative hypothesis

An associative hypothesis says that when one variable changes, so does the other variable.

Alternative hypothesis

An alternative hypothesis states that the variables have a relationship.

  • The opposite of a null hypothesis

Example: An apple a day keeps the doctor away.

Null hypothesis

A null hypothesis states that there is no relationship between the two variables. It is posed as the opposite of what the alternative hypothesis states.

Researchers use a null hypothesis to work to be able to reject it. A null hypothesis:

  • Can never be proven
  • Can only be rejected
  • Is the opposite of an alternative hypothesis

Example: An apple a day does not keep the doctor away.

Logical hypothesis

A logical hypothesis is a suggested explanation while using limited evidence.

Example: Bats can navigate in the dark better than tigers.

In this hypothesis, the researcher knows that tigers cannot see in the dark, and bats mostly live in darkness.

Empirical hypothesis

An empirical hypothesis is also called a “working hypothesis.” It uses the trial and error method and changes around the independent variables.

  • An apple a day keeps the doctor away.
  • Two apples a day keep the doctor away.
  • Three apples a day keep the doctor away.

In this case, the research changes the hypothesis as the researcher learns more about his/her research.

Statistical hypothesis

A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are making a statement about a large population. Instead of having to test the entire population of Illinois, you could just use a smaller sample of people who live there.

Example: 70% of people who live in Illinois are iron deficient.

Causal hypothesis

A causal hypothesis states that the independent variable will have an effect on the dependent variable.

Example: Using tobacco products causes cancer.

Final thoughts

Make sure your research is error-free before you send it to your preferred journal . Check our our English Editing services to avoid your chances of desk rejection.

Jonny Rhein, BA

Jonny Rhein, BA

See our "Privacy Policy"

Elsevier QRcode Wechat

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 319.3K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

What is a Problem Statement

What is a Problem Statement? [with examples]

You may also like.

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Writing an Impactful Paper

The Clear Path to An Impactful Paper: ②

Input your search keywords and press Enter.

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

The goal of a research proposal is twofold: to present and justify the need to study a research problem and to present the practical ways in which the proposed study should be conducted. The design elements and procedures for conducting research are governed by standards of the predominant discipline in which the problem resides, therefore, the guidelines for research proposals are more exacting and less formal than a general project proposal. Research proposals contain extensive literature reviews. They must provide persuasive evidence that a need exists for the proposed study. In addition to providing a rationale, a proposal describes detailed methodology for conducting the research consistent with requirements of the professional or academic field and a statement on anticipated outcomes and benefits derived from the study's completion.

Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005.

How to Approach Writing a Research Proposal

Your professor may assign the task of writing a research proposal for the following reasons:

  • Develop your skills in thinking about and designing a comprehensive research study;
  • Learn how to conduct a comprehensive review of the literature to determine that the research problem has not been adequately addressed or has been answered ineffectively and, in so doing, become better at locating pertinent scholarship related to your topic;
  • Improve your general research and writing skills;
  • Practice identifying the logical steps that must be taken to accomplish one's research goals;
  • Critically review, examine, and consider the use of different methods for gathering and analyzing data related to the research problem; and,
  • Nurture a sense of inquisitiveness within yourself and to help see yourself as an active participant in the process of conducting scholarly research.

A proposal should contain all the key elements involved in designing a completed research study, with sufficient information that allows readers to assess the validity and usefulness of your proposed study. The only elements missing from a research proposal are the findings of the study and your analysis of those findings. Finally, an effective proposal is judged on the quality of your writing and, therefore, it is important that your proposal is coherent, clear, and compelling.

Regardless of the research problem you are investigating and the methodology you choose, all research proposals must address the following questions:

  • What do you plan to accomplish? Be clear and succinct in defining the research problem and what it is you are proposing to investigate.
  • Why do you want to do the research? In addition to detailing your research design, you also must conduct a thorough review of the literature and provide convincing evidence that it is a topic worthy of in-depth study. A successful research proposal must answer the "So What?" question.
  • How are you going to conduct the research? Be sure that what you propose is doable. If you're having difficulty formulating a research problem to propose investigating, go here for strategies in developing a problem to study.

Common Mistakes to Avoid

  • Failure to be concise . A research proposal must be focused and not be "all over the map" or diverge into unrelated tangents without a clear sense of purpose.
  • Failure to cite landmark works in your literature review . Proposals should be grounded in foundational research that lays a foundation for understanding the development and scope of the the topic and its relevance.
  • Failure to delimit the contextual scope of your research [e.g., time, place, people, etc.]. As with any research paper, your proposed study must inform the reader how and in what ways the study will frame the problem.
  • Failure to develop a coherent and persuasive argument for the proposed research . This is critical. In many workplace settings, the research proposal is a formal document intended to argue for why a study should be funded.
  • Sloppy or imprecise writing, or poor grammar . Although a research proposal does not represent a completed research study, there is still an expectation that it is well-written and follows the style and rules of good academic writing.
  • Too much detail on minor issues, but not enough detail on major issues . Your proposal should focus on only a few key research questions in order to support the argument that the research needs to be conducted. Minor issues, even if valid, can be mentioned but they should not dominate the overall narrative.

Procter, Margaret. The Academic Proposal.  The Lab Report. University College Writing Centre. University of Toronto; Sanford, Keith. Information for Students: Writing a Research Proposal. Baylor University; Wong, Paul T. P. How to Write a Research Proposal. International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences, Articles, and Books. The Writing Lab and The OWL. Purdue University; Writing a Research Proposal. University Library. University of Illinois at Urbana-Champaign.

Structure and Writing Style

Beginning the Proposal Process

As with writing most college-level academic papers, research proposals are generally organized the same way throughout most social science disciplines. The text of proposals generally vary in length between ten and thirty-five pages, followed by the list of references. However, before you begin, read the assignment carefully and, if anything seems unclear, ask your professor whether there are any specific requirements for organizing and writing the proposal.

A good place to begin is to ask yourself a series of questions:

  • What do I want to study?
  • Why is the topic important?
  • How is it significant within the subject areas covered in my class?
  • What problems will it help solve?
  • How does it build upon [and hopefully go beyond] research already conducted on the topic?
  • What exactly should I plan to do, and can I get it done in the time available?

In general, a compelling research proposal should document your knowledge of the topic and demonstrate your enthusiasm for conducting the study. Approach it with the intention of leaving your readers feeling like, "Wow, that's an exciting idea and I can’t wait to see how it turns out!"

Most proposals should include the following sections:

I.  Introduction

In the real world of higher education, a research proposal is most often written by scholars seeking grant funding for a research project or it's the first step in getting approval to write a doctoral dissertation. Even if this is just a course assignment, treat your introduction as the initial pitch of an idea based on a thorough examination of the significance of a research problem. After reading the introduction, your readers should not only have an understanding of what you want to do, but they should also be able to gain a sense of your passion for the topic and to be excited about the study's possible outcomes. Note that most proposals do not include an abstract [summary] before the introduction.

Think about your introduction as a narrative written in two to four paragraphs that succinctly answers the following four questions :

  • What is the central research problem?
  • What is the topic of study related to that research problem?
  • What methods should be used to analyze the research problem?
  • Answer the "So What?" question by explaining why this is important research, what is its significance, and why should someone reading the proposal care about the outcomes of the proposed study?

II.  Background and Significance

This is where you explain the scope and context of your proposal and describe in detail why it's important. It can be melded into your introduction or you can create a separate section to help with the organization and narrative flow of your proposal. Approach writing this section with the thought that you can’t assume your readers will know as much about the research problem as you do. Note that this section is not an essay going over everything you have learned about the topic; instead, you must choose what is most relevant in explaining the aims of your research.

To that end, while there are no prescribed rules for establishing the significance of your proposed study, you should attempt to address some or all of the following:

  • State the research problem and give a more detailed explanation about the purpose of the study than what you stated in the introduction. This is particularly important if the problem is complex or multifaceted .
  • Present the rationale of your proposed study and clearly indicate why it is worth doing; be sure to answer the "So What? question [i.e., why should anyone care?].
  • Describe the major issues or problems examined by your research. This can be in the form of questions to be addressed. Be sure to note how your proposed study builds on previous assumptions about the research problem.
  • Explain the methods you plan to use for conducting your research. Clearly identify the key sources you intend to use and explain how they will contribute to your analysis of the topic.
  • Describe the boundaries of your proposed research in order to provide a clear focus. Where appropriate, state not only what you plan to study, but what aspects of the research problem will be excluded from the study.
  • If necessary, provide definitions of key concepts, theories, or terms.

III.  Literature Review

Connected to the background and significance of your study is a section of your proposal devoted to a more deliberate review and synthesis of prior studies related to the research problem under investigation . The purpose here is to place your project within the larger whole of what is currently being explored, while at the same time, demonstrating to your readers that your work is original and innovative. Think about what questions other researchers have asked, what methodological approaches they have used, and what is your understanding of their findings and, when stated, their recommendations. Also pay attention to any suggestions for further research.

Since a literature review is information dense, it is crucial that this section is intelligently structured to enable a reader to grasp the key arguments underpinning your proposed study in relation to the arguments put forth by other researchers. A good strategy is to break the literature into "conceptual categories" [themes] rather than systematically or chronologically describing groups of materials one at a time. Note that conceptual categories generally reveal themselves after you have read most of the pertinent literature on your topic so adding new categories is an on-going process of discovery as you review more studies. How do you know you've covered the key conceptual categories underlying the research literature? Generally, you can have confidence that all of the significant conceptual categories have been identified if you start to see repetition in the conclusions or recommendations that are being made.

NOTE: Do not shy away from challenging the conclusions made in prior research as a basis for supporting the need for your proposal. Assess what you believe is missing and state how previous research has failed to adequately examine the issue that your study addresses. Highlighting the problematic conclusions strengthens your proposal. For more information on writing literature reviews, GO HERE .

To help frame your proposal's review of prior research, consider the "five C’s" of writing a literature review:

  • Cite , so as to keep the primary focus on the literature pertinent to your research problem.
  • Compare the various arguments, theories, methodologies, and findings expressed in the literature: what do the authors agree on? Who applies similar approaches to analyzing the research problem?
  • Contrast the various arguments, themes, methodologies, approaches, and controversies expressed in the literature: describe what are the major areas of disagreement, controversy, or debate among scholars?
  • Critique the literature: Which arguments are more persuasive, and why? Which approaches, findings, and methodologies seem most reliable, valid, or appropriate, and why? Pay attention to the verbs you use to describe what an author says/does [e.g., asserts, demonstrates, argues, etc.].
  • Connect the literature to your own area of research and investigation: how does your own work draw upon, depart from, synthesize, or add a new perspective to what has been said in the literature?

IV.  Research Design and Methods

This section must be well-written and logically organized because you are not actually doing the research, yet, your reader must have confidence that you have a plan worth pursuing . The reader will never have a study outcome from which to evaluate whether your methodological choices were the correct ones. Thus, the objective here is to convince the reader that your overall research design and proposed methods of analysis will correctly address the problem and that the methods will provide the means to effectively interpret the potential results. Your design and methods should be unmistakably tied to the specific aims of your study.

Describe the overall research design by building upon and drawing examples from your review of the literature. Consider not only methods that other researchers have used, but methods of data gathering that have not been used but perhaps could be. Be specific about the methodological approaches you plan to undertake to obtain information, the techniques you would use to analyze the data, and the tests of external validity to which you commit yourself [i.e., the trustworthiness by which you can generalize from your study to other people, places, events, and/or periods of time].

When describing the methods you will use, be sure to cover the following:

  • Specify the research process you will undertake and the way you will interpret the results obtained in relation to the research problem. Don't just describe what you intend to achieve from applying the methods you choose, but state how you will spend your time while applying these methods [e.g., coding text from interviews to find statements about the need to change school curriculum; running a regression to determine if there is a relationship between campaign advertising on social media sites and election outcomes in Europe ].
  • Keep in mind that the methodology is not just a list of tasks; it is a deliberate argument as to why techniques for gathering information add up to the best way to investigate the research problem. This is an important point because the mere listing of tasks to be performed does not demonstrate that, collectively, they effectively address the research problem. Be sure you clearly explain this.
  • Anticipate and acknowledge any potential barriers and pitfalls in carrying out your research design and explain how you plan to address them. No method applied to research in the social and behavioral sciences is perfect, so you need to describe where you believe challenges may exist in obtaining data or accessing information. It's always better to acknowledge this than to have it brought up by your professor!

V.  Preliminary Suppositions and Implications

Just because you don't have to actually conduct the study and analyze the results, doesn't mean you can skip talking about the analytical process and potential implications . The purpose of this section is to argue how and in what ways you believe your research will refine, revise, or extend existing knowledge in the subject area under investigation. Depending on the aims and objectives of your study, describe how the anticipated results will impact future scholarly research, theory, practice, forms of interventions, or policy making. Note that such discussions may have either substantive [a potential new policy], theoretical [a potential new understanding], or methodological [a potential new way of analyzing] significance.   When thinking about the potential implications of your study, ask the following questions:

  • What might the results mean in regards to challenging the theoretical framework and underlying assumptions that support the study?
  • What suggestions for subsequent research could arise from the potential outcomes of the study?
  • What will the results mean to practitioners in the natural settings of their workplace, organization, or community?
  • Will the results influence programs, methods, and/or forms of intervention?
  • How might the results contribute to the solution of social, economic, or other types of problems?
  • Will the results influence policy decisions?
  • In what way do individuals or groups benefit should your study be pursued?
  • What will be improved or changed as a result of the proposed research?
  • How will the results of the study be implemented and what innovations or transformative insights could emerge from the process of implementation?

NOTE:   This section should not delve into idle speculation, opinion, or be formulated on the basis of unclear evidence . The purpose is to reflect upon gaps or understudied areas of the current literature and describe how your proposed research contributes to a new understanding of the research problem should the study be implemented as designed.

ANOTHER NOTE : This section is also where you describe any potential limitations to your proposed study. While it is impossible to highlight all potential limitations because the study has yet to be conducted, you still must tell the reader where and in what form impediments may arise and how you plan to address them.

VI.  Conclusion

The conclusion reiterates the importance or significance of your proposal and provides a brief summary of the entire study . This section should be only one or two paragraphs long, emphasizing why the research problem is worth investigating, why your research study is unique, and how it should advance existing knowledge.

Someone reading this section should come away with an understanding of:

  • Why the study should be done;
  • The specific purpose of the study and the research questions it attempts to answer;
  • The decision for why the research design and methods used where chosen over other options;
  • The potential implications emerging from your proposed study of the research problem; and
  • A sense of how your study fits within the broader scholarship about the research problem.

VII.  Citations

As with any scholarly research paper, you must cite the sources you used . In a standard research proposal, this section can take two forms, so consult with your professor about which one is preferred.

  • References -- a list of only the sources you actually used in creating your proposal.
  • Bibliography -- a list of everything you used in creating your proposal, along with additional citations to any key sources relevant to understanding the research problem.

In either case, this section should testify to the fact that you did enough preparatory work to ensure the project will complement and not just duplicate the efforts of other researchers. It demonstrates to the reader that you have a thorough understanding of prior research on the topic.

Most proposal formats have you start a new page and use the heading "References" or "Bibliography" centered at the top of the page. Cited works should always use a standard format that follows the writing style advised by the discipline of your course [e.g., education=APA; history=Chicago] or that is preferred by your professor. This section normally does not count towards the total page length of your research proposal.

Develop a Research Proposal: Writing the Proposal. Office of Library Information Services. Baltimore County Public Schools; Heath, M. Teresa Pereira and Caroline Tynan. “Crafting a Research Proposal.” The Marketing Review 10 (Summer 2010): 147-168; Jones, Mark. “Writing a Research Proposal.” In MasterClass in Geography Education: Transforming Teaching and Learning . Graham Butt, editor. (New York: Bloomsbury Academic, 2015), pp. 113-127; Juni, Muhamad Hanafiah. “Writing a Research Proposal.” International Journal of Public Health and Clinical Sciences 1 (September/October 2014): 229-240; Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005; Procter, Margaret. The Academic Proposal. The Lab Report. University College Writing Centre. University of Toronto; Punch, Keith and Wayne McGowan. "Developing and Writing a Research Proposal." In From Postgraduate to Social Scientist: A Guide to Key Skills . Nigel Gilbert, ed. (Thousand Oaks, CA: Sage, 2006), 59-81; Wong, Paul T. P. How to Write a Research Proposal. International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences , Articles, and Books. The Writing Lab and The OWL. Purdue University; Writing a Research Proposal. University Library. University of Illinois at Urbana-Champaign.

  • << Previous: Writing a Reflective Paper
  • Next: Generative AI and Writing >>
  • Last Updated: May 7, 2024 9:45 AM
  • URL: https://libguides.usc.edu/writingguide/assignments
  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

the research proposal hypothesis

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Bad hypothesis examples, tips for writing a research hypothesis.

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

How to write a research proposal?

Department of Anaesthesiology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India

Devika Rani Duggappa

Writing the proposal of a research work in the present era is a challenging task due to the constantly evolving trends in the qualitative research design and the need to incorporate medical advances into the methodology. The proposal is a detailed plan or ‘blueprint’ for the intended study, and once it is completed, the research project should flow smoothly. Even today, many of the proposals at post-graduate evaluation committees and application proposals for funding are substandard. A search was conducted with keywords such as research proposal, writing proposal and qualitative using search engines, namely, PubMed and Google Scholar, and an attempt has been made to provide broad guidelines for writing a scientifically appropriate research proposal.

INTRODUCTION

A clean, well-thought-out proposal forms the backbone for the research itself and hence becomes the most important step in the process of conduct of research.[ 1 ] The objective of preparing a research proposal would be to obtain approvals from various committees including ethics committee [details under ‘Research methodology II’ section [ Table 1 ] in this issue of IJA) and to request for grants. However, there are very few universally accepted guidelines for preparation of a good quality research proposal. A search was performed with keywords such as research proposal, funding, qualitative and writing proposals using search engines, namely, PubMed, Google Scholar and Scopus.

Five ‘C’s while writing a literature review

An external file that holds a picture, illustration, etc.
Object name is IJA-60-631-g001.jpg

BASIC REQUIREMENTS OF A RESEARCH PROPOSAL

A proposal needs to show how your work fits into what is already known about the topic and what new paradigm will it add to the literature, while specifying the question that the research will answer, establishing its significance, and the implications of the answer.[ 2 ] The proposal must be capable of convincing the evaluation committee about the credibility, achievability, practicality and reproducibility (repeatability) of the research design.[ 3 ] Four categories of audience with different expectations may be present in the evaluation committees, namely academic colleagues, policy-makers, practitioners and lay audiences who evaluate the research proposal. Tips for preparation of a good research proposal include; ‘be practical, be persuasive, make broader links, aim for crystal clarity and plan before you write’. A researcher must be balanced, with a realistic understanding of what can be achieved. Being persuasive implies that researcher must be able to convince other researchers, research funding agencies, educational institutions and supervisors that the research is worth getting approval. The aim of the researcher should be clearly stated in simple language that describes the research in a way that non-specialists can comprehend, without use of jargons. The proposal must not only demonstrate that it is based on an intelligent understanding of the existing literature but also show that the writer has thought about the time needed to conduct each stage of the research.[ 4 , 5 ]

CONTENTS OF A RESEARCH PROPOSAL

The contents or formats of a research proposal vary depending on the requirements of evaluation committee and are generally provided by the evaluation committee or the institution.

In general, a cover page should contain the (i) title of the proposal, (ii) name and affiliation of the researcher (principal investigator) and co-investigators, (iii) institutional affiliation (degree of the investigator and the name of institution where the study will be performed), details of contact such as phone numbers, E-mail id's and lines for signatures of investigators.

The main contents of the proposal may be presented under the following headings: (i) introduction, (ii) review of literature, (iii) aims and objectives, (iv) research design and methods, (v) ethical considerations, (vi) budget, (vii) appendices and (viii) citations.[ 4 ]

Introduction

It is also sometimes termed as ‘need for study’ or ‘abstract’. Introduction is an initial pitch of an idea; it sets the scene and puts the research in context.[ 6 ] The introduction should be designed to create interest in the reader about the topic and proposal. It should convey to the reader, what you want to do, what necessitates the study and your passion for the topic.[ 7 ] Some questions that can be used to assess the significance of the study are: (i) Who has an interest in the domain of inquiry? (ii) What do we already know about the topic? (iii) What has not been answered adequately in previous research and practice? (iv) How will this research add to knowledge, practice and policy in this area? Some of the evaluation committees, expect the last two questions, elaborated under a separate heading of ‘background and significance’.[ 8 ] Introduction should also contain the hypothesis behind the research design. If hypothesis cannot be constructed, the line of inquiry to be used in the research must be indicated.

Review of literature

It refers to all sources of scientific evidence pertaining to the topic in interest. In the present era of digitalisation and easy accessibility, there is an enormous amount of relevant data available, making it a challenge for the researcher to include all of it in his/her review.[ 9 ] It is crucial to structure this section intelligently so that the reader can grasp the argument related to your study in relation to that of other researchers, while still demonstrating to your readers that your work is original and innovative. It is preferable to summarise each article in a paragraph, highlighting the details pertinent to the topic of interest. The progression of review can move from the more general to the more focused studies, or a historical progression can be used to develop the story, without making it exhaustive.[ 1 ] Literature should include supporting data, disagreements and controversies. Five ‘C's may be kept in mind while writing a literature review[ 10 ] [ Table 1 ].

Aims and objectives

The research purpose (or goal or aim) gives a broad indication of what the researcher wishes to achieve in the research. The hypothesis to be tested can be the aim of the study. The objectives related to parameters or tools used to achieve the aim are generally categorised as primary and secondary objectives.

Research design and method

The objective here is to convince the reader that the overall research design and methods of analysis will correctly address the research problem and to impress upon the reader that the methodology/sources chosen are appropriate for the specific topic. It should be unmistakably tied to the specific aims of your study.

In this section, the methods and sources used to conduct the research must be discussed, including specific references to sites, databases, key texts or authors that will be indispensable to the project. There should be specific mention about the methodological approaches to be undertaken to gather information, about the techniques to be used to analyse it and about the tests of external validity to which researcher is committed.[ 10 , 11 ]

The components of this section include the following:[ 4 ]

Population and sample

Population refers to all the elements (individuals, objects or substances) that meet certain criteria for inclusion in a given universe,[ 12 ] and sample refers to subset of population which meets the inclusion criteria for enrolment into the study. The inclusion and exclusion criteria should be clearly defined. The details pertaining to sample size are discussed in the article “Sample size calculation: Basic priniciples” published in this issue of IJA.

Data collection

The researcher is expected to give a detailed account of the methodology adopted for collection of data, which include the time frame required for the research. The methodology should be tested for its validity and ensure that, in pursuit of achieving the results, the participant's life is not jeopardised. The author should anticipate and acknowledge any potential barrier and pitfall in carrying out the research design and explain plans to address them, thereby avoiding lacunae due to incomplete data collection. If the researcher is planning to acquire data through interviews or questionnaires, copy of the questions used for the same should be attached as an annexure with the proposal.

Rigor (soundness of the research)

This addresses the strength of the research with respect to its neutrality, consistency and applicability. Rigor must be reflected throughout the proposal.

It refers to the robustness of a research method against bias. The author should convey the measures taken to avoid bias, viz. blinding and randomisation, in an elaborate way, thus ensuring that the result obtained from the adopted method is purely as chance and not influenced by other confounding variables.

Consistency

Consistency considers whether the findings will be consistent if the inquiry was replicated with the same participants and in a similar context. This can be achieved by adopting standard and universally accepted methods and scales.

Applicability

Applicability refers to the degree to which the findings can be applied to different contexts and groups.[ 13 ]

Data analysis

This section deals with the reduction and reconstruction of data and its analysis including sample size calculation. The researcher is expected to explain the steps adopted for coding and sorting the data obtained. Various tests to be used to analyse the data for its robustness, significance should be clearly stated. Author should also mention the names of statistician and suitable software which will be used in due course of data analysis and their contribution to data analysis and sample calculation.[ 9 ]

Ethical considerations

Medical research introduces special moral and ethical problems that are not usually encountered by other researchers during data collection, and hence, the researcher should take special care in ensuring that ethical standards are met. Ethical considerations refer to the protection of the participants' rights (right to self-determination, right to privacy, right to autonomy and confidentiality, right to fair treatment and right to protection from discomfort and harm), obtaining informed consent and the institutional review process (ethical approval). The researcher needs to provide adequate information on each of these aspects.

Informed consent needs to be obtained from the participants (details discussed in further chapters), as well as the research site and the relevant authorities.

When the researcher prepares a research budget, he/she should predict and cost all aspects of the research and then add an additional allowance for unpredictable disasters, delays and rising costs. All items in the budget should be justified.

Appendices are documents that support the proposal and application. The appendices will be specific for each proposal but documents that are usually required include informed consent form, supporting documents, questionnaires, measurement tools and patient information of the study in layman's language.

As with any scholarly research paper, you must cite the sources you used in composing your proposal. Although the words ‘references and bibliography’ are different, they are used interchangeably. It refers to all references cited in the research proposal.

Successful, qualitative research proposals should communicate the researcher's knowledge of the field and method and convey the emergent nature of the qualitative design. The proposal should follow a discernible logic from the introduction to presentation of the appendices.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Yale Shield

Science & Quantitative Reasoning Education

Yale undergraduate research, how to write a proposal.

The abstract should summarize your proposal. Include one sentence to introduce the problem you are investigating, why this problem is significant, the hypothesis to be tested, a brief summary of experiments that you wish to conduct and a single concluding sentence. (250 word limit)

Introduction

The introduction discusses the background and significance of the problem you are investigating. Lead the reader from the general to the specific. For example, if you want to write about the role that Brca1 mutations play in breast cancer pathogenesis, talk first about the significance of breast cancer as a disease in the US/world population, then about familial breast cancer as a small subset of breast cancers in general, then about discovery of Brca1 mutations in familial breast cancer, then Brca1’s normal functions in DNA repair, then about how Brca1 mutations result in damaged DNA and onset of familial breast cancer, etc. Definitely include figures with properly labeled text boxes (designated as Figure 1, Figure 2, etc) here to better illustrate your points and help your reader wade through unfamiliar science. (3 pages max)

Formulate a hypothesis that will be tested in your grant proposal. Remember, you are doing hypothesis-driven research so there should be a hypothesis to be tested! The hypothesis should be focused, concise and flow logically from the introduction. For example, your hypothesis could be “I hypothesize that overexpressing wild type Brca1 in Brca1 null tumor cells will prevent metastatic spread in a mouse xenograph model.” Based on your hypothesis, your Specific Aims section should be geared to support it. The hypothesis is stated in one sentence in the proposal. 

Specific Aims (listed as Specific Aim 1, Specific Aim 2)

This is where you will want to work with your mentor to craft the experimental portion of your proposal. Propose two original specific aims to test your hypothesis. Don’t propose more than two aims-you will NOT have enough time to do more. In the example presented, Specific Aim 1 might be “To determine the oncogenic potential of Brca1 null cell lines expressing wild type Brca1 cDNA”. Specific aim 2 might be “To determine the metastatic potential of Brca1 null cells that express WT Brca1”. You do not have to go into extensive technical details, just enough for the reader to understand what you propose to do. The best aims yield mechanistic insights-that is, experiments proposed address some mechanisms of biology. A less desirable aim proposes correlative experiments that does not address mechanistically how BRCA1 mutations generate cancer. It is also very important that the two aims are related but NOT interdependent. What this means is that if Aim 1 doesn’t work, Aim 2 is not automatically dead. For example, say you propose in Aim 1 to generate a BRCA1 knockout mouse model, and in Aim 2 you will take tissues from this mouse to do experiments. If knocking out BRCA1 results in early embryonic death, you will never get a mouse that yields tissues for Aim 2. You can include some of your mentor’s data here as “Preliminary data”. Remember to carefully cite all your sources. (4 pages max; 2 pages per Aim)

Potential pitfalls and alternative strategies

This is a very important part of any proposal. This is where you want to discuss the experiments you propose in Aims 1 and 2. Remember, no experiment is perfect. Are there any reasons why experiments you proposed might not work? Why? What will you do to resolve this? What are other possible strategies you might use if your experiments don’t work? If a reviewer spots these deficiencies and you don’t propose methods to correct them, your proposal will not get funded. You will want to work with your mentor to write this section. (1/2 page per Aim)

Cite all references, including unpublished data from your mentor. Last, First, (year), Title, Journal, volume, pages.

*8 page proposal limit (not including References), 1.5 spacing, 12pt Times New Roman font

  • View an example of a research proposal submitted for the Yale College First-Year Summer Research Fellowship (PDF).  
  • View an example of a research proposal submitted for the Yale College Dean’s Research Fellowship and the Rosenfeld Science Scholars Program (PDF) .

How To Write A Research Proposal

Link Copied

Share on Facebook

Share on Twitter

Share on LinkedIn

How To Write A Research Proposal Explained!

Imagine this: you're sitting in your cluttered dorm room, surrounded by piles of books and stacks of notes. It's the middle of the night, and you're desperately trying to piece together your thoughts for that looming research proposal deadline. The pressure is on – you know this research proposal could be the ticket to kickstarting your academic career or securing that much-needed funding for your groundbreaking research idea. But how to write a research proposal? Don't worry, you're not alone. Making a research proposal can seem daunting, but fear not – with the right approach, it's entirely achievable. In this blog, we'll take you through each step of writing a research proposal, from understanding the basics to putting together a winning research proposal that grabs attention and gets results. 

What is a research proposal used for, and why is it important?

A research proposal is important because it helps determine if there is enough expertise to support your research area. It is a key part of evaluating your application, showing that your project is feasible and fits within the institution's strengths. However, the proposal is just the beginning. Your ideas will likely change as you delve deeper into your research, but it provides a clear starting point. This initial plan helps both you and the institution understand the potential direction and significance of your research, laying solid foundations for your future. 

What Things to keep in mind while writing a research proposal?

Academics often need to write research proposals to get funding for their projects. As a student, you might need to write one when applying to grad school or before starting your thesis or dissertation. A proposal helps you shape your research plans and shows why your project is valuable to funders, educational institutions, or supervisors.

  • Relevance: Show your reader why your project is interesting, unique, and important.
  • Context: Show that you are comfortable and knowledgeable in your field. Make it clear that you understand the current research on your topic.
  • Approach: Explain why you chose your methodology. Show that you've thought carefully about the data, tools, and steps needed to do your research.
  • Achievability: Make sure your project can be done within the time frame of your program or funding deadline.
  • Tone: When you write research proposals or any academic work, keep it formal and objective. Remember, being clear and to the point is important. Keep your writing concise; being formal doesn't mean using fancy language.

How long should my research proposal be?

Usually, research proposals for bachelor’s and master’s theses are just a few pages. But for bigger projects like Ph.D. dissertations or asking for funding, they can be longer and more detailed. The main aim of a research proposal is to explain what your research will do clearly. So, while the length of the proposal matters less, what’s really important is that you cover all the necessary information in it.

Sections of a research proposal

Research proposals usually have a simple layout. To meet the goals we talked about earlier, here’s how to write a research proposal:

If your proposal is really long, you might want to add a summary and a list of what's inside to help your reader find their way around. Just like your dissertation or thesis, your proposal should have a title page with the following

  • The title of your project
  • Your supervisor’s name
  • Your school and department

Introduction section of research proposal

The beginning of your proposal is like the first pitch for your project. Make it clear and brief, explaining what you want to do and why.

In your introduction:

  • Introduce your topic
  • Provide background and context
  • Explain the problem you're addressing and your research questions

To help you with your introduction, include:

  • Who might care about your topic (like scientists or policymakers)
  • What's already known about it
  • What's still unknown
  • How your research will add new information
  • Why do you think this research matters

Literature review

As you begin, it's important to show that you know about the key research on your topic. A good literature review tells your reader that your project is based on solid existing knowledge. It also shows that you're not just repeating what others have said but adding something new.

In this part, explain how your project fits into the ongoing discussion in the field by:

  • Comparing different theories, methods, and debates
  • Looking at the strengths and weaknesses of different ideas
  • Saying how you'll use past research in your own work - whether you'll build on it, challenge it, or bring it together with new ideas

If you're not sure where to start, check out our guide on writing a literature review.

Background significance

Your background section sets the stage for your research. Here, you explain why your topic matters and what questions you're trying to answer. It's like showing the backstory of your project, giving readers a clear picture of why it's worth their attention. In your research proposal, it's crucial to cover:

  • Background and why your research is important
  • Your field of study
  • A brief look at existing research
  • The main arguments and changes happening in your area

Research design, methods, and schedule

After looking at existing research, it's time to talk about your plans in this methodology section of a research proposal. One key thing to remember when learning how to write a research proposal is to include details about your research methods, like how you'll collect data and analyse it. Here's what your materials and methods in research proposal should cover:

  • What kind of research you'll be doing - qualitative or quantitative, and whether you're gathering new data or using existing data.
  • Whether your research is experimental, looking at connections, or describing things.
  • Details about your data - if you're in social sciences, who you're studying and how you'll pick them.
  • The tools you'll use to gather data - like experiments, surveys, or observations, and why they're right for your research.

When figuring out how to write a research proposal, start by clearly stating your research question and explaining why it's important and don't forget to include:

  • Your timeline for the research.
  • How much money do you need?
  • Any problems you might face and how you'll deal with them.

Suppositions and Implications

Even though you won't know your research results until you do the work, you should have a clear idea of how your project will help and contribute to your field. Knowing how to write a research proposal also involves explaining the potential impact of your study. This part of your research proposal is extremely crucial because it explains why your research is necessary.

In this section on how to write a research proposal, make sure you cover the following:

  • How your work might challenge current ideas, theories and assumptions in your field.
  • Why your research is a good starting point for future studies.
  • How your findings could be useful for professionals, teachers, and other researchers.
  • The problems your research could potentially help solve.
  • Any rules or guidelines that could change because of what you find.
  • How your research could be used in schools or other places, and how that'll make things better.

Basically, in this section of a research proposal, you're not saying exactly what you'll find. Instead, you're explaining why whatever you discover will be important.

When applying for research funding, it's likely you'll need to provide a thorough budget. This demonstrates your projected costs for different aspects of your project. Be sure to review the funding body's guidelines to see what expenses they're willing to fund. For each item in your budget, include:

  • Cost : How much money do you need?
  • Why : Why do you need this money for your research?
  • Source : How did you figure out this amount?

When you're making your budget, think about:

  • Travel : Do you need to go somewhere to get your data? How will you get there, and how long will it take? What will you do there?
  • Materials : Do you need any special tools or tech?
  • Help : Do you need to hire someone to help with your research? What will they do, and how much will you pay them?

In this section of a research proposal, you tie everything together. Your conclusion section, much like the conclusion paragraph of an essay, gives a quick rundown of your research proposal and strengthens the purpose you've laid out. It reminds the reader of the main points and emphasises why your research matters. It's your final chance to leave a lasting impression and make a case for the importance of your work.

Bibliography

Writing a bibliography is essential alongside your literature review. In this part of your research proposal structure, unlike the review, where you explain why you chose your sources and sometimes even question them. The bibliography just lists your sources and who wrote them.

Citing depends on the style guide, like MLA , APA , or Chicago . Each has its own rules, even for unusual sources like websites or speeches. If you don't need a full bibliography, a references list with just the sources you cited is enough. If unsure, ask your supervisor.  Be sure to include:

  • A list of references to important articles and texts you talked about in your research proposal.
  • Choose sources that fit well with your proposed research.

Editing and proofreading a research proposal

When writing a research proposal, use the same six-step process you apply to all your writing tasks. Once you've drafted it, give it some time to cool off before proofreading. This helps you spot errors and gaps more effectively, ensuring a polished final version. Taking breaks between writing and revising enhances the quality of your work.

Common mistakes to avoid when writing a research proposal

When you’re writing a research proposal, avoid these common pitfalls: 

Being too wordy

Remember, being formal doesn't mean using fancy words. In fact, it's best to keep your writing short and direct. The clearer and more concise you are about your purpose and goals, the stronger your proposal will be.

Failing to cite relevant sources

When you do research, you contribute to what we already know about your topic. Your proposal should mention important past research in your field and explain how your work relates to it. This shows not just why your work matters but also that you know your stuff. Referencing landmark studies gives your proposal credibility and strengthens your argument.

Focusing too much on minor issues

Your research likely has many important reasons behind it, but you don't need to list them all in your proposal. Including too many details can distract from your main goal, making your proposal weaker. Focus on the big, key issues you'll address. Save the smaller details for your actual research paper. Keeping your proposal focused strengthens your argument and makes it more effective.

Failing to make a strong argument for your research

Overloading your proposal with too many minor issues can weaken it significantly, as this approach is more subjective than others. Essentially, a research proposal is a form of persuasive writing. While it's presented objectively, the aim is to convince the reader to support your work. This applies universally whether your audience is your supervisor, department head, admissions board, funding provider, or journal editor. Keeping your proposal focused enhances its persuasiveness.

Polish your writing into a stellar proposal

When you're seeking approval for research, especially when funding is involved, your proposal needs to be perfect. Spelling mistakes, grammar errors, or awkward wording can hurt your credibility. Even if you've edited carefully, it's essential to double-check. Your research deserves the strongest proposal possible to make the best impression and secure the support it needs.

If you're unsure how to write a research proposal, don't worry! There are plenty of resources and examples available to guide you through the process. We hope this blog helped you answer your question of “how to write a research proposal”. Practice is key when learning how to write a research proposal, so don't be afraid to ask for feedback and revise your proposal until it's clear and compelling.  

Frequently Asked Questions

How to write an abstract for a research proposal, what is the research proposal format , how to write a proposal for a research paper, how to write a dissertation proposal, how to write a phd proposal.

Your ideal student home & a flight ticket awaits

Follow us on :

cta

Related Posts

the research proposal hypothesis

16 Best Study Planning Apps For Students In 2024

the research proposal hypothesis

15 Oldest Colleges In The US & Everything About Them!

the research proposal hypothesis

Explore 10 Best Short Certificate Programs That Pay Well in 2024

the research proposal hypothesis

Planning to Study Abroad ?

the research proposal hypothesis

Your ideal student accommodation is a few steps away! Please fill in your details below so we can find you a new home!

We have got your response

Top 10 Educational YouTube Channels

amber © 2024. All rights reserved.

4.8/5 on Trustpilot

Rated as "Excellent" • 4800+ Reviews by students

Rated as "Excellent" • 4800+ Reviews by Students

play store

  • Privacy Policy

Research Method

Home » How To Write A Research Proposal – Step-by-Step [Template]

How To Write A Research Proposal – Step-by-Step [Template]

Table of Contents

How To Write a Research Proposal

How To Write a Research Proposal

Writing a Research proposal involves several steps to ensure a well-structured and comprehensive document. Here is an explanation of each step:

1. Title and Abstract

  • Choose a concise and descriptive title that reflects the essence of your research.
  • Write an abstract summarizing your research question, objectives, methodology, and expected outcomes. It should provide a brief overview of your proposal.

2. Introduction:

  • Provide an introduction to your research topic, highlighting its significance and relevance.
  • Clearly state the research problem or question you aim to address.
  • Discuss the background and context of the study, including previous research in the field.

3. Research Objectives

  • Outline the specific objectives or aims of your research. These objectives should be clear, achievable, and aligned with the research problem.

4. Literature Review:

  • Conduct a comprehensive review of relevant literature and studies related to your research topic.
  • Summarize key findings, identify gaps, and highlight how your research will contribute to the existing knowledge.

5. Methodology:

  • Describe the research design and methodology you plan to employ to address your research objectives.
  • Explain the data collection methods, instruments, and analysis techniques you will use.
  • Justify why the chosen methods are appropriate and suitable for your research.

6. Timeline:

  • Create a timeline or schedule that outlines the major milestones and activities of your research project.
  • Break down the research process into smaller tasks and estimate the time required for each task.

7. Resources:

  • Identify the resources needed for your research, such as access to specific databases, equipment, or funding.
  • Explain how you will acquire or utilize these resources to carry out your research effectively.

8. Ethical Considerations:

  • Discuss any ethical issues that may arise during your research and explain how you plan to address them.
  • If your research involves human subjects, explain how you will ensure their informed consent and privacy.

9. Expected Outcomes and Significance:

  • Clearly state the expected outcomes or results of your research.
  • Highlight the potential impact and significance of your research in advancing knowledge or addressing practical issues.

10. References:

  • Provide a list of all the references cited in your proposal, following a consistent citation style (e.g., APA, MLA).

11. Appendices:

  • Include any additional supporting materials, such as survey questionnaires, interview guides, or data analysis plans.

Research Proposal Format

The format of a research proposal may vary depending on the specific requirements of the institution or funding agency. However, the following is a commonly used format for a research proposal:

1. Title Page:

  • Include the title of your research proposal, your name, your affiliation or institution, and the date.

2. Abstract:

  • Provide a brief summary of your research proposal, highlighting the research problem, objectives, methodology, and expected outcomes.

3. Introduction:

  • Introduce the research topic and provide background information.
  • State the research problem or question you aim to address.
  • Explain the significance and relevance of the research.
  • Review relevant literature and studies related to your research topic.
  • Summarize key findings and identify gaps in the existing knowledge.
  • Explain how your research will contribute to filling those gaps.

5. Research Objectives:

  • Clearly state the specific objectives or aims of your research.
  • Ensure that the objectives are clear, focused, and aligned with the research problem.

6. Methodology:

  • Describe the research design and methodology you plan to use.
  • Explain the data collection methods, instruments, and analysis techniques.
  • Justify why the chosen methods are appropriate for your research.

7. Timeline:

8. Resources:

  • Explain how you will acquire or utilize these resources effectively.

9. Ethical Considerations:

  • If applicable, explain how you will ensure informed consent and protect the privacy of research participants.

10. Expected Outcomes and Significance:

11. References:

12. Appendices:

Research Proposal Template

Here’s a template for a research proposal:

1. Introduction:

2. Literature Review:

3. Research Objectives:

4. Methodology:

5. Timeline:

6. Resources:

7. Ethical Considerations:

8. Expected Outcomes and Significance:

9. References:

10. Appendices:

Research Proposal Sample

Title: The Impact of Online Education on Student Learning Outcomes: A Comparative Study

1. Introduction

Online education has gained significant prominence in recent years, especially due to the COVID-19 pandemic. This research proposal aims to investigate the impact of online education on student learning outcomes by comparing them with traditional face-to-face instruction. The study will explore various aspects of online education, such as instructional methods, student engagement, and academic performance, to provide insights into the effectiveness of online learning.

2. Objectives

The main objectives of this research are as follows:

  • To compare student learning outcomes between online and traditional face-to-face education.
  • To examine the factors influencing student engagement in online learning environments.
  • To assess the effectiveness of different instructional methods employed in online education.
  • To identify challenges and opportunities associated with online education and suggest recommendations for improvement.

3. Methodology

3.1 Study Design

This research will utilize a mixed-methods approach to gather both quantitative and qualitative data. The study will include the following components:

3.2 Participants

The research will involve undergraduate students from two universities, one offering online education and the other providing face-to-face instruction. A total of 500 students (250 from each university) will be selected randomly to participate in the study.

3.3 Data Collection

The research will employ the following data collection methods:

  • Quantitative: Pre- and post-assessments will be conducted to measure students’ learning outcomes. Data on student demographics and academic performance will also be collected from university records.
  • Qualitative: Focus group discussions and individual interviews will be conducted with students to gather their perceptions and experiences regarding online education.

3.4 Data Analysis

Quantitative data will be analyzed using statistical software, employing descriptive statistics, t-tests, and regression analysis. Qualitative data will be transcribed, coded, and analyzed thematically to identify recurring patterns and themes.

4. Ethical Considerations

The study will adhere to ethical guidelines, ensuring the privacy and confidentiality of participants. Informed consent will be obtained, and participants will have the right to withdraw from the study at any time.

5. Significance and Expected Outcomes

This research will contribute to the existing literature by providing empirical evidence on the impact of online education on student learning outcomes. The findings will help educational institutions and policymakers make informed decisions about incorporating online learning methods and improving the quality of online education. Moreover, the study will identify potential challenges and opportunities related to online education and offer recommendations for enhancing student engagement and overall learning outcomes.

6. Timeline

The proposed research will be conducted over a period of 12 months, including data collection, analysis, and report writing.

The estimated budget for this research includes expenses related to data collection, software licenses, participant compensation, and research assistance. A detailed budget breakdown will be provided in the final research plan.

8. Conclusion

This research proposal aims to investigate the impact of online education on student learning outcomes through a comparative study with traditional face-to-face instruction. By exploring various dimensions of online education, this research will provide valuable insights into the effectiveness and challenges associated with online learning. The findings will contribute to the ongoing discourse on educational practices and help shape future strategies for maximizing student learning outcomes in online education settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

How To Write A Proposal

How To Write A Proposal – Step By Step Guide...

Grant Proposal

Grant Proposal – Example, Template and Guide

How To Write A Business Proposal

How To Write A Business Proposal – Step-by-Step...

Business Proposal

Business Proposal – Templates, Examples and Guide

Proposal

Proposal – Types, Examples, and Writing Guide

How to choose an Appropriate Method for Research?

How to choose an Appropriate Method for Research?

  • Seminars & Events -
  • Directions -
  • IT Support -
  • Search for:
  • Catalysis / Synthesis
  • Chemical Biology
  • Inorganic Chemistry
  • Spectroscopy / Physical Chemistry
  • Theoretical Chemistry
  • Andlinger Center for Energy and the Environment
  • Princeton Institute for Computational Science and Engineering
  • Princeton Materials Institute
  • Princeton Catalysis Initiative
  • Research Facilities Overview
  • Biophysics Core Facility
  • Crystallography
  • Merck Catalysis Center
  • NMR Facility
  • Mass Spectrometry
  • Other Spectroscopy
  • Small Molecule Screening Center
  • Ultrafast Laser Spectroscopy
  • Industrial Associates Program
  • Libraries & Computing
  • Frick Chemistry Laboratory
  • Administration & Staff
  • Business & Grants Office
  • Frick Event Guidelines
  • Faculty & Academic Jobs
  • Seminars & Events
  • Postdocs Overview
  • New Postdocs
  • Family-Friendly Initiatives
  • Graduate Program Overview
  • Academic Program
  • Campus Life
  • Living in Princeton
  • Graduate News
  • Undergraduate Overview
  • Summer Undergrad Research Fellows in Chemistry
  • Other Summer Research Opportunities
  • Outside Course Approval
  • PU Chemical Society
  • Our Commitment
  • Resources and Reporting
  • Visiting Faculty Research Partnership
  • Join the Department

Knowles Named a Ross Brown Investigator

Professor of Chemistry Robert Knowles has been named a Ross Brown Investigator, a relatively new funding program that celebrates distinguished mid-career faculty for curiosity-driven research in chemistry or physics.

Knowles is one of just eight investigators named to the 2024 class. He receives the five-year grant for his proposal to explore a novel hypothesis on the evolution of homochirality—the presence in nature of just one of two mirror-image forms of biomolecules.

“I was really surprised and delighted,” said Knowles of the honor. “It’s a very generous amount of support and will mean a lot to our group over the next few years. It will allow us to do things that we couldn’t do otherwise and support students that we couldn’t support otherwise.

“The thing that’s unique,” he added, “is that the Brown Investigators program really supports blue sky, out-of-the-box ideas that would be very difficult to support through other funding sources because they’re risky. I’m thrilled and humbled that the program will allow us to go forward with our proposal.”

Professor of Chemistry Robert Knowles

Organic molecules in nature often exist as single enantiomers, a specific arrangement of atoms that is reflected in the molecule’s three-dimensional structure. The physical origins of homochirality and the mechanism by which it initially propagated are not clearly understood despite a multitude of hypotheses. 

“ Our lab has a new hypothesis that has never been tested before. And so we proposed to see if we could observe this behavior in an experimental setting,” said Knowles. “Now, we will have a chance to look into it.”

The Brown Investigators program was established in 2020. It is administered by the Brown Institute for Basic Sciences at the California Institute of Technology. Ross M. Brown, a Caltech alumnus and founder/former CEO of Cryogenic Industries, established the Investigator Awards in support of the belief that “scientific discovery is a driving force in the improvement of the human condition.”

The first three years of the program has funded 13 investigators.

Nominees are evaluated by an independent scientific review board. A select number of research universities from across the country are invited to nominate faculty members, within 10 years of having received tenure, who are doing innovative fundamental research in the physical sciences.

Read the Caltech press release about the Brown Investigators here .

Grad Coach

Research Ethics & Ethical Considerations

A Plain-Language Explainer With Examples

By: Derek Jansen (MBA) | Reviewers: Dr Eunice Rautenbach | May 2024

Research ethics 101

Research ethics are one of those “ unsexy but essential ” subjects that you need to fully understand (and apply) to conquer your dissertation, thesis or research paper. In this post, we’ll unpack research ethics using plain language and loads of examples .

Overview: Research Ethics 101

  • What are research ethics?
  • Why should you care?
  • Research ethics principles
  • Respect for persons
  • Beneficence
  • Objectivity
  • Key takeaways

What (exactly) are research ethics?

At the simplest level, research ethics are a set of principles that ensure that your study is conducted responsibly, safely, and with integrity. More specifically, research ethics help protect the rights and welfare of your research participants, while also ensuring the credibility of your research findings.

Research ethics are critically important for a number of reasons:

Firstly, they’re a complete non-negotiable when it comes to getting your research proposal approved. Pretty much all universities will have a set of ethical criteria that student projects need to adhere to – and these are typically very strictly enforced. So, if your proposed study doesn’t tick the necessary ethical boxes, it won’t be approved .

Beyond the practical aspect of approval, research ethics are essential as they ensure that your study’s participants (whether human or animal) are properly protected . In turn, this fosters trust between you and your participants – as well as trust between researchers and the public more generally. As you can probably imagine, it wouldn’t be good if the general public had a negative perception of researchers!

Last but not least, research ethics help ensure that your study’s results are valid and reliable . In other words, that you measured the thing you intended to measure – and that other researchers can repeat your study. If you’re not familiar with the concepts of reliability and validity , we’ve got a straightforward explainer video covering that below.

The Core Principles

In practical terms, each university or institution will have its own ethics policy – so, what exactly constitutes “ethical research” will vary somewhat between institutions and countries. Nevertheless, there are a handful of core principles that shape ethics policies. These principles include:

Let’s unpack each of these to make them a little more tangible.

Ethics Principle 1: Respect for persons

As the name suggests, this principle is all about ensuring that your participants are treated fairly and respectfully . In practical terms, this means informed consent – in other words, participants should be fully informed about the nature of the research, as well as any potential risks. Additionally, they should be able to withdraw from the study at any time. This is especially important when you’re dealing with vulnerable populations – for example, children, the elderly or people with cognitive disabilities.

Another dimension of the “respect for persons” principle is confidentiality and data protection . In other words, your participants’ personal information should be kept strictly confidential and secure at all times. Depending on the specifics of your project, this might also involve anonymising or masking people’s identities. As mentioned earlier, the exact requirements will vary between universities, so be sure to thoroughly review your institution’s ethics policy before you start designing your project.

Need a helping hand?

the research proposal hypothesis

Ethics Principle 2: Beneficence

This principle is a little more opaque, but in simple terms beneficence means that you, as the researcher, should aim to maximise the benefits of your work, while minimising any potential harm to your participants.

In practical terms, benefits could include advancing knowledge, improving health outcomes, or providing educational value. Conversely, potential harms could include:

  • Physical harm from accidents or injuries
  • Psychological harm, such as stress or embarrassment
  • Social harm, such as stigmatisation or loss of reputation
  • Economic harm – in other words, financial costs or lost income

Simply put, the beneficence principle means that researchers must always try to identify potential risks and take suitable measures to reduce or eliminate them.

Free Webinar: Research Methodology 101

Ethics Principle 3: Objectivity

As you can probably guess, this principle is all about attempting to minimise research bias to the greatest degree possible. In other words, you’ll need to reduce subjectivity and increase objectivity wherever possible.

In practical terms, this principle has the largest impact on the methodology of your study – specifically the data collection and data analysis aspects. For example, you’ll need to ensure that the selection of your participants (in other words, your sampling strategy ) is aligned with your research aims – and that your sample isn’t skewed in a way that supports your presuppositions.

If you’re keen to learn more about research bias and the various ways in which you could unintentionally skew your results, check out the video below.

Ethics Principle 4: Integrity

Again, no surprises here; this principle is all about producing “honest work” . It goes without saying that researchers should always conduct their work honestly and transparently, report their findings accurately, and disclose any potential conflicts of interest upfront.

This is all pretty obvious, but another aspect of the integrity principle that’s sometimes overlooked is respect for intellectual property . In practical terms, this means you need to honour any patents, copyrights, or other forms of intellectual property that you utilise while undertaking your research. Along the same vein, you shouldn’t use any unpublished data, methods, or results without explicit, written permission from the respective owner.

Linked to all of this is the broader issue of plagiarism . Needless to say, if you’re drawing on someone else’s published work, be sure to cite your sources, in the correct format. To make life easier, use a reference manager such as Mendeley or Zotero to ensure that your citations and reference list are perfectly polished.

FAQs: Research Ethics

Research ethics & ethical considertation, what is informed consent.

Informed consent simply means providing your potential participants with all necessary information about the study. This should include information regarding the study’s purpose, procedures, risks, and benefits. This information allows your potential participants to make a voluntary and informed decision about whether to participate.

How should I obtain consent from non-English speaking participants?

What about animals.

When conducting research with animals, ensure you adhere to ethical guidelines for the humane treatment of animals. Again, the exact requirements here will vary between institutions, but typically include minimising pain and distress, using alternatives where possible, and obtaining approval from an animal care and use committee.

What is the role of the ERB or IRB?

An ethics review board (ERB) or institutional review board (IRB) evaluates research proposals to ensure they meet ethical standards. The board reviews study designs, consent forms, and data handling procedures, to protect participants’ welfare and rights.

How can I obtain ethical approval for my project?

This varies between universities, but you will typically need to submit a detailed research proposal to your institution’s ethics committee. This proposal should include your research objectives, methods, and how you plan to address ethical considerations like informed consent, confidentiality, and risk minimisation. You can learn more about how to write a proposal here .

How do I ensure ethical collaboration when working with colleagues?

Collaborative research should be conducted with mutual respect and clear agreements on roles, contributions, and publication credits. Open communication is key to preventing conflicts and misunderstandings. Also, be sure to check whether your university has any specific requirements with regards to collaborative efforts and division of labour. 

How should I address ethical concerns relating to my funding source?

Key takeaways: research ethics 101.

Here’s a quick recap of the key points we’ve covered:

  • Research ethics are a set of principles that ensure that your study is conducted responsibly.
  • It’s essential that you design your study around these principles, or it simply won’t get approved.
  • The four ethics principles we looked at are: respect for persons, beneficence, objectivity and integrity

As mentioned, the exact requirements will vary slightly depending on the institution and country, so be sure to thoroughly review your university’s research ethics policy before you start developing your study.

the research proposal hypothesis

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Inferential stats 101

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

the research proposal hypothesis

Magnetic fields from the beginning of time may resolve the Hubble tension

by Andrey Feldman | May 29, 2024

Abstract image of space.

Scientists have suggested a way to resolve a longstanding paradox known as the Hubble tension by taking primordial magnetic fields into account, which may have been generated in the early moments of the Universe. 

“Primordial magnetic fields are the fields generated in the early Universe, such as during inflation, phase transitions, and other processes,” explained Yaoyu Li, a physicist at the Purple Mountain Observatory in China and one of the authors of the study. “These magnetic fields might evolve with the expansion of the Universe, be amplified and subsequently become galactic magnetic fields that we observe today.”

Over the past several decades, scientists have made enormous progress in understanding the evolution of the Universe, where all stages of cosmic history have found their mathematical descriptions in the Standard Cosmological Model.

However, no matter how good this theory has proven to be , there remain inconsistencies, perhaps the most significant of which is the Hubble tension , referring to discrepancies in the rate of expansion of the Universe.

More precisely, the value of the Hubble constant inferred from the properties of the cosmic microwave background radiation left over from the Big Bang is almost 10% smaller than the rate that astrophysicists measure when observing distant stars and galaxies, hinting at some gaps in our understanding of cosmology.

How magnetic fields could help solve the Hubble tension

Usually, when studying the connection between the expansion rate of the Universe and the properties of the microwave background, physicists ignore the possible existence of primary magnetic fields since their existence has not yet been proven and is still hypothetical.

Li and his colleagues at the Purple Mountain Observatory and the University of Science and Technology of China suggest that accounting for these fields could impact the interpretation of microwave background data, affecting the inferred value of the Hubble constant.

By incorporating the existence of primordial magnetic fields into the equations of the Standard Cosmological Model, the researchers derived an alternative relationship between the microwave background’s properties and the Universe’s expansion rate.

Remarkably, this approach seemed to reconcile the conflicting measurements of the Hubble constant, aligning them with observations of distant celestial objects.

This solution to the Hubble tension stands out for its simplicity, avoiding the need for hypotheses about the existence of unknown elementary particles or major revisions to Einstein’s theory of general relativity , on which the Standard Cosmological Model is based. Such parsimony is highly valued in physics, rendering the authors’ proposal particularly compelling.

Validation through experimentation

While this hypothesis offers a promising resolution, it still requires empirical validation. The scientists contend that if primordial magnetic fields indeed existed, they would have left discernible imprints on various observable properties of the Universe.

Thus, future studies focusing on these effects could provide decisive evidence for the existence of these fields and the resolution of the Hubble tension.

“There are still many mysteries to be uncovered regarding the generation, evolution, and characteristics of the primordial magnetic fields,” Li concluded.

“While it is challenging to directly detect them, studying their effects during different stages of cosmic evolution can provide valuable insights,” he continued. “Future cosmic microwave background anisotropy measurements and other data could lead to more stringent constraints on the characteristics of primordial magnetic fields.”

Reference: Yao-Yu Li, et al, Primordial magnetic field as a common solution of nanohertz gravitational waves and the Hubble tension , Physical Review D (2024). DOI: 10.1103/PhysRevD.109.043538

Feature image credit: Casey Horner on Unsplash

Sign up for our weekly newsletter and receive the latest science news directly to your inbox.

A strong and lightweight metamaterial made from titanium.

Sign up for our weekly newsletter and receive the latest science news.

Related posts:

Saving a dark matter theory from a quantum tunneling flaw

Saving a dark matter theory from a quantum tunneling flaw

Tiny interactions between dark matter particles may resolve discrepancies between theory and astronomical observations caused by quantum tunneling.

Scientists observe spontaneous liquification of a metal

Scientists observe spontaneous liquification of a metal

Something unexpected happened when atoms of gallium were observed to spontaneously transition from solid to liquid and back again.

Exploring quantum gravity with a simple pendulum experiment

Exploring quantum gravity with a simple pendulum experiment

Even tiny deviations in pendulum behavior caused by quantum gravity could be clearly noticeable, say researchers.

Quantum dot laser set to transform medicine and communications

Quantum dot laser set to transform medicine and communications

Quantum dots are key to a new laser that could transform medical imaging, diagnostics, and boost communication.

Laser light induces magnetism at room temperature

Laser light induces magnetism at room temperature

Scientists create magnetism in a non-magnet at room temperature for the first time, with implications in quantum tech and computer science.

Could AI be the reason we haven’t encountered alien civilizations?

Could AI be the reason we haven’t encountered alien civilizations?

A sensational paper argues that AI could be responsible for the scarcity of advanced technological civilizations in the Universe.

IMAGES

  1. How to Write a Hypothesis in 12 Steps 2024

    the research proposal hypothesis

  2. 13 Different Types of Hypothesis (2024)

    the research proposal hypothesis

  3. What is a Research Hypothesis and How to Write a Hypothesis

    the research proposal hypothesis

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    the research proposal hypothesis

  5. How to formulate a hypothesis in research. Step 20: Formulate

    the research proposal hypothesis

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips

    the research proposal hypothesis

VIDEO

  1. STA630

  2. Creating a research proposal

  3. Short Lecture 15- STA630 @educationwithceemi

  4. Research Proposal #cbpi #researchproposal

  5. How To Write A Research Paper Lec 2 Topic Selection

  6. QUANTITATIVE Research Design: A Comprehensive Guide with Examples #phd #quantitativeresearch

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. What is a Research Hypothesis: How to Write it, Types, and Examples

    A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation. Characteristics of a good hypothesis

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  4. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  5. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable. ... At a simple level, the null hypothesis is the counter-proposal to the original hypothesis. For example, if the hypothesis predicts that there is a ...

  6. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  7. What Is A Research Proposal? Examples + Template

    The purpose of the research proposal (its job, so to speak) is to convince your research supervisor, committee or university that your research is suitable (for the requirements of the degree program) and manageable (given the time and resource constraints you will face). The most important word here is "convince" - in other words, your ...

  8. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  9. How to Write a Research Hypothesis

    Research hypothesis checklist. Once you've written a possible hypothesis, make sure it checks the following boxes: It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis. It must include a dependent and independent variable: At least one independent variable ( cause) and one dependent ...

  10. What is and How to Write a Good Hypothesis in Research?

    An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions. Use the following points as a checklist to evaluate the effectiveness of your research hypothesis: Predicts the relationship and outcome.

  11. How To Write A Research Proposal (With Examples)

    Make sure you can ask the critical what, who, and how questions of your research before you put pen to paper. Your research proposal should include (at least) 5 essential components : Title - provides the first taste of your research, in broad terms. Introduction - explains what you'll be researching in more detail.

  12. Writing a Research Proposal

    Research proposals contain extensive literature reviews. They must provide persuasive evidence that a need exists for the proposed study. In addition to providing a rationale, a proposal describes detailed methodology for conducting the research consistent with requirements of the professional or academic field and a statement on anticipated ...

  13. How to Write a Research Hypothesis: Good & Bad Examples

    The research hypothesis at the basis of this prediction is "the product of the KLF2 gene is involved in the development of the cardiovascular system in mice"—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart ...

  14. How to prepare a Research Proposal

    Sample size: The proposal should provide information and justification (basis on which the sample size is calculated) about sample size in the methodology section. 3 A larger sample size than needed to test the research hypothesis increases the cost and duration of the study and will be unethical if it exposes human subjects to any potential unnecessary risk without additional benefit.

  15. A Practical Guide to Writing Quantitative and Qualitative Research

    This statement is based on background research and current knowledge.8,9 The research hypothesis makes a specific prediction about a new phenomenon10 or a formal statement on the expected relationship between an independent variable and a dependent variable.3,11 It provides a tentative answer to the research question to be tested or explored.4.

  16. Research Hypothesis In Psychology: Types, & Examples

    A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  17. PDF RESEARCH HYPOTHESIS

    RESEARCH HYPOTHESIS A research hypothesis is a statement of expectation or prediction that will be tested by research. ... Your hypothesis will become part of your research proposal. Sample Student Hypotheses 2008-2009 Senior Seminar Note how each student, in the samples below, began with a general topic or area of interest, ...

  18. How to write a research proposal?

    A proposal needs to show how your work fits into what is already known about the topic and what new paradigm will it add to the literature, while specifying the question that the research will answer, establishing its significance, and the implications of the answer. [ 2] The proposal must be capable of convincing the evaluation committee about ...

  19. How To Write a Proposal

    This is where you will want to work with your mentor to craft the experimental portion of your proposal. Propose two original specific aims to test your hypothesis. Don't propose more than two aims-you will NOT have enough time to do more. In the example presented, Specific Aim 1 might be "To determine the oncogenic potential of Brca1 null ...

  20. How To Write A Research Proposal

    A proposal helps you shape your research plans and shows why your project is valuable to funders, educational institutions, or supervisors. Relevance: Show your reader why your project is interesting, unique, and important. Context: Show that you are comfortable and knowledgeable in your field.

  21. How To Write A Research Proposal

    Here is an explanation of each step: 1. Title and Abstract. Choose a concise and descriptive title that reflects the essence of your research. Write an abstract summarizing your research question, objectives, methodology, and expected outcomes. It should provide a brief overview of your proposal. 2.

  22. How to Write a Research Proposal in 2024: Structure, Examples & Common

    A quality example of a research proposal shows one's above-average analytical skills, including the ability to coherently synthesize ideas and integrate lateral and vertical thinking. Communication skills. The proposal also demonstrates your proficiency to communicate your thoughts in concise and precise language.

  23. Writing Your Dissertation Hypothesis: A Comprehensive Guide for

    Once you have formulated your hypothesis, you will design an experiment or study to test it this is the primary research phase of your dissertation. This involves choosing a research design, selecting a sample, and collecting data. 1. Choose a Research Design. Decide on a research design that suits your hypothesis.

  24. Key Components of an Impactful Research Proposal

    5. Impact Potential. Be the first to add your personal experience. 6. Project Timeline. Be the first to add your personal experience. 7. Here's what else to consider. Crafting a standout ...

  25. Knowles Named a Ross Brown Investigator

    Professor of Chemistry Robert Knowles has been named a Ross Brown Investigator, a relatively new funding program that celebrates distinguished mid-career faculty for curiosity-driven research in chemistry or physics.. Knowles is one of just eight investigators named to the 2024 class. He receives the five-year grant for his proposal to explore a novel hypothesis on the evolution of ...

  26. Research Proposal Sample.pdf

    Hypothesis (the assumption(s) underlying your research questions-the answer you expect to get: 100 words minimum) Academic self-perception and motivation significantly impact the performance of undergraduate students taking university-level algebra courses. Students with a positive academic self- perception and high motivation are expected to perform better in these courses.

  27. Cancers

    Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. ... Cees A. Meeuwis, Robert J ...

  28. Research Ethics 101: Simple Explainer With Examples

    Research ethics are critically important for a number of reasons: Firstly, they're a complete non-negotiable when it comes to getting your research proposal approved. Pretty much all universities will have a set of ethical criteria that student projects need to adhere to - and these are typically very strictly enforced.

  29. Magnetic fields from the beginning of time may resolve the Hubble

    Scientists have suggested a way to resolve a longstanding paradox known as the Hubble tension by taking primordial magnetic fields into account, which may have been generated in the early moments of the Universe. "Primordial magnetic fields are the fields generated in the early Universe, such as during inflation, phase transitions, and other ...