2.1 Why is Research Important

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

   Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession (figure below). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

Some of our ancestors, across the work and over the centuries, believed that trephination – the practice of making a hole in the skull, as shown here – allowed evil spirits to leave the body, thus curing mental illness and other diseases (credit” “taiproject/Flickr)

   The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

We can easily observe the behavior of others around us. For example, if someone is crying, we can observe that behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes, asking about the underlying cognitions is as easy as asking the subject directly: “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In other situations, it may be hard to identify exactly why you feel the way you do. Think about times when you suddenly feel annoyed after a long day. There may be a specific trigger for your annoyance (a loud noise), or you may be tired, hungry, stressed, or all of the above. Human behavior is often a complicated mix of a variety of factors. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

   Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of coming to an agreement, and it could be quite some time before a consensus emerges. In other cases, rapidly developing technology is improving our ability to measure things, and changing our earlier understanding of how the mind works.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? Science is always changing and new evidence is alwaus coming to light, thus this dash of skepticism should be applied to all research you interact with from now on. Yes, that includes the research presented in this textbook.

Evaluation of research findings can have widespread impact. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools (figure below). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

The D.A.R.E. program continues to be popular in schools around the world despite research suggesting that it is ineffective.

It is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with a doctor or psychologist and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

   Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. We continually test and revise theories based on new evidence.

Two types of reasoning are used to make decisions within this model: Deductive and inductive. In deductive reasoning, ideas are tested against the empirical world. Think about a detective looking for clues and evidence to test their “hunch” about whodunit. In contrast, in inductive reasoning, empirical observations lead to new ideas. In other words, inductive reasoning involves gathering facts to create or refine a theory, rather than testing the theory by gathering facts (figure below). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

Psychological research relies on both inductive and deductive reasoning.

   In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider the famous example from Greek philosophy. A philosopher decided that human beings were “featherless bipeds”. Using deductive reasoning, all two-legged creatures without feathers must be human, right? Diogenes the Cynic (named because he was, well, a cynic) burst into the room with a freshly plucked chicken from the market and held it up exclaiming “Behold! I have brought you a man!”

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For example, you might be a biologist attempting to classify animals into groups. You notice that quite a large portion of animals are furry and produce milk for their young (cats, dogs, squirrels, horses, hippos, etc). Therefore, you might conclude that all mammals (the name you have chosen for this grouping) have hair and produce milk. This seems like a pretty great hypothesis that you could test with deductive reasoning. You go out an look at a whole bunch of things and stumble on an exception: The coconut. Coconuts have hair and produce milk, but they don’t “fit” your idea of what a mammal is. So, using inductive reasoning given the new evidence, you adjust your theory again for an other round of data collection. Inductive and deductive reasoning work in tandem to help build and improve scientific theories over time.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once. Instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our theory is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests (figure below).

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

The scientific method of research includes proposing hypotheses, conducting research, and creating or modifying theories based on results.

   To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable, or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors (figure below). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable. The essential characteristic of Freud’s building blocks of personality, the id, ego, and superego, is that they are unconscious, and therefore people can’t observe them. Because they cannot be observed or tested in any way, it is impossible to say that they don’t exist, so they cannot be considered scientific theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

Many of the specifics of (a) Freud’s theories, such ad (b) his division on the mind into the id, ego, and superego, have fallen out of favor in recent decades because they are not falsifiable (i.e., cannot be verified through scientific investigation).  In broader strokes, his views set the stage for much psychological thinking today, such as the idea that some psychological process occur at the level of the unconscious.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. IHaving good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Review Questions:

1. Scientific hypotheses are ________ and falsifiable.

a. observable

b. original

c. provable

d. testable

2. ________ are defined as observable realities.

a. behaviors

c. opinions

d. theories

3. Scientific knowledge is ________.

a. intuitive

b. empirical

c. permanent

d. subjective

4. A major criticism of Freud’s early theories involves the fact that his theories ________.

a. were too limited in scope

b. were too outrageous

c. were too broad

d. were not testable

Critical Thinking Questions:

1. In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

2. The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

Personal Application Questions:

1. Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

deductive reasoning

falsifiable

hypothesis:  (plural

inductive reasoning

Answers to Exercises

Review Questions: 

1. There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

2. This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

deductive reasoning:  results are predicted based on a general premise

empirical:  grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing

fact:  objective and verifiable observation, established using evidence collected through empirical research

falsifiable:  able to be disproven by experimental results

hypothesis:  (plural: hypotheses) tentative and testable statement about the relationship between two or more variables

inductive reasoning:  conclusions are drawn from observations

opinion:  personal judgments, conclusions, or attitudes that may or may not be accurate

theory:  well-developed set of ideas that propose an explanation for observed phenomena

Creative Commons License

Share This Book

  • Increase Font Size

2.1 Why Is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

2.1: Why Is Research Important?

  • Last updated
  • Save as PDF
  • Page ID 76868

  • Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett, et al.

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical: It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

fig-ch01_patchfile_01.jpg

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were white males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically black higher education institutions, increasing the number of black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method. Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

A diagram has seven labeled boxes with arrows to show the progression in the flow chart. The chart starts at “Theory” and moves to “Generate hypothesis,” “Collect data,” “Analyze data,” and “Summarize data and report findings.” There are two arrows coming from “Summarize data and report findings” to show two options. The first arrow points to “Confirm theory.” The second arrow points to “Modify theory,” which has an arrow that points back to “Generate hypothesis.”

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Logo for Digital Editions

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Why is Research Important?

Learning Objectives

  • Explain how scientific research addresses questions about behaviour
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure PR.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behaviour, as well as the cognitive (mental) and physiological (body) processes that underlie behaviour. In contrast to other methods that people use to understand the behaviour of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is  empirical : it is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behaviour is observable, the mind is not. If someone is crying, we can see behaviour. However, the reason for the behaviour is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behaviour by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behaviour. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student’s acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the Premier of your province. One of your responsibilities is to manage the provincial budget and determine how to best spend your constituents’ tax dollars. As the new Premier, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children’s development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

LINK TO LEARNING

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions.  Facts  are observable realities, and  opinions  are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the  scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In  deductive reasoning , ideas are tested in the real world; in  inductive reasoning , real-world observations lead to new ideas ( Figure PR.3 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is supported, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favourite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A  theory   is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A  hypothesis  is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests  Figure PR.4 .

A diagram has seven labeled boxes with arrows to show the progression in the flow chart. The chart starts at “Theory” and moves to “Generate hypothesis,” “Collect data,” “Analyze data,” and “Summarize data and report findings.” There are two arrows coming from “Summarize data and report findings” to show two options. The first arrow points to “Confirm theory.” The second arrow points to “Modify theory,” which has an arrow that points back to “Generate hypothesis.”

Introduction to Psychology & Neuroscience Copyright © 2020 by Edited by Leanne Stevens is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • Privacy Policy

Research Method

Home » Purpose of Research – Objectives and Applications

Purpose of Research – Objectives and Applications

Table of Contents

Purpose of Research

Purpose of Research

Definition:

The purpose of research is to systematically investigate and gather information on a particular topic or issue, with the aim of answering questions, solving problems, or advancing knowledge.

The purpose of research can vary depending on the field of study, the research question, and the intended audience. In general, research can be used to:

  • Generate new knowledge and theories
  • Test existing theories or hypotheses
  • Identify trends or patterns
  • Gather information for decision-making
  • Evaluate the effectiveness of programs, policies, or interventions
  • Develop new technologies or products
  • Identify new opportunities or areas for further study.

Objectives of Research

The objectives of research may vary depending on the field of study and the specific research question being investigated. However, some common objectives of research include:

  • To explore and describe a phenomenon: Research can be conducted to describe and understand a phenomenon or situation in greater detail.
  • To test a hypothesis or theory : Research can be used to test a specific hypothesis or theory by collecting and analyzing data.
  • To identify patterns or trends: Research can be conducted to identify patterns or trends in data, which can provide insights into the behavior of a system or population.
  • To evaluate a program or intervention: Research can be used to evaluate the effectiveness of a program or intervention, such as a new drug or educational intervention.
  • To develop new knowledge or technology : Research can be conducted to develop new knowledge or technologies that can be applied to solve practical problems.
  • To inform policy decisions: Research can provide evidence to inform policy decisions and improve public policy.
  • To improve existing knowledge: Research can be conducted to improve existing knowledge and fill gaps in the current understanding of a topic.

Applications of Research

Research has a wide range of applications across various fields and industries. Here are some examples:

  • Medicine : Research is critical in developing new treatments and drugs for diseases. Researchers conduct clinical trials to test the safety and efficacy of new medications and therapies. They also study the underlying causes of diseases to find new ways to prevent or treat them.
  • Technology : Research is crucial in developing new technologies and improving existing ones. Researchers work to develop new software, hardware, and other technological innovations that can be used in various industries such as healthcare, manufacturing, and telecommunications.
  • Education : Research is essential in the field of education to develop new teaching methods and strategies. Researchers conduct studies to determine the effectiveness of various educational approaches and to identify factors that influence student learning.
  • Business : Research is critical in helping businesses make informed decisions. Market research can help businesses understand their target audience and identify trends in the market. Research can also help businesses improve their products and services.
  • Environmental Science : Research is crucial in the field of environmental science to understand the impact of human activities on the environment. Researchers conduct studies to identify ways to reduce pollution, protect natural resources, and mitigate the effects of climate change.

Goal of Research

The ultimate goal of research is to advance our understanding of the world and to contribute to the development of new theories, ideas, and technologies that can be used to improve our lives. Some more common Goals are follows:

  • Explore and discover new knowledge : Research can help uncover new information and insights that were previously unknown.
  • Test hypotheses and theories : Research can be used to test and validate theories and hypotheses, allowing researchers to refine and develop their ideas.
  • Solve practical problems: Research can be used to identify solutions to real-world problems and to inform policy and decision-making.
  • Improve understanding : Research can help improve our understanding of complex phenomena and systems, such as the human body, the natural world, and social systems.
  • Develop new technologies and innovations : Research can lead to the development of new technologies, products, and innovations that can improve our lives and society.
  • Contribute to the development of academic fields : Research can help advance academic fields by expanding our knowledge and understanding of important topics and areas of inquiry.

Importance of Research

The importance of research lies in its ability to generate new knowledge and insights, to test existing theories and ideas, and to solve practical problems.

Some of the key reasons why research is important are:

  • Advancing knowledge: Research is essential for advancing knowledge and understanding in various fields. It enables us to explore and discover new concepts, ideas, and phenomena that can contribute to scientific and technological progress.
  • Solving problems : Research can help identify and solve practical problems and challenges in various domains, such as health care, agriculture, engineering, and social policy.
  • Innovation : Research is a critical driver of innovation, as it enables the development of new products, services, and technologies that can improve people’s lives and contribute to economic growth.
  • Evidence-based decision-making : Research provides evidence and data that can inform decision-making in various fields, such as policy-making, business strategy, and healthcare.
  • Personal and professional development : Engaging in research can also contribute to personal and professional development, as it requires critical thinking, problem-solving, and communication skills.

When to use Research

Research should be used in situations where there is a need to gather new information, test existing theories, or solve problems. Some common scenarios where research is often used include:

  • Scientific inquiry : Research is essential for advancing scientific knowledge and understanding, and for exploring new concepts, theories, and phenomena.
  • Business and market analysis: Research is critical for businesses to gather data and insights about the market, customer preferences, and competition, to inform decision-making and strategy development.
  • Social policy and public administration: Research is often used in social policy and public administration to evaluate the effectiveness of programs and policies, and to identify areas where improvements are needed.
  • Healthcare: Research is essential in healthcare to develop new treatments, improve existing ones, and to understand the causes and mechanisms of diseases.
  • Education : Research is critical in education to evaluate the effectiveness of teaching methods and programs, and to develop new approaches to learning.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data Verification

Data Verification – Process, Types and Examples

Research Gap

Research Gap – Types, Examples and How to...

Dissertation

Dissertation – Format, Example and Template

Chapter Summary

Chapter Summary & Overview – Writing Guide...

Research Methods

Research Methods – Types, Examples and Guide

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is research and why it is important

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

 
Approach used Unstructured Structured Highly structured
Conducted throughAsking questions Asking questions By using hypotheses.
TimeEarly stages of decision making Later stages of decision makingLater stages of decision making

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

what is research and why it is important

QuestionPro Thrive: A Space to Visualize & Share the Future of Technology

Jun 18, 2024

what is research and why it is important

Relationship NPS Fails to Understand Customer Experiences — Tuesday CX

CX Platforms

CX Platform: Top 13 CX Platforms to Drive Customer Success

Jun 17, 2024

what is research and why it is important

How to Know Whether Your Employee Initiatives are Working

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

what is research and why it is important

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is Research? – Purpose of Research

DiscoverPhDs

  • By DiscoverPhDs
  • September 10, 2020

Purpose of Research - What is Research

The purpose of research is to enhance society by advancing knowledge through the development of scientific theories, concepts and ideas. A research purpose is met through forming hypotheses, collecting data, analysing results, forming conclusions, implementing findings into real-life applications and forming new research questions.

What is Research

Simply put, research is the process of discovering new knowledge. This knowledge can be either the development of new concepts or the advancement of existing knowledge and theories, leading to a new understanding that was not previously known.

As a more formal definition of research, the following has been extracted from the Code of Federal Regulations :

what is research and why it is important

While research can be carried out by anyone and in any field, most research is usually done to broaden knowledge in the physical, biological, and social worlds. This can range from learning why certain materials behave the way they do, to asking why certain people are more resilient than others when faced with the same challenges.

The use of ‘systematic investigation’ in the formal definition represents how research is normally conducted – a hypothesis is formed, appropriate research methods are designed, data is collected and analysed, and research results are summarised into one or more ‘research conclusions’. These research conclusions are then shared with the rest of the scientific community to add to the existing knowledge and serve as evidence to form additional questions that can be investigated. It is this cyclical process that enables scientific research to make continuous progress over the years; the true purpose of research.

What is the Purpose of Research

From weather forecasts to the discovery of antibiotics, researchers are constantly trying to find new ways to understand the world and how things work – with the ultimate goal of improving our lives.

The purpose of research is therefore to find out what is known, what is not and what we can develop further. In this way, scientists can develop new theories, ideas and products that shape our society and our everyday lives.

Although research can take many forms, there are three main purposes of research:

  • Exploratory: Exploratory research is the first research to be conducted around a problem that has not yet been clearly defined. Exploration research therefore aims to gain a better understanding of the exact nature of the problem and not to provide a conclusive answer to the problem itself. This enables us to conduct more in-depth research later on.
  • Descriptive: Descriptive research expands knowledge of a research problem or phenomenon by describing it according to its characteristics and population. Descriptive research focuses on the ‘how’ and ‘what’, but not on the ‘why’.
  • Explanatory: Explanatory research, also referred to as casual research, is conducted to determine how variables interact, i.e. to identify cause-and-effect relationships. Explanatory research deals with the ‘why’ of research questions and is therefore often based on experiments.

Characteristics of Research

There are 8 core characteristics that all research projects should have. These are:

  • Empirical  – based on proven scientific methods derived from real-life observations and experiments.
  • Logical  – follows sequential procedures based on valid principles.
  • Cyclic  – research begins with a question and ends with a question, i.e. research should lead to a new line of questioning.
  • Controlled  – vigorous measures put into place to keep all variables constant, except those under investigation.
  • Hypothesis-based  – the research design generates data that sufficiently meets the research objectives and can prove or disprove the hypothesis. It makes the research study repeatable and gives credibility to the results.
  • Analytical  – data is generated, recorded and analysed using proven techniques to ensure high accuracy and repeatability while minimising potential errors and anomalies.
  • Objective  – sound judgement is used by the researcher to ensure that the research findings are valid.
  • Statistical treatment  – statistical treatment is used to transform the available data into something more meaningful from which knowledge can be gained.

Finding a PhD has never been this easy – search for a PhD by keyword, location or academic area of interest.

Types of Research

Research can be divided into two main types: basic research (also known as pure research) and applied research.

Basic Research

Basic research, also known as pure research, is an original investigation into the reasons behind a process, phenomenon or particular event. It focuses on generating knowledge around existing basic principles.

Basic research is generally considered ‘non-commercial research’ because it does not focus on solving practical problems, and has no immediate benefit or ways it can be applied.

While basic research may not have direct applications, it usually provides new insights that can later be used in applied research.

Applied Research

Applied research investigates well-known theories and principles in order to enhance knowledge around a practical aim. Because of this, applied research focuses on solving real-life problems by deriving knowledge which has an immediate application.

Methods of Research

Research methods for data collection fall into one of two categories: inductive methods or deductive methods.

Inductive research methods focus on the analysis of an observation and are usually associated with qualitative research. Deductive research methods focus on the verification of an observation and are typically associated with quantitative research.

Research definition

Qualitative Research

Qualitative research is a method that enables non-numerical data collection through open-ended methods such as interviews, case studies and focus groups .

It enables researchers to collect data on personal experiences, feelings or behaviours, as well as the reasons behind them. Because of this, qualitative research is often used in fields such as social science, psychology and philosophy and other areas where it is useful to know the connection between what has occurred and why it has occurred.

Quantitative Research

Quantitative research is a method that collects and analyses numerical data through statistical analysis.

It allows us to quantify variables, uncover relationships, and make generalisations across a larger population. As a result, quantitative research is often used in the natural and physical sciences such as engineering, biology, chemistry, physics, computer science, finance, and medical research, etc.

What does Research Involve?

Research often follows a systematic approach known as a Scientific Method, which is carried out using an hourglass model.

A research project first starts with a problem statement, or rather, the research purpose for engaging in the study. This can take the form of the ‘ scope of the study ’ or ‘ aims and objectives ’ of your research topic.

Subsequently, a literature review is carried out and a hypothesis is formed. The researcher then creates a research methodology and collects the data.

The data is then analysed using various statistical methods and the null hypothesis is either accepted or rejected.

In both cases, the study and its conclusion are officially written up as a report or research paper, and the researcher may also recommend lines of further questioning. The report or research paper is then shared with the wider research community, and the cycle begins all over again.

Although these steps outline the overall research process, keep in mind that research projects are highly dynamic and are therefore considered an iterative process with continued refinements and not a series of fixed stages.

Dissertation Title Page

The title page of your dissertation or thesis conveys all the essential details about your project. This guide helps you format it in the correct way.

Do you need to have published papers to do a PhD?

Do you need to have published papers to do a PhD? The simple answer is no but it could benefit your application if you can.

PhD Imposter Syndrome

Impostor Syndrome is a common phenomenon amongst PhD students, leading to self-doubt and fear of being exposed as a “fraud”. How can we overcome these feelings?

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

what is research and why it is important

Browse PhDs Now

In Press Article

An In Press article is a paper that has been accepted for publication and is being prepared for print.

How to Build a Research Collaboration

Learning how to effectively collaborate with others is an important skill for anyone in academia to develop.

Ellie Hurer Profile

Ellie is a final year PhD student at the University of Hertfordshire, investigating a protein which is implicated in pancreatic cancer; this work can improve the efficacy of cancer drug treatments.

what is research and why it is important

Charlene is a 5th year PhD candidate at the University of Wisconsin-Madison. She studies depression and neuroticism in people with Temporal Lobe Epilepsy (TLE) using MR Imaging and behavioural tests.

Join Thousands of Students

IdeaScale Logo

What is Research? Definition, Types, Methods and Process

By Nick Jain

Published on: July 25, 2023

What is Research

Table of Contents

What is Research?

Types of research methods, research process: how to conduct research, top 10 best practices for conducting research in 2023.

Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study. By adhering to established research methodologies, investigators can draw meaningful conclusions, fostering a profound understanding that contributes significantly to the existing knowledge base.

This dedication to systematic inquiry serves as the bedrock of progress, steering advancements across sciences, technology, social sciences, and diverse disciplines. Through the dissemination of meticulously gathered insights, scholars not only inspire collaboration and innovation but also catalyze positive societal change.

In the pursuit of knowledge, researchers embark on a journey of discovery, seeking to unravel the complexities of the world around us. By formulating clear research questions, researchers set the course for their investigations, carefully crafting methodologies to gather relevant data. Whether employing quantitative surveys or qualitative interviews, data collection lies at the heart of every research endeavor. Once the data is collected, researchers meticulously analyze it, employing statistical tools or thematic analysis to identify patterns and draw meaningful insights. These insights, often supported by empirical evidence, contribute to the collective pool of knowledge, enriching our understanding of various phenomena and guiding decision-making processes across diverse fields. Through research, we continually refine our understanding of the universe, laying the foundation for innovation and progress that shape the future.

Research embodies the spirit of curiosity and the pursuit of truth. Here are the key characteristics of research:

  • Systematic Approach: Research follows a well-structured and organized approach, with clearly defined steps and methodologies. It is conducted in a systematic manner to ensure that data is collected, analyzed, and interpreted in a logical and coherent way.
  • Objective and Unbiased: Research is objective and strives to be free from bias or personal opinions. Researchers aim to gather data and draw conclusions based on evidence rather than preconceived notions or beliefs.
  • Empirical Evidence: Research relies on empirical evidence obtained through observations, experiments, surveys, or other data collection methods. This evidence serves as the foundation for drawing conclusions and making informed decisions.
  • Clear Research Question or Problem: Every research study begins with a specific research question or problem that the researcher aims to address. This question provides focus and direction to the entire research process.
  • Replicability: Good research should be replicable, meaning that other researchers should be able to conduct a similar study and obtain similar results when following the same methods.
  • Transparency and Ethics: Research should be conducted with transparency, and researchers should adhere to ethical guidelines and principles. This includes obtaining informed consent from participants, ensuring confidentiality, and avoiding any harm to participants or the environment.
  • Generalizability: Researchers often aim for their findings to be generalizable to a broader population or context. This means that the results of the study can be applied beyond the specific sample or situation studied.
  • Logical and Critical Thinking: Research involves critical thinking to analyze and interpret data, identify patterns, and draw meaningful conclusions. Logical reasoning is essential in formulating hypotheses and designing the study.
  • Contribution to Knowledge: The primary purpose of research is to contribute to the existing body of knowledge in a particular field. Researchers aim to expand understanding, challenge existing theories, or propose new ideas.
  • Peer Review and Publication: Research findings are typically subject to peer review by experts in the field before being published in academic journals or presented at conferences. This process ensures the quality and validity of the research.
  • Iterative Process: Research is often an iterative process, with findings from one study leading to new questions and further research. It is a continuous cycle of discovery and refinement.
  • Practical Application: While some research is theoretical in nature, much of it aims to have practical applications and real-world implications. It can inform policy decisions, improve practices, or address societal challenges.

These key characteristics collectively define research as a rigorous and valuable endeavor that drives progress, knowledge, and innovation in various disciplines.

Types of Research Methods

Research methods refer to the specific approaches and techniques used to collect and analyze data in a research study. There are various types of research methods, and researchers often choose the most appropriate method based on their research question, the nature of the data they want to collect, and the resources available to them. Some common types of research methods include:

1. Quantitative Research: Quantitative research methods focus on collecting and analyzing quantifiable data to draw conclusions. The key methods for conducting quantitative research are:

Surveys- Conducting structured questionnaires or interviews with a large number of participants to gather numerical data.

Experiments-Manipulating variables in a controlled environment to establish cause-and-effect relationships.

Observational Studies- Systematically observing and recording behaviors or phenomena without intervention.

Secondary Data Analysis- Analyzing existing datasets and records to draw new insights or conclusions.

2. Qualitative Research: Qualitative research employs a range of information-gathering methods that are non-numerical, and are instead intellectual in order to provide in-depth insights into the research topic. The key methods are:

Interviews- Conducting in-depth, semi-structured, or unstructured interviews to gain a deeper understanding of participants’ perspectives.

Focus Groups- Group discussions with selected participants to explore their attitudes, beliefs, and experiences on a specific topic.

Ethnography- Immersing in a particular culture or community to observe and understand their behaviors, customs, and beliefs.

Case Studies- In-depth examination of a single individual, group, organization, or event to gain comprehensive insights.

3. Mixed-Methods Research: Combining both quantitative and qualitative research methods in a single study to provide a more comprehensive understanding of the research question.

4. Cross-Sectional Studies: Gathering data from a sample of a population at a specific point in time to understand relationships or differences between variables.

5. Longitudinal Studies: Following a group of participants over an extended period to examine changes and developments over time.

6. Action Research: Collaboratively working with stakeholders to identify and implement solutions to practical problems in real-world settings.

7. Case-Control Studies: Comparing individuals with a particular outcome (cases) to those without the outcome (controls) to identify potential causes or risk factors.

8. Descriptive Research: Describing and summarizing characteristics, behaviors, or patterns without manipulating variables.

9. Correlational Research: Examining the relationship between two or more variables without inferring causation.

10. Grounded Theory: An approach to developing theory based on systematically gathering and analyzing data, allowing the theory to emerge from the data.

11. Surveys and Questionnaires: Administering structured sets of questions to a sample population to gather specific information.

12. Meta-Analysis: A statistical technique that combines the results of multiple studies on the same topic to draw more robust conclusions.

Researchers often choose a research method or a combination of methods that best aligns with their research objectives, resources, and the nature of the data they aim to collect. Each research method has its strengths and limitations, and the choice of method can significantly impact the findings and conclusions of a study.

Learn more: What is Research Design?

Conducting research involves a systematic and organized process that follows specific steps to ensure the collection of reliable and meaningful data. The research process typically consists of the following steps:

Step 1. Identify the Research Topic

Choose a research topic that interests you and aligns with your expertise and resources. Develop clear and focused research questions that you want to answer through your study.

Step 2. Review Existing Research

Conduct a thorough literature review to identify what research has already been done on your chosen topic. This will help you understand the current state of knowledge, identify gaps in the literature, and refine your research questions.

Step 3. Design the Research Methodology

Determine the appropriate research methodology that suits your research questions. Decide whether your study will be qualitative , quantitative , or a mix of both (mixed methods). Also, choose the data collection methods, such as surveys, interviews, experiments, observations, etc.

Step 4. Select the Sample and Participants

If your study involves human participants, decide on the sample size and selection criteria. Obtain ethical approval, if required, and ensure that participants’ rights and privacy are protected throughout the research process.

Step 5. Information Collection

Collect information and data based on your chosen research methodology. Qualitative research has more intellectual information, while quantitative research results are more data-oriented. Ensure that your data collection process is standardized and consistent to maintain the validity of the results.

Step 6. Data Analysis

Analyze the data you have collected using appropriate statistical or qualitative research methods . The type of analysis will depend on the nature of your data and research questions.

Step 7. Interpretation of Results

Interpret the findings of your data analysis. Relate the results to your research questions and consider how they contribute to the existing knowledge in the field.

Step 8. Draw Conclusions

Based on your interpretation of the results, draw meaningful conclusions that answer your research questions. Discuss the implications of your findings and how they align with the existing literature.

Step 9. Discuss Limitations

Acknowledge and discuss any limitations of your study. Addressing limitations demonstrates the validity and reliability of your research.

Step 10. Make Recommendations

If applicable, provide recommendations based on your research findings. These recommendations can be for future research, policy changes, or practical applications.

Step 11. Write the Research Report

Prepare a comprehensive research report detailing all aspects of your study, including the introduction, methodology, results, discussion, conclusion, and references.

Step 12. Peer Review and Revision

If you intend to publish your research, submit your report to peer-reviewed journals. Revise your research report based on the feedback received from reviewers.

Make sure to share your research findings with the broader community through conferences, seminars, or other appropriate channels, this will help contribute to the collective knowledge in your field of study.

Remember that conducting research is a dynamic process, and you may need to revisit and refine various steps as you progress. Good research requires attention to detail, critical thinking, and adherence to ethical principles to ensure the quality and validity of the study.

Learn more: What is Primary Market Research?

Best Practices for Conducting Research

Best practices for conducting research remain rooted in the principles of rigor, transparency, and ethical considerations. Here are the essential best practices to follow when conducting research in 2023:

1. Research Design and Methodology

  • Carefully select and justify the research design and methodology that aligns with your research questions and objectives.
  • Ensure that the chosen methods are appropriate for the data you intend to collect and the type of analysis you plan to perform.
  • Clearly document the research design and methodology to enhance the reproducibility and transparency of your study.

2. Ethical Considerations

  • Obtain approval from relevant research ethics committees or institutional review boards, especially when involving human participants or sensitive data.
  • Prioritize the protection of participants’ rights, privacy, and confidentiality throughout the research process.
  • Provide informed consent to participants, ensuring they understand the study’s purpose, risks, and benefits.

3. Data Collection

  • Ensure the reliability and validity of data collection instruments, such as surveys or interview protocols.
  • Conduct pilot studies or pretests to identify and address any potential issues with data collection procedures.

4. Data Management and Analysis

  • Implement robust data management practices to maintain the integrity and security of research data.
  • Transparently document data analysis procedures, including software and statistical methods used.
  • Use appropriate statistical techniques to analyze the data and avoid data manipulation or cherry-picking results.

5. Transparency and Open Science

  • Embrace open science practices, such as pre-registration of research protocols and sharing data and code openly whenever possible.
  • Clearly report all aspects of your research, including methods, results, and limitations, to enhance the reproducibility of your study.

6. Bias and Confounders

  • Be aware of potential biases in the research process and take steps to minimize them.
  • Consider and address potential confounding variables that could affect the validity of your results.

7. Peer Review

  • Seek peer review from experts in your field before publishing or presenting your research findings.
  • Be receptive to feedback and address any concerns raised by reviewers to improve the quality of your study.

8. Replicability and Generalizability

  • Strive to make your research findings replicable, allowing other researchers to validate your results independently.
  • Clearly state the limitations of your study and the extent to which the findings can be generalized to other populations or contexts.

9. Acknowledging Funding and Conflicts of Interest

  • Disclose any funding sources and potential conflicts of interest that may influence your research or its outcomes.

10. Dissemination and Communication

  • Effectively communicate your research findings to both academic and non-academic audiences using clear and accessible language.
  • Share your research through reputable and open-access platforms to maximize its impact and reach.

By adhering to these best practices, researchers can ensure the integrity and value of their work, contributing to the advancement of knowledge and promoting trust in the research community.

Learn more: What is Consumer Research?

Enhance Your Research

Collect feedback and conduct research with IdeaScale’s award-winning software

Elevate Research And Feedback With Your IdeaScale Community!

IdeaScale is an innovation management solution that inspires people to take action on their ideas. Your community’s ideas can change lives, your business and the world. Connect to the ideas that matter and start co-creating the future.

Copyright © 2024 IdeaScale

Privacy Overview

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Science Resource Online

What Is the Importance of Research? 5 Reasons Why Research is Critical

by Logan Bessant | Nov 16, 2021 | Science

What Is the Importance of Research? 5 Reasons Why Research is Critical

Most of us appreciate that research is a crucial part of medical advancement. But what exactly is the importance of research? In short, it is critical in the development of new medicines as well as ensuring that existing treatments are used to their full potential. 

Research can bridge knowledge gaps and change the way healthcare practitioners work by providing solutions to previously unknown questions.

In this post, we’ll discuss the importance of research and its impact on medical breakthroughs.  

The Importance Of Health Research

The purpose of studying is to gather information and evidence, inform actions, and contribute to the overall knowledge of a certain field. None of this is possible without research. 

Understanding how to conduct research and the importance of it may seem like a very simple idea to some, but in reality, it’s more than conducting a quick browser search and reading a few chapters in a textbook. 

No matter what career field you are in, there is always more to learn. Even for people who hold a Doctor of Philosophy (PhD) in their field of study, there is always some sort of unknown that can be researched. Delving into this unlocks the unknowns, letting you explore the world from different perspectives and fueling a deeper understanding of how the universe works.

To make things a little more specific, this concept can be clearly applied in any healthcare scenario. Health research has an incredibly high value to society as it provides important information about disease trends and risk factors, outcomes of treatments, patterns of care, and health care costs and use. All of these factors as well as many more are usually researched through a clinical trial. 

What Is The Importance Of Clinical Research?

Clinical trials are a type of research that provides information about a new test or treatment. They are usually carried out to find out what, or if, there are any effects of these procedures or drugs on the human body. 

All legitimate clinical trials are carefully designed, reviewed and completed, and need to be approved by professionals before they can begin. They also play a vital part in the advancement of medical research including:

  • Providing new and good information on which types of drugs are more effective.  
  • Bringing new treatments such as medicines, vaccines and devices into the field. 
  • Testing the safety and efficacy of a new drug before it is brought to market and used in clinical practice.
  • Giving the opportunity for more effective treatments to benefit millions of lives both now and in the future. 
  • Enhancing health, lengthening life, and reducing the burdens of illness and disability. 

This all plays back to clinical research as it opens doors to advancing prevention, as well as providing treatments and cures for diseases and disabilities. Clinical trial volunteer participants are essential to this progress which further supports the need for the importance of research to be well-known amongst healthcare professionals, students and the general public. 

The image shows a researchers hand holding a magnifying glass to signify the importance of research.

Five Reasons Why Research is Critical

Research is vital for almost everyone irrespective of their career field. From doctors to lawyers to students to scientists, research is the key to better work. 

  • Increases quality of life

 Research is the backbone of any major scientific or medical breakthrough. None of the advanced treatments or life-saving discoveries used to treat patients today would be available if it wasn’t for the detailed and intricate work carried out by scientists, doctors and healthcare professionals over the past decade. 

This improves quality of life because it can help us find out important facts connected to the researched subject. For example, universities across the globe are now studying a wide variety of things from how technology can help breed healthier livestock, to how dance can provide long-term benefits to people living with Parkinson’s. 

For both of these studies, quality of life is improved. Farmers can use technology to breed healthier livestock which in turn provides them with a better turnover, and people who suffer from Parkinson’s disease can find a way to reduce their symptoms and ease their stress. 

Research is a catalyst for solving the world’s most pressing issues. Even though the complexity of these issues evolves over time, they always provide a glimmer of hope to improving lives and making processes simpler. 

  • Builds up credibility 

People are willing to listen and trust someone with new information on one condition – it’s backed up. And that’s exactly where research comes in. Conducting studies on new and unfamiliar subjects, and achieving the desired or expected outcome, can help people accept the unknown.

However, this goes without saying that your research should be focused on the best sources. It is easy for people to poke holes in your findings if your studies have not been carried out correctly, or there is no reliable data to back them up. 

This way once you have done completed your research, you can speak with confidence about your findings within your field of study. 

  • Drives progress forward 

It is with thanks to scientific research that many diseases once thought incurable, now have treatments. For example, before the 1930s, anyone who contracted a bacterial infection had a high probability of death. There simply was no treatment for even the mildest of infections as, at the time, it was thought that nothing could kill bacteria in the gut.

When antibiotics were discovered and researched in 1928, it was considered one of the biggest breakthroughs in the medical field. This goes to show how much research drives progress forward, and how it is also responsible for the evolution of technology . 

Today vaccines, diagnoses and treatments can all be simplified with the progression of medical research, making us question just what research can achieve in the future. 

  • Engages curiosity 

The acts of searching for information and thinking critically serve as food for the brain, allowing our inherent creativity and logic to remain active. Aside from the fact that this curiosity plays such a huge part within research, it is also proven that exercising our minds can reduce anxiety and our chances of developing mental illnesses in the future. 

Without our natural thirst and our constant need to ask ‘why?’ and ‘how?’ many important theories would not have been put forward and life-changing discoveries would not have been made. The best part is that the research process itself rewards this curiosity. 

Research opens you up to different opinions and new ideas which can take a proposed question and turn into a real-life concept. It also builds discerning and analytical skills which are always beneficial in many career fields – not just scientific ones. 

  • Increases awareness 

The main goal of any research study is to increase awareness, whether it’s contemplating new concepts with peers from work or attracting the attention of the general public surrounding a certain issue. 

Around the globe, research is used to help raise awareness of issues like climate change, racial discrimination, and gender inequality. Without consistent and reliable studies to back up these issues, it would be hard to convenience people that there is a problem that needs to be solved in the first place. 

The problem is that social media has become a place where fake news spreads like a wildfire, and with so many incorrect facts out there it can be hard to know who to trust. Assessing the integrity of the news source and checking for similar news on legitimate media outlets can help prove right from wrong. 

This can pinpoint fake research articles and raises awareness of just how important fact-checking can be. 

The Importance Of Research To Students

It is not a hidden fact that research can be mentally draining, which is why most students avoid it like the plague. But the matter of fact is that no matter which career path you choose to go down, research will inevitably be a part of it. 

But why is research so important to students ? The truth is without research, any intellectual growth is pretty much impossible. It acts as a knowledge-building tool that can guide you up to the different levels of learning. Even if you are an expert in your field, there is always more to uncover, or if you are studying an entirely new topic, research can help you build a unique perspective about it.

For example, if you are looking into a topic for the first time, it might be confusing knowing where to begin. Most of the time you have an overwhelming amount of information to sort through whether that be reading through scientific journals online or getting through a pile of textbooks. Research helps to narrow down to the most important points you need so you are able to find what you need to succeed quickly and easily. 

It can also open up great doors in the working world. Employers, especially those in the scientific and medical fields, are always looking for skilled people to hire. Undertaking research and completing studies within your academic phase can show just how multi-skilled you are and give you the resources to tackle any tasks given to you in the workplace. 

The Importance Of Research Methodology

There are many different types of research that can be done, each one with its unique methodology and features that have been designed to use in specific settings. 

When showing your research to others, they will want to be guaranteed that your proposed inquiry needs asking, and that your methodology is equipt to answer your inquiry and will convey the results you’re looking for.

That’s why it’s so important to choose the right methodology for your study. Knowing what the different types of research are and what each of them focuses on can allow you to plan your project to better utilise the most appropriate methodologies and techniques available. Here are some of the most common types:

  • Theoretical Research: This attempts to answer a question based on the unknown. This could include studying phenomena or ideas whose conclusions may not have any immediate real-world application. Commonly used in physics and astronomy applications.
  • Applied Research: Mainly for development purposes, this seeks to solve a practical problem that draws on theory to generate practical scientific knowledge. Commonly used in STEM and medical fields. 
  • Exploratory Research: Used to investigate a problem that is not clearly defined, this type of research can be used to establish cause-and-effect relationships. It can be applied in a wide range of fields from business to literature. 
  • Correlational Research: This identifies the relationship between two or more variables to see if and how they interact with each other. Very commonly used in psychological and statistical applications. 

The Importance Of Qualitative Research

This type of research is most commonly used in scientific and social applications. It collects, compares and interprets information to specifically address the “how” and “why” research questions. 

Qualitative research allows you to ask questions that cannot be easily put into numbers to understand human experience because you’re not limited by survey instruments with a fixed set of possible responses.

Information can be gathered in numerous ways including interviews, focus groups and ethnographic research which is then all reported in the language of the informant instead of statistical analyses. 

This type of research is important because they do not usually require a hypothesis to be carried out. Instead, it is an open-ended research approach that can be adapted and changed while the study is ongoing. This enhances the quality of the data and insights generated and creates a much more unique set of data to analyse. 

The Process Of Scientific Research

No matter the type of research completed, it will be shared and read by others. Whether this is with colleagues at work, peers at university, or whilst it’s being reviewed and repeated during secondary analysis.

A reliable procedure is necessary in order to obtain the best information which is why it’s important to have a plan. Here are the six basic steps that apply in any research process. 

  • Observation and asking questions: Seeing a phenomenon and asking yourself ‘How, What, When, Who, Which, Why, or Where?’. It is best that these questions are measurable and answerable through experimentation. 
  • Gathering information: Doing some background research to learn what is already known about the topic, and what you need to find out. 
  • Forming a hypothesis: Constructing a tentative statement to study.
  • Testing the hypothesis: Conducting an experiment to test the accuracy of your statement. This is a way to gather data about your predictions and should be easy to repeat. 
  • Making conclusions: Analysing the data from the experiment(s) and drawing conclusions about whether they support or contradict your hypothesis. 
  • Reporting: Presenting your findings in a clear way to communicate with others. This could include making a video, writing a report or giving a presentation to illustrate your findings. 

Although most scientists and researchers use this method, it may be tweaked between one study and another. Skipping or repeating steps is common within, however the core principles of the research process still apply.

By clearly explaining the steps and procedures used throughout the study, other researchers can then replicate the results. This is especially beneficial for peer reviews that try to replicate the results to ensure that the study is sound. 

What Is The Importance Of Research In Everyday Life?

Conducting a research study and comparing it to how important it is in everyday life are two very different things.

Carrying out research allows you to gain a deeper understanding of science and medicine by developing research questions and letting your curiosity blossom. You can experience what it is like to work in a lab and learn about the whole reasoning behind the scientific process. But how does that impact everyday life? 

Simply put, it allows us to disprove lies and support truths. This can help society to develop a confident attitude and not believe everything as easily, especially with the rise of fake news.

Research is the best and reliable way to understand and act on the complexities of various issues that we as humans are facing. From technology to healthcare to defence to climate change, carrying out studies is the only safe and reliable way to face our future.

Not only does research sharpen our brains, but also helps us to understand various issues of life in a much larger manner, always leaving us questioning everything and fuelling our need for answers. 

Logan Bessant

Related Articles:

  • What is STEM education?
  • How Stem Education Improves Student Learning
  • What Are the Three Domains for the Roles of Technology for Teaching and Learning?
  • Why Is FIDO2 Secure?

Featured Articles

The Significance of Workplace Incident Reporting Software

AOFIRS

  • Board Members
  • Management Team
  • Become a Contributor
  • Volunteer Opportunities
  • Code of Ethical Practices

KNOWLEDGE NETWORK

  • Search Engines List
  • Suggested Reading Library
  • Web Directories
  • Research Papers
  • Industry News

AOFIRS Knowledge Share Network

  • Become a Member
  • Associate Membership
  • Certified Membership
  • Membership Application
  • Corporate Application

Join Professional Group of Online Researchers

  • CIRS Certification Program
  • CIRS Certification Objectives
  • CIRS Certification Benefits
  • CIRS Certification Exam
  • Maintain Your Certification

Top Research Courses

  • Upcoming Events
  • Live Classes
  • Classes Schedule
  • Webinars Schedules

Online Research Training Program

  • Latest Articles
  • Internet Research
  • Search Techniques
  • Research Methods
  • Business Research
  • Search Engines
  • Research & Tools
  • Investigative Research
  • Internet Search
  • Work from Home
  • Internet Ethics
  • Internet Privacy

Six Reasons Why Research is Important

Importance of internet Research

Everyone conducts research in some form or another from a young age, whether news, books, or browsing the Internet. Internet users come across thoughts, ideas, or perspectives - the curiosity that drives the desire to explore. However, when research is essential to make practical decisions, the nature of the study alters - it all depends on its application and purpose. For instance, skilled research offered as a  research paper service  has a definite objective, and it is focused and organized. Professional research helps derive inferences and conclusions from solving problems. visit the HB tool services for the amazing research tools that will help to solve your problems regarding the research on any project.

What is the Importance of Research?

The primary goal of the research is to guide action, gather evidence for theories, and contribute to the growth of knowledge in data analysis. This article discusses the importance of research and the multiple reasons why it is beneficial to everyone, not just students and scientists.

On the other hand, research is important in business decision-making because it can assist in making better decisions when combined with their experience and intuition.

Reasons for the Importance of Research

  • Acquire Knowledge Effectively
  • Research helps in problem-solving
  • Provides the latest information
  • Builds credibility
  • Helps in business success
  • Discover and Seize opportunities

1-  Acquire Knowledge Efficiently through Research

The most apparent reason to conduct research is to understand more. Even if you think you know everything there is to know about a subject, there is always more to learn. Research helps you expand on any prior knowledge you have of the subject. The research process creates new opportunities for learning and progress.

2- Research Helps in Problem-solving

Problem-solving can be divided into several components, which require knowledge and analysis, for example,  identification of issues, cause identification,  identifying potential solutions, decision to take action, monitoring and evaluation of activity and outcomes.

You may just require additional knowledge to formulate an informed strategy and make an informed decision. When you know you've gathered reliable data, you'll be a lot more confident in your answer.

3- Research Provides the Latest Information

Research enables you to seek out the most up-to-date facts. There is always new knowledge and discoveries in various sectors, particularly scientific ones. Staying updated keeps you from falling behind and providing inaccurate or incomplete information. You'll be better prepared to discuss a topic and build on ideas if you have the most up-to-date information. With the help of tools and certifications such as CIRS , you may learn internet research skills quickly and easily. Internet research can provide instant, global access to information.

4- Research Builds Credibility

Research provides a solid basis for formulating thoughts and views. You can speak confidently about something you know to be true. It's much more difficult for someone to find flaws in your arguments after you've finished your tasks. In your study, you should prioritize the most reputable sources. Your research should focus on the most reliable sources. You won't be credible if your "research" comprises non-experts' opinions. People are more inclined to pay attention if your research is excellent.

5-  Research Helps in Business Success

R&D might also help you gain a competitive advantage. Finding ways to make things run more smoothly and differentiate a company's products from those of its competitors can help to increase a company's market worth.

6-  Research Discover and Seize Opportunities

People can maximize their potential and achieve their goals through various opportunities provided by research. These include getting jobs, scholarships, educational subsidies, projects, commercial collaboration, and budgeted travel. Research is essential for anyone looking for work or a change of environment. Unemployed people will have a better chance of finding potential employers through job advertisements or agencies. 

How to Improve Your Research Skills

Start with the big picture and work your way down.

It might be hard to figure out where to start when you start researching. There's nothing wrong with a simple internet search to get you started. Online resources like Google and Wikipedia are a great way to get a general idea of a subject, even though they aren't always correct. They usually give a basic overview with a short history and any important points.

Identify Reliable Source

Not every source is reliable, so it's critical that you can tell the difference between the good ones and the bad ones. To find a reliable source, use your analytical and critical thinking skills and ask yourself the following questions: Is this source consistent with other sources I've discovered? Is the author a subject matter expert? Is there a conflict of interest in the author's point of view on this topic?

Validate Information from Various Sources

Take in new information.

The purpose of research is to find answers to your questions, not back up what you already assume. Only looking for confirmation is a minimal way to research because it forces you to pick and choose what information you get and stops you from getting the most accurate picture of the subject. When you do research, keep an open mind to learn as much as possible.

Facilitates Learning Process

Learning new things and implementing them in daily life can be frustrating. Finding relevant and credible information requires specialized training and web search skills due to the sheer enormity of the Internet and the rapid growth of indexed web pages. On the other hand, short courses and Certifications like CIRS make the research process more accessible. CIRS Certification offers complete knowledge from beginner to expert level. You can become a Certified Professional Researcher and get a high-paying job, but you'll also be much more efficient and skilled at filtering out reliable data. You can learn more about becoming a Certified Professional Researcher.

Stay Organized

You'll see a lot of different material during the process of gathering data, from web pages to PDFs to videos. You must keep all of this information organized in some way so that you don't lose anything or forget to mention something properly. There are many ways to keep your research project organized, but here are a few of the most common:  Learning Management Software , Bookmarks in your browser, index cards, and a bibliography that you can add to as you go are all excellent tools for writing.

Make Use of the library's Resources

If you still have questions about researching, don't worry—even if you're not a student performing academic or course-related research, there are many resources available to assist you. Many high school and university libraries, in reality, provide resources not only for staff and students but also for the general public. Look for research guidelines or access to specific databases on the library's website. Association of Internet Research Specialists enjoys sharing informational content such as research-related articles , research papers , specialized search engines list compiled from various sources, and contributions from our members and in-house experts.

of Conducting Research

Latest from erin r. goodrich.

  • Enhancing Efficiency: The Role of Technology in Personal Injury Case Management
  • The Evolution and Future of Workplace Benefit Administration
  • 10 Best People Search Engines and Websites in 2022

Live Classes Schedule

  • JUN 14 CIRS Certification Internet Research Training Program Live Classes Online
  • JUN 14 Web Search Methods & Techniques Live Training Live Classes Online

World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

  • Privacy Policy
  • Terms & Conditions
  • Advertising Opportunities
  • Knowledge Network

FutureLearn uses cookies to enhance your experience of the website. All but strictly necessary cookies are currently disabled for this browser. Turn on JavaScript to exercise your cookie preferences for all non-essential cookies. You can read FutureLearn's Cookie policy here .

  • FutureLearn Local

what is research and why it is important

Learn more about this course.

Why is research important.

what is research and why it is important

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now

Register to receive updates

Create an account to receive our newsletter, course recommendations and promotions.

what is research and why it is important

See all FutureLearn courses.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Arab J Urol
  • v.12(1); 2014 Mar

Why should I do research? Is it a waste of time?

Athanasios dellis.

a 2nd Department of Surgery, Aretaieion Hospital, University of Athens, Greece

Andreas Skolarikos

b 2nd Department of Urology, Sismanogleion Hospital, University of Athens, Greece

Athanasios G. Papatsoris

  • • In medicine, research is the search for scientific knowledge, which is crucial for the development of novel medications and techniques.
  • • Conducting research provides a deeper understanding of several scientific topics of the specialty of each doctor.
  • • Research through RCTs represents the principal methodological approach.
  • • There are two main research processes; qualitative and quantitative studies.
  • • It is important to develop Research Units in hospitals and medical centres.
  • • Ethics and the high quality of research are ensured by committees (i.e., Internal Board Review, Ethics Research Committee).
  • • Research sessions could be implemented in the job plans of doctors.
  • • Research is not a waste of time, but a scientific investment.

To answer the questions ‘Why should I do research? Is it a waste of time?’ and present relevant issues.

Medline was used to identify relevant articles published from 2000 to 2013, using the following keywords ‘medicine’, ‘research’, ‘purpose’, ‘study’, ‘trial’, ‘urology’.

Research is the most important activity to achieve scientific progress. Although it is an easy process on a theoretical basis, practically it is a laborious process, and full commitment and dedication are of paramount importance. Currently, given that the financial crisis has a key influence in daily practice, the need to stress the real purpose of research is crucial.

Research is necessary and not a waste of time. Efforts to improving medical knowledge should be continuous.

What is research?

Research is a general term that covers all processes aiming to find responses to worthwhile scientific questions by means of a systematic and scientific approach. In fact, research is the search for scientific knowledge, a systematically formal process to increase the fund of knowledge and use it properly for the development of novel applications.

There are several types of research, such as basic science laboratory research, translational research, and clinical and population-based research. Medical research through randomised clinical trials (RCTs) represents the principal methodological approach for the structured assessment of medical outcomes. RCTs provide prospective and investigator-controlled studies, representing the highest level of evidence (LoE) and grade of recommendation, and define the ultimate practice guideline [1] . However, many constraints, such as ethical, economic and/or social issues, render the conduct of RCTs difficult and their application problematic. For instance, in one of the largest RCTs in urology, on preventing prostate cancer with finasteride, the LoE was 1 [2] . In this RCT, after 7 years of finasteride chemoprevention, the rate of cancer decreased from 24.4% to 18.4%. Based on this study, it could be postulated that finasteride chemoprevention should be offered to men in the general population in an attempt to reduce the risk of prostate cancer. However, the findings of this RCT could not be implemented universally due to financial issues [3] .

There are two main research processes, i.e., qualitative and quantitative studies. Although very different in structure and methods, these studies represent two arms of the same research body. Qualitative studies are based mainly on human experience, using notions and theoretical information without quantifying variables, while quantitative studies record information obtained from participants in a numerical form, to enable a statistical analysis of the data. Therefore, quantitative studies can be used to establish the existence of associative or causal relationships between variables.

From a practical perspective, adding a Research Unit to a Medical Department would ultimately enhance clinical practice and education. As such, almost all hospitals in Western countries have research and development (R&D) departments, where the R&D can be linked with clinical innovation. Basic areas in this field include business planning, sales policies and activities, model design, and strategic propositions and campaign development. However, if researchers are not motivated, the research could be counterproductive, and the whole process could ultimately be a waste of time and effort [4] .

The ethics and the high quality of research are ensured by committees, such as the Internal Review Board, and Ethics Research Committees, especially in academic hospitals. They consist of highly educated and dedicated scientists of good faith as well as objectivity, to be the trustees of ethical and properly designed and performed studies.

Do we need research?

Research is the fuel for future progress and it has significantly shaped perspectives in medicine. In urology there are numerous examples showing that current practice has rapidly changed as a result of several key research findings. For example, from the research of Huggins and Hodges (who won the Nobel Prize in 1966), hormone therapy has become the standard treatment for patients with advanced/metastatic prostate cancer. The use of ESWL to treat stones in the urinary tract is another example of research that has improved practice in urology. The current trend in urology to use robotic assistance in surgery is a relatively recent example of how constant research worldwide improves everyday clinical practice [5] . Furthermore, in a more sophisticated field, research is used to identify factors influencing decision-making, clarify the preferred alternatives, and encourage the selection of a preferred screening option in diseases such as prostate cancer [6,7] .

Conducting research provides a deeper understanding of several scientific topics within the specialty of each doctor. Furthermore, it helps doctors of a particular specialty to understand better the scientific work of other colleagues. Despite the different areas of interest between the different specialties, there are common research methods.

In a University, PhD and MSc students concentrate their efforts at higher research levels. Apart from having to produce a challenging and stimulating thesis, young researchers try to develop their analytical, conceptual and critical thinking skills to the highest academic level. Also, postgraduate students thus prepare themselves for a future job in the global market.

During the research process several approaches can be tested and compared for their safety and efficacy, while the results of this procedure can be recorded and statistically analysed to extract the relevant results. Similarly, any aspects of false results and side-effects, e.g., for new medications, can be detected and properly evaluated to devise every possible improvement. Hence, research components under the auspices of dedicated supervisors, assisted by devoted personnel, are of utmost importance. Also, funding is a catalyst for the optimum progress of the research programme, and it must be independent from any other financial source with a possible conflict. Unfortunately, in cases of economic crisis in a hospital, the first department that is trimmed is research.

Is research time a waste of time?

Even if the right personnel are appointed and the funding is secured, it would be a great mistake to believe that the results are guaranteed. Full commitment and dedication are of utmost importance for successful research. Also, these questions are raised in relation to the scientific papers that are accepted for publication in medical journals. About US$ 160 billion is spent every year on biomedical research [8] . Recently, in the Lancet [9] it was estimated that 85% of research is wasteful or inefficient, with deficiencies presented in the following questions: (1) is the research question relevant for clinicians or patients?; (2) are the design and methods appropriate?; (3) is the full report accessible?; (4) is it unbiased and clinically meaningful? Such questions about the importance, purpose and impact of research should surely be answered during the research. The view of the general public is that the purpose of medical research is to advance knowledge for the good of society, to invent new substances to fight disease, to create diagnostic and therapeutic algorithms, to improve public health, to prevent diseases, to improve the quality of life and to prolong overall survival.

Pharmaceutical companies that sponsor research are financially orientated. This fact leads to a sole result, i.e., profit, as a return on their investment. In this framework it would be impossible for academic institutions to operate on any other basis but finance. Economic indicators, even better benefits and the commercial potential of research are important for their survival. Nevertheless, the purpose of research is more than that. It is time to reframe the way research is done and rewarded, leaving profits in second place. We need to remind ourselves about the real purpose of scientific research. Moreover, we need to decide what research is needed and what impact it is likely to have. Researchers and those who benefit from research (i.e., patients, practising doctors) have a crucial role in the research process. Academic institutions should assess and reward researchers on a long-term basis, and help them to concentrate on meaningful research. Researchers must defend their selection of topics as being those appropriate to benefit public health.

Each medical specialty has a different working plan, and surgical specialties such as urology are characterised by a lack of time for research. It is suggested that specific sessions for research could be implemented in the job plan of urologists, and for other doctors. This is more important for the ‘academic doctor’, but even non-academic doctors could undertake research, if only of the current updated medical literature.

Last but not least is the issue of teaching research to junior doctors. This is very important, as the sooner each doctor is involved in the research process the better for his or her career. Even for junior doctors who are not interested in an academic career, understanding the research process helps them to develop their scientific skills. Young doctors should be motivated to understand and undertake research. However, it is important to guide them through the basic principles of research and to mentor them during their first scientific projects. Furthermore, specific academic training opportunities should be offered within developing programmes, such as the academic specialist registrar’s career pathways in the UK [10] .

In conclusion, research is necessary and not a waste of time. All relevant components of the research engine should co-operate to achieve scientific progress that will help patients and the general population.

Take-home messages

  • • Ethics and the high quality of research are ensured by committees (i.e. Internal Board Review, Ethical Research Committee).

Conflict of interest

Source of funding.

Peer review under responsibility of Arab Association of Urology.

An external file that holds a picture, illustration, etc.
Object name is fx1.jpg

More From Forbes

The role of research at universities: why it matters.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

(Photo by William B. Plowman/Getty Images)

Teaching and learning, research and discovery, synthesis and creativity, understanding and engagement, service and outreach. There are many “core elements” to the mission of a great university. Teaching would seem the most obvious, but for those outside of the university, “research” (taken to include scientific research, scholarship more broadly, as well as creative activity) may be the least well understood. This creates misunderstanding of how universities invest resources, especially those deriving from undergraduate tuition and state (or other public) support, and the misperception that those resources are being diverted away from what is believed should be the core (and sole) focus, teaching. This has led to a loss of trust, confidence, and willingness to continue to invest or otherwise support (especially our public) universities.

Why are universities engaged in the conduct of research? Who pays? Who benefits? And why does it all matter? Good questions. Let’s get to some straightforward answers. Because the academic research enterprise really is not that difficult to explain, and its impacts are profound.

So let’s demystify university-based research. And in doing so, hopefully we can begin building both better understanding and a better relationship between the public and higher education, both of which are essential to the future of US higher education.   

Why are universities engaged in the conduct of research?

Universities engage in research as part of their missions around learning and discovery. This, in turn, contributes directly and indirectly to their primary mission of teaching. Universities and many colleges (the exception being those dedicated exclusively to undergraduate teaching) have as part of their mission the pursuit of scholarship. This can come in the form of fundamental or applied research (both are most common in the STEM fields, broadly defined), research-based scholarship or what often is called “scholarly activity” (most common in the social sciences and humanities), or creative activity (most common in the arts). Increasingly, these simple categorizations are being blurred, for all good reasons and to the good of the discovery of new knowledge and greater understanding of complex (transdisciplinary) challenges and the creation of increasingly interrelated fields needed to address them.

It goes without saying that the advancement of knowledge (discovery, innovation, creation) is essential to any civilization. Our nation’s research universities represent some of the most concentrated communities of scholars, facilities, and collective expertise engaged in these activities. But more importantly, this is where higher education is delivered, where students develop breadth and depth of knowledge in foundational and advanced subjects, where the skills for knowledge acquisition and understanding (including contextualization, interpretation, and inference) are honed, and where students are educated, trained, and otherwise prepared for successful careers. Part of that training and preparation derives from exposure to faculty who are engaged at the leading-edge of their fields, through their research and scholarly work. The best faculty, the teacher-scholars, seamlessly weave their teaching and research efforts together, to their mutual benefit, and in a way that excites and engages their students. In this way, the next generation of scholars (academic or otherwise) is trained, research and discovery continue to advance inter-generationally, and the cycle is perpetuated.

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024.

University research can be expensive, particularly in laboratory-intensive fields. But the responsibility for much (indeed most) of the cost of conducting research falls to the faculty member. Faculty who are engaged in research write grants for funding (e.g., from federal and state agencies, foundations, and private companies) to support their work and the work of their students and staff. In some cases, the universities do need to invest heavily in equipment, facilities, and personnel to support select research activities. But they do so judiciously, with an eye toward both their mission, their strategic priorities, and their available resources.

Medical research, and medical education more broadly, is expensive and often requires substantial institutional investment beyond what can be covered by clinical operations or externally funded research. But universities with medical schools/medical centers have determined that the value to their educational and training missions as well as to their communities justifies the investment. And most would agree that university-based medical centers are of significant value to their communities, often providing best-in-class treatment and care in midsize and smaller communities at a level more often seen in larger metropolitan areas.

Research in the STEM fields (broadly defined) can also be expensive. Scientific (including medical) and engineering research often involves specialized facilities or pieces of equipment, advanced computing capabilities, materials requiring controlled handling and storage, and so forth. But much of this work is funded, in large part, by federal agencies such as the National Science Foundation, National Institutes of Health, US Department of Energy, US Department of Agriculture, and many others.

Research in the social sciences is often (not always) less expensive, requiring smaller amount of grant funding. As mentioned previously, however, it is now becoming common to have physical, natural, and social scientist teams pursuing large grant funding. This is an exciting and very promising trend for many reasons, not the least of which is the nature of the complex problems being studied.

Research in the arts and humanities typically requires the least amount of funding as it rarely requires the expensive items listed previously. Funding from such organizations as the National Endowment for the Arts, National Endowment for the Humanities, and private foundations may be able to support significant scholarship and creation of new knowledge or works through much more modest grants than would be required in the natural or physical sciences, for example.

Philanthropy may also be directed toward the support of research and scholarly activity at universities. Support from individual donors, family foundations, private or corporate foundations may be directed to support students, faculty, labs or other facilities, research programs, galleries, centers, and institutes.

Who benefits?

Students, both undergraduate and graduate, benefit from studying in an environment rich with research and discovery. Besides what the faculty can bring back to the classroom, there are opportunities to engage with faculty as part of their research teams and even conduct independent research under their supervision, often for credit. There are opportunities to learn about and learn on state-of-the-art equipment, in state-of-the-art laboratories, and from those working on the leading edge in a discipline. There are opportunities to co-author, present at conferences, make important connections, and explore post-graduate pathways.

The broader university benefits from active research programs. Research on timely and important topics attracts attention, which in turn leads to greater institutional visibility and reputation. As a university becomes known for its research in certain fields, they become magnets for students, faculty, grants, media coverage, and even philanthropy. Strength in research helps to define a university’s “brand” in the national and international marketplace, impacting everything from student recruitment, to faculty retention, to attracting new investments.

The community, region, and state benefits from the research activity of the university. This is especially true for public research universities. Research also contributes directly to economic development, clinical, commercial, and business opportunities. Resources brought into the university through grants and contracts support faculty, staff, and student salaries, often adding additional jobs, contributing directly to the tax base. Research universities, through their expertise, reputation, and facilities, can attract new businesses into their communities or states. They can also launch and incubate startup companies, or license and sell their technologies to other companies. Research universities often host meeting and conferences which creates revenue for local hotels, restaurants, event centers, and more. And as mentioned previously, university medical centers provide high-quality medical care, often in midsize communities that wouldn’t otherwise have such outstanding services and state-of-the-art facilities.

(Photo by Justin Sullivan/Getty Images)

And finally, why does this all matter?

Research is essential to advancing society, strengthening the economy, driving innovation, and addressing the vexing and challenging problems we face as a people, place, and planet. It’s through research, scholarship, and discovery that we learn about our history and ourselves, understand the present context in which we live, and plan for and secure our future.

Research universities are vibrant, exciting, and inspiring places to learn and to work. They offer opportunities for students that few other institutions can match – whether small liberal arts colleges, mid-size teaching universities, or community colleges – and while not right for every learner or every educator, they are right for many, if not most. The advantages simply cannot be ignored. Neither can the importance or the need for these institutions. They need not be for everyone, and everyone need not find their way to study or work at our research universities, and we stipulate that there are many outstanding options to meet and support different learning styles and provide different environments for teaching and learning. But it’s critically important that we continue to support, protect, and respect research universities for all they do for their students, their communities and states, our standing in the global scientific community, our economy, and our nation.

David Rosowsky

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

TAA Abstract

The Why: Explaining the significance of your research

In the first four articles of this series, we examined The What: Defining a research project , The Where: Constructing an effective writing environment , The When: Setting realistic timeframes for your research , and The Who: Finding key sources in the existing literature . In this article, we will explore the fifth, and final, W of academic writing, The Why: Explaining the significance of your research.

Q1: When considering the significance of your research, what is the general contribution you make?

According to the Unite for Sight online module titled “ The Importance of Research ”:

“The purpose of research is to inform action. Thus, your study should seek to contextualize its findings within the larger body of research. Research must always be of high quality in order to produce knowledge that is applicable outside of the research setting. Furthermore, the results of your study may have implications for policy and future project implementation.”

In response to this TweetChat question, Twitter user @aemidr shared that the “dissemination of the research outcomes” is their contribution. Petra Boynton expressed a contribution of “easy to follow resources other people can use to help improve their health/wellbeing”.

Eric Schmieder said, “In general, I try to expand the application of technology to improve the efficiency of business processes through my research and personal use and development of technology solutions.” While Janet Salmons offered the response, “ I am a metaresearcher , that is, I research emerging qualitative methods & write about them. I hope contribution helps student & experienced researchers try new approaches.”

Despite the different contributions each of these participants noted as the significance of their individual research efforts, there is a significance to each. In addition to the importance stated through the above examples, Leann Zarah offered 7 Reasons Why Research Is Important , as follows:

  • A Tool for Building Knowledge and for Facilitating Learning
  • Means to Understand Various Issues and Increase Public Awareness
  • An Aid to Business Success
  • A Way to Prove Lies and to Support Truths
  • Means to Find, Gauge, and Seize Opportunities
  • A Seed to Love Reading, Writing, Analyzing, and Sharing Valuable Information
  • Nourishment and Exercise for the Mind

Q1a: What is the specific significance of your research to yourself or other individuals?

The first of “ 3 Important Things to Consider When Selecting Your Research Topic ”, as written by Stephen Fiedler is to “choose something that interests you”. By doing so, you are more likely to stay motivated and persevere through inevitable challenges.

As mentioned earlier, for Salmons her interests lie in emerging methods and new approaches to research. As Salmons pointed out in the TweetChat, “Conventional methods may not be adequate in a globally-connected world – using online methods expands potential participation.”

For @aemidr, “specific significance of my research is on health and safety from the environment and lifestyle”. In contrast, Schmieder said “my ongoing research allows me to be a better educator, to be more efficient in my own business practices, and to feel comfortable engaging with new technology”.

Regardless of discipline, a personal statement can help identify for yourself and others your suitability for specific research. Some things to include in the statement are:

  • Your reasons for choosing your topic of research
  • The aspects of your topic of research that interest you most
  • Any work experience, placement or voluntary work you have undertaken, particularly if it is relevant to your subject. Include the skills and abilities you have gained from these activities
  • How your choice of research fits in with your future career plans

Q2: Why is it important to communicate the value of your research?

According to Salmons, “If you research and no one knows about it or can use what you discover, it is just an intellectual exercise. If we want the public to support & fund research, we must show why it’s important!” She has written for the SAGE MethodSpace blog on the subject Write with Purpose, Publish for Impact building a collection of articles from both the MethodSpace blog and TAA’s blog, Abstract .

Peter J. Stogios shares with us benefits to both the scientist and the public in his article, “ Why Sharing Your Research with the Public is as Necessary as Doing the Research Itself ”. Unsure where to start? Stogios states, “There are many ways scientists can communicate more directly with the public. These include writing a personal blog, updating their lab’s or personal website to be less technical and more accessible to non-scientists, popular science forums and message boards, and engaging with your institution’s research communication office. Most organizations publish newsletters or create websites showcasing the work being done, and act as intermediaries between the researchers and the media. Scientists can and should interact more with these communicators.”

Schmieder stated during the TweetChat that the importance of communicating the value of your research is “primarily to help others understand why you do what you do, but also for funding purposes, application of your results by others, and increased personal value and validation”.

In her article, “ Explaining Your Research to the Public: Why It Matters, How to Do It! ”, Sharon Page-Medrich conveys the importance, stating “UC Berkeley’s 30,000+ undergraduate and 11,000+ graduate students generate or contribute to diverse research in the natural and physical sciences, social sciences and humanities, and many professional fields. Such research and its applications are fundamental to saving lives, restoring healthy environments, making art and preserving culture, and raising standards of living. Yet the average person-in-the-street may not see the connection between students’ investigations and these larger outcomes.”

Q2a: To whom is it most difficult to explain that value?

Although important, it’s not always easy to share our research efforts with others. Erin Bedford sets the scene as she tells us “ How to (Not) Talk about Your Research ”. “It’s happened to the best of us. First, the question: ‘so, what is your research on?’ Then, the blank stare as you try to explain. And finally, the uninterested but polite nod and smile.”

Schmieder acknowledges that these polite people who care enough to ask, but often are the hardest to explain things to are “family and friends who don’t share the same interests or understanding of the subject matter.” It’s not that they don’t care about the efforts, it’s that the level to which a researcher’s investment and understanding is different from those asking about their work.

When faced with less-than-supportive reactions from friends, Noelle Sterne shares some ways to retain your perspective and friendship in her TAA blog article, “ Friends – How to deal with their negative responses to your academic projects ”.

Q3: What methods have you used to explain your research to others (both inside and outside of your discipline)?

Schmieder stated, “I have done webinars, professional development seminars, blog articles, and online courses” in an effort to communicate research to others. The Edinburg Napier University LibGuides guide to Sharing Your Research includes some of these in their list of resources as well adding considerations of online presence, saving time / online efficiency, copyright, and compliance to the discussion.

Michaela Panter states in her article, “ Sharing Your Findings with a General Audience ”, that “tips and guidelines for conveying your research to a general audience are increasingly widespread, yet scientists remain wary of doing so.” She notes, however, that “effectively sharing your research with a general audience can positively affect funding for your work” and “engaging the general public can further the impact of your research”.

If these are affects you desire, consider CES’s “ Six ways to share your research findings ”, as follows:

  • Know your audience and define your goal
  • Collaborate with others
  • Make a plan
  • Embrace plain language writing
  • Layer and link, and
  • Evaluate your work

Q4: What are some places you can share your research and its significance beyond your writing?

Beyond traditional journal article publication efforts, there are many opportunities to share your research with a larger community. Schmieder listed several options during the TweetChat event, specifically, “conference presentations, social media, blogs, professional networks and organizations, podcasts, and online courses”.

Elsevier’s resource, “ Sharing and promoting your article ” provides advice on sharing your article in the following ten places:

  • At a conference
  • For classroom teaching purposes
  • For grant applications
  • With my colleagues
  • On a preprint server
  • On my personal blog or website
  • On my institutional repository
  • On a subject repository (or other non-commercial repository)
  • On Scholarly Communication Network (SCN), such as Mendeley or Scholar Universe
  • Social Media, such as Facebook, LinkedIn, Twitter

Nature Publishing Group’s “ tips for promoting your research ” include nine ways to get started:

  • Share your work with your social networks
  • Update your professional profile
  • Utilize research-sharing platforms
  • Create a Google Scholar profile – or review and enhance your existing one
  • Highlight key and topical points in a blog post
  • Make your research outputs shareable and discoverable
  • Register for a unique ORCID author identifier
  • Encourage readership within your institution

Finally, Sheffield Solutions produced a top ten list of actions you can take to help share and disseminate your work more widely online, as follows:

  • Create an ORCID ID
  • Upload to Sheffield’s MyPublications system
  • Make your work Open Access
  • Create a Google Scholar profile
  • Join an academic social network
  • Connect through Twitter
  • Blog about your research
  • Upload to Slideshare or ORDA
  • Track your research

Q5: How is the significance of your study conveyed in your writing efforts?

Schmieder stated, “Significance is conveyed through the introduction, the structure of the study, and the implications for further research sections of articles”. According to The Writing Center at University of North Carolina at Chapel Hill, “A thesis statement tells the reader how you will interpret the significance of the subject matter under discussion”.

In their online Tips & Tools resource on Thesis Statements , they share the following six questions to ask to help determine if your thesis is strong:

  • Do I answer the question?
  • Have I taken a position that others might challenge or oppose?
  • Is my thesis statement specific enough?
  • Does my thesis pass the “So what?” test?
  • Does my essay support my thesis specifically and without wandering?
  • Does my thesis pass the “how and why?” test?

Some journals, such as Elsevier’s Acta Biomaterialia, now require a statement of significance with manuscript submissions. According to the announcement linked above, “these statements will address the novelty aspect and the significance of the work with respect to the existing literature and more generally to the society.” and “by highlighting the scientific merit of your research, these statements will help make your work more visible to our readership.”

Q5a: How does the significance influence the structure of your writing?

According to Jeff Hume-Pratuch in the Academic Coaching & Writing (ACW) article, “ Using APA Style in Academic Writing: Precision and Clarity ”, “The need for precision and clarity of expression is one of the distinguishing marks of academic writing.” As a result, Hume-Pratuch advises that you “choose your words wisely so that they do not come between your idea and the audience.” To do so, he suggests avoiding ambiguous expressions, approximate language, and euphemisms and jargon in your writing.

Schmieder shared in the TweetChat that “the impact of the writing is affected by the target audience for the research and can influence word choice, organization of ideas, and elements included in the narrative”.

Discussing the organization of ideas, Patrick A. Regoniel offers “ Two Tips in Writing the Significance of the Study ” claiming that by referring to the statement of the problem and writing from general to specific contribution, you can “prevent your mind from wandering wildly or aimlessly as you explore the significance of your study”.

Q6: What are some ways you can improve your ability to explain your research to others?

For both Schmieder and Salmons, practice is key. Schmieder suggested, “Practice simplifying the concepts. Focus on why rather than what. Share research in areas where they are active and comfortable”. Salmons added, “answer ‘so what’ and ‘who cares’ questions. Practice creating a sentence. For my study of the collaborative process: ‘Learning to collaborate is important for team success in professional life’ works better than ‘a phenomenological study of instructors’ perceptions’”.

In a guest blog post for Scientific American titled “ Effective Communication, Better Science ”, Mónica I. Feliú-Mójer claimed “to be a successful scientist, you must be an effective communicator.” In support of the goal of being an effective communicator, a list of training opportunities and other resources are included in the article.

Along the same lines, The University of Melbourne shared the following list of resources, workshops, and programs in their online resource on academic writing and communication skills :

  • Speaking and Presenting : Resources for presenting your research, using PowerPoint to your advantage, presenting at conferences and helpful videos on presenting effectively
  • Research Impact Library Advisory Service  (RILAS): Helps you to determine the impact of your publications and other research outputs for academic promotions and grant applications
  • Three Minute Thesis Competition  (3MT): Research communication competition that requires you to deliver a compelling oration on your thesis topic and its significance in just three minutes or less.
  • Visualise your Thesis Competition : A dynamic and engaging audio-visual “elevator pitch” (e-Poster) to communicate your research to a broad non-specialist audience in 60 seconds.

As we complete this series exploration of the five W’s of academic writing, we hope that you are adequately prepared to apply them to your own research efforts of defining a research project, constructing an effective writing environment, setting realistic timeframes for your research, finding key sources in the existing literature, and last, but not least, explaining the significance of your research.

Share this:

what is research and why it is important

  • Share on Tumblr

what is research and why it is important

The Important Site

10 Reasons Why Research is Important

No matter what career field you’re in or how high up you are, there’s always more to learn . The same applies to your personal life. No matter how many experiences you have or how diverse your social circle, there are things you don’t know. Research unlocks the unknowns, lets you explore the world from different perspectives, and fuels a deeper understanding. In some areas, research is an essential part of success. In others, it may not be absolutely necessary, but it has many benefits. Here are ten reasons why research is important:

#1. Research expands your knowledge base

The most obvious reason to do research is that you’ll learn more. There’s always more to learn about a topic, even if you are already well-versed in it. If you aren’t, research allows you to build on any personal experience you have with the subject. The process of research opens up new opportunities for learning and growth.

#2. Research gives you the latest information

Research encourages you to find the most recent information available . In certain fields, especially scientific ones, there’s always new information and discoveries being made. Staying updated prevents you from falling behind and giving info that’s inaccurate or doesn’t paint the whole picture. With the latest info, you’ll be better equipped to talk about a subject and build on ideas.

#3. Research helps you know what you’re up against

In business, you’ll have competition. Researching your competitors and what they’re up to helps you formulate your plans and strategies. You can figure out what sets you apart. In other types of research, like medicine, your research might identify diseases, classify symptoms, and come up with ways to tackle them. Even if your “enemy” isn’t an actual person or competitor, there’s always some kind of antagonist force or problem that research can help you deal with.

#4. Research builds your credibility

People will take what you have to say more seriously when they can tell you’re informed. Doing research gives you a solid foundation on which you can build your ideas and opinions. You can speak with confidence about what you know is accurate. When you’ve done the research, it’s much harder for someone to poke holes in what you’re saying. Your research should be focused on the best sources. If your “research” consists of opinions from non-experts, you won’t be very credible. When your research is good, though, people are more likely to pay attention.

#5. Research helps you narrow your scope

When you’re circling a topic for the first time, you might not be exactly sure where to start. Most of the time, the amount of work ahead of you is overwhelming. Whether you’re writing a paper or formulating a business plan, it’s important to narrow the scope at some point. Research helps you identify the most unique and/or important themes. You can choose the themes that fit best with the project and its goals.

#6. Research teaches you better discernment

Doing a lot of research helps you sift through low-quality and high-quality information. The more research you do on a topic, the better you’ll get at discerning what’s accurate and what’s not. You’ll also get better at discerning the gray areas where information may be technically correct but used to draw questionable conclusions.

#7. Research introduces you to new ideas

You may already have opinions and ideas about a topic when you start researching. The more you research, the more viewpoints you’ll come across. This encourages you to entertain new ideas and perhaps take a closer look at yours. You might change your mind about something or, at least, figure out how to position your ideas as the best ones.

#8. Research helps with problem-solving

Whether it’s a personal or professional problem, it helps to look outside yourself for help. Depending on what the issue is, your research can focus on what others have done before. You might just need more information, so you can make an informed plan of attack and an informed decision. When you know you’ve collected good information, you’ll feel much more confident in your solution.

#9. Research helps you reach people

Research is used to help raise awareness of issues like climate change , racial discrimination, gender inequality , and more. Without hard facts, it’s very difficult to prove that climate change is getting worse or that gender inequality isn’t progressing as quickly as it should. The public needs to know what the facts are, so they have a clear idea of what “getting worse” or “not progressing” actually means. Research also entails going beyond the raw data and sharing real-life stories that have a more personal impact on people.

#10. Research encourages curiosity

Having curiosity and a love of learning take you far in life. Research opens you up to different opinions and new ideas. It also builds discerning and analytical skills. The research process rewards curiosity. When you’re committed to learning, you’re always in a place of growth. Curiosity is also good for your health. Studies show curiosity is associated with higher levels of positivity, better satisfaction with life, and lower anxiety.

Emmaline Soken-Huberty. "10 Reasons Why Research is Important." The Important Site, 2020-04-18, available at: https://theimportantsite.com/10-reasons-why-research-is-important/ .

Research Impact: The What, Why, When and How

  • First Online: 06 October 2020

Cite this chapter

what is research and why it is important

  • Hugh P. McKenna   ORCID: orcid.org/0000-0003-4916-6602 2  

864 Accesses

1 Citations

In this opening chapter, readers will be introduced to the attainment and assessment of research impact. The traditional approach to research assessment will be described briefly and how more active and proactive means of achieving impact have developed. It is a given that researchers have not grasped the importance of impact voluntarily. Rather, various incentives encouraged them to pursue research impact from their projects. These included the emphasis that funding bodies placed on pathways to impact and the drive within universities for a third funding stream through technology and knowledge transfer. However, it was the United Kingdom’s Research Excellence Framework that concentrated the minds of researchers and university leaders on research impact. This chapter will introduce the REF structures and processes and pay specific attention to the reach and significance of impact.

We grow no food on campus, so like every poet, priest or potter…, we must explain why we have faith in the usefulness of what we do provide (Gray and Gray [ 1 ]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Gray, GT. Gray, SW. Customer retention in sports organization marketing: examining the impact of team identification and satisfaction with team performance. Int. J. Consum. 2012. https://doi.org/10.1111/j.1470-6431.2011.00999.x .

Cambridge Dictionary. Impact. Cambridge: Cambridge University Press; 2020. https://dictionary.cambridge.org/ .

Google Scholar  

Collins. Business dictionaries – pocket business English dictionary. London: Collins; 2012. ISBN: 978-0-00-745420-4. https://collins.co.uk/pages/about .

Banzi R, Moja L, Pistotti V, Facchinni A, Liberati A. Conceptual frameworks and empirical approaches used to assess the impact of health research: an overview of reviews. Health Res Policy Syst. 2011;9:26. https://doi.org/10.1186/1478-4505-9-26 . PMCID: PMC3141787.

Article   PubMed   PubMed Central   Google Scholar  

UKRI. Research excellence framework. Swindon: United Kingdom Research and Innovation; 2020. https://re.ukri.org/research/research-excellence-framework-ref/ .

Nightingale F. Notes on nursing; what it is, and what it is not. D. Appleton and Company: New York, NY; 1860.

Bacon F. Selected philosophical works. Indianapolis, IN: Hackett Pub; 1999. ISBN 0-87220-470-7. OCLC 41211508.

United Nations. Sustainability development goals 2030. New York, NY: United Nations; 2015. https://www.un.org/sustainabledevelopment/sustainable-development-goals/ .

Block WH. Justus Freiherr Von Liebig. Encyclopaedia Britannica; 2020. https://www.britannica.com/biography/Justus-Freiherr-von-Liebig .

EHEA. The Magna Charta Universitatum. Bologna: EHEA; 1988. http://www.ehea.info/cid101830/magna-charta.html .

Dearing R. The Dearing report: higher education in the learning society. London: Her Majesty's Stationery Office; 1997. http://www.educationengland.org.uk/documents/dearing1997/dearing1997.html . Accessed Mar 2020.

OECD. Education. Paris: Organization for Economic Co-operation and Development; 2020. https://www.oecd.org/education/ .

Hamdullahpur F. How to forge stronger ties between universities and industry. The Times Higher Education; 2017. https://www.timeshighereducation.com/blog/how-forge-stronger-ties-between-universities-and-industry .

Baker S. Do university excellence initiatives work? The Times Higher Education; 2020. https://www.timeshighereducation.com/features/do-university-excellence-initiatives-work .

UK Parliament. The Haldane principle. London: House of Commons; 2009. https://publications.parliament.uk/pa/cm200809/cmselect/cmdius/168/16807.htm .

Penfield T, Baker MJ, Scoble R, Wykes MC. Assessment, evaluations, and definitions of research impact: a review. Res Eval. 2014;23(1):21–32. https://doi.org/10.1093/reseval/rvt021 .

Article   Google Scholar  

Carr D. Maximising the value of research outputs: Wellcome’s perspective. London: Wellcome; 2018. https://www.belmontforum.org/wp-content/uploads/2019/10/Carr-WellcomeTrust_OpenSci.pdf .

Department for Business; Energy; Industrial Strategy. Building on success and learning from experience an independent review of the research excellence framework. London: Department for Business, Energy & Industrial Strategy; 2016.

Research England. The research excellence framework. Swindon: Research England; 2020. https://re.ukri.org/research/research-excellence-framework-ref/ .

Stern N. Building on success and learning from experience an independent review of the research excellence framework. London: Department of Business, Energy and Industrial Strategy; 2016. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/541338/ind-16-9-ref-stern-review.pdf .

Hill S. Assessing (for) impact: future assessment of the societal impact of research. London: Palgrave Communications; 2016. https://doi.org/10.1057/palcomms.2016.73 .

Book   Google Scholar  

Digital Science. The societal and economic impacts of academic research international perspectives on good practice and managing evidence; 2016. https://www.digital-science.com/resources/digital-research-reports/digital-research-report-societal-economic-impacts-academic-research/ .

Bush V. Science: the endless frontier, a report to president Truman outlining his proposal for post-war U.S. science and technology policy. Washington, DC: United States Government Printing Office; 1945.

Khazragui H. Measuring the benefits of university research: impact and the REF in the UK. Res Eval. 2014;24(1):51–62. https://doi.org/10.1093/reseval/rvu028 .

Dunleavy P. ‘REF advice note 1. Understanding HEFCE’s definition of impact’, LSE impact of social sciences blog; 2012. http://blogs.lse.ac.uk/impactofsocialsciences/2012/10/22/dunleavy-ref-advice-1/ . Accessed 7 Jun 2020.

Rand Europe. Lessons from EU Research Funding (1998-2013). Published in: EU Law and Publications. https://doi.org/10.2777/667857 . Posted on RAND.org on December 15, 2017. https://www.rand.org/pubs/external_publications/EP67423.html .

McKenna HP, Daly J, Davidson P, Duffield C, Jackson D. RAE and ERA – spot the difference. Int. J. Nurs. 2012;49(4):375–77.

Grant J, Hewlett K. Putting impact in its place. Research Fortnight. 2019. https://www.researchprofessional.com/0/rr/news/uk/views-of-the-uk/2019/9/Putting-impact-in-itsplace.html?utm_medium=email&utm_source=rpMailing&utm_campaign=researchFortnightNews_2019-09-04#sthash.DQR1zNmy.dpuf .

Download references

Author information

Authors and affiliations.

Ulster University, Ulster, UK

Professor Hugh P. McKenna

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hugh P. McKenna .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

McKenna, H.P. (2021). Research Impact: The What, Why, When and How. In: Research Impact. Springer, Cham. https://doi.org/10.1007/978-3-030-57028-6_1

Download citation

DOI : https://doi.org/10.1007/978-3-030-57028-6_1

Published : 06 October 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-57027-9

Online ISBN : 978-3-030-57028-6

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Steven Pinker: Why Smart People Believe Stupid Things Honestly with Bari Weiss

  • Society & Culture

Steven Pinker is a world-renowned cognitive psychologist, and is widely regarded as one of the most important public intellectuals of our time. His work delves into the complexities of cognition, language, and social behavior, and his research offers a window into the fundamental workings of the human mind.  Pinker, who is the author of nine books including Enlightenment Now: The Case for Reason, Science, Humanism and Progress and Rationality: What It Is, Why It Seems Scarce, Why It Matters, approaches his work with a kind of data-driven optimism about the world that has set him apart from the chorus of doomer voices we hear so much from in our public discourse.    Today, we talk to Pinker about why smart people believe stupid things, the psychology of conspiracy theories, free speech and academic freedom, why democracy and enlightenment values are contrary to human nature, the moral panic around AI, and much more. The Free Press earns a commission from any purchases made through Bookshop.org links. Learn more about your ad choices. Visit megaphone.fm/adchoices

  • More Episodes
  • © 2021 Honestly with Bari Weiss

Top Podcasts In Society & Culture

  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

What research actually says about social media and kids’ health

There is no clear scientific evidence that social media is causing mental health issues among young people. Here’s what we do know.

what is research and why it is important

There is no clear scientific evidence that social media is causing mental health issues among young people. Public health officials are pushing for regulation anyway.

U.S. Surgeon General Vivek H. Murthy on Monday called for social media platforms to add warnings reminding parents and kids that the apps might not be safe, citing rising rates of mental health problems among children and teens. It follows an advisory Murthy issued last year about the health threat of loneliness for Americans, in which he named social media as a potential driver of social isolation.

But experts — from leading psychologists to free speech advocates — have repeatedly called into question the idea that time on social media like TikTok, Instagram and Snapchat leads directly to poor mental health. The debate is nuanced, they say, and it’s too early to make sweeping statements about kids and social media.

Here’s what we do know about children and teens, social media apps and mental health.

Why it’s hard to get a straight answer

There is evidence that adverse mental health symptoms among kids and teens have risen sharply, beginning during the global financial crisis in 2007 and skyrocketing at the beginning of the pandemic. But research into social media’s role has produced conflicting takeaways.

While many studies have found that social media use is correlated with dips in well-being , many others have found the opposite . One problem may be that terms such as “social media use” and “mental health” have been defined broadly and inconsistently, according to analyses of existing studies . Whatever the reason, it’s challenging for researchers to find causal relationships (meaning A causes B) between social media and mental health without closely controlling children’s behavior.

That’s hasn’t stopped health organizations from issuing warnings, such as a 2011 statement from the American Academy of Pediatrics Council on Communications and Media urging parents to look out for “Facebook depression.” A 2013 study suggested such warnings were “premature.”

GET CAUGHT UP Stories to keep you informed

Health panel urges interventions for children and teens with high BMI

Health panel urges interventions for children and teens with high BMI

Parkour group damages historic Italian building in failed stunt

Parkour group damages historic Italian building in failed stunt

To send off his fellow graduates, he wrote 180 personalized notes

To send off his fellow graduates, he wrote 180 personalized notes

How to grocery shop for one without wasting food and money

How to grocery shop for one without wasting food and money

What to know about Juneteenth and its historical significance

What to know about Juneteenth and its historical significance

To help answer the question, “How does social media impact kids?” researchers need more robust data.

In a Monday opinion essay in the New York Times , Murthy also called for social media companies to share data and research into health effects so independent experts can examine it. “While the platforms claim they are making their products safer, Americans need more than words. We need proof,” he wrote.

Vulnerable kids are more likely to struggle

Sometimes, social media appears to boost anxiety and depression. Other times, it appears to boost well-being and connectedness, according to a 2022 analysis of 226 studies .

So when we ask whether social media is a community hub for LGBTQ+ youths or a rabbit hole of warped information, the answer can be “both.” Bigger factors may be a teen’s existing vulnerabilities and what they’re actually doing on social media apps, American Psychological Association Chief Science Officer Mitchell Prinstein has said .

Some studies have found that kids and teens who already struggle with their mental or emotional health are more likely to come away from social media feeling anxious or depressed. It’s hard to determine whether social media is causing depressive symptoms. One 2018 study found that while time on social media didn’t correlate with depression, young women with depression tended to spend more time on the apps.

It’s not clear why social media might affect mental health

Social media leaves some people feeling bad , some studies suggest , but scientists still don’t understand why.

David Yeager, a developmental psychologist at the University of Texas at Austin, said some possible contenders are social comparison, where we weigh our own life next to another person’s. Or maybe it’s guilt, where we feel lazy or unproductive after spending time scrolling. Of course, disappointment and guilt are age-old feelings, but social media may provoke them, Yeager said.

Social media isn’t the first new technology to raise concerns. A newspaper clipping from 1882 shows an author claiming the telephone was “an aggravation of so monstrous a character as to merit public denunciation.” People in the 1920s were worried that the radio would make people stop socializing in person.

Instead of fighting about whether social media is good or bad, it’s more important to figure out how to minimize the harm of social media’s negative elements and maximize the benefit of its good ones, Yeager said.

“Our technology has changed, but human nature hasn’t,” he said. “The things that drive us, compel us and trap us are still the same.”

Social media companies design products to keep us scrolling

Like all businesses, social media companies exist to make money. That means creating experiences to keep users scrolling on their apps — and viewing advertisements.

One way they accomplish that is by gaming our attention or emotions. Washington Post reporting has shown, for instance, that Facebook’s algorithm at one point weighed the anger reaction more strongly than a “like” because outrage tended to create more engagement.

“Rather than scaring kids and parents with half-truths, we should demand policies that force companies to end harmful business practices like surveillance advertising and manipulative design features,” said Evan Greer, director at the digital rights nonprofit Fight for the Future. Surgeon General Murthy called for similar measures in his Times essay.

Why some people are playing up (or downplaying) risks and worries

Most experts call for a measured approach to discussing social media’s potential health impacts, but not all. For example, social scientist Jonathan Haidt recently published “The Anxious Generation,” a book that attributes poor mental health among teens to social media. In it, Haidt calls for parents to keep kids off the apps before high school and off smartphones altogether until age 16. Other researchers, including University of California Irvine psychologist Candice Odgers, have said the book misinterpreted existing studies to fuel a moral panic.

“This book is going to sell a lot of copies, because Jonathan Haidt is telling a scary story about children’s development that many parents are primed to believe,” Odgers wrote in an essay for Nature . Some of Haidt’s readers, meanwhile, celebrated what felt like direct acknowledgment of a difficult problem.

Future research may come at this contested question from new directions. An article published in Nature last month, for instance, recommended researchers consider how changes to behavior and cognition during adolescence might interact with social media and put mental health at risk.

Taylor Lorenz contributed to this report.

Help Desk: Making tech work for you

Help Desk is a destination built for readers looking to better understand and take control of the technology used in everyday life.

Take control: Sign up for The Tech Friend newsletter to get straight talk and advice on how to make your tech a force for good.

Tech tips to make your life easier: 10 tips and tricks to customize iOS 16 | 5 tips to make your gadget batteries last longer | How to get back control of a hacked social media account | How to avoid falling for and spreading misinformation online

Data and Privacy: A guide to every privacy setting you should change now . We have gone through the settings for the most popular (and problematic) services to give you recommendations. Google | Amazon | Facebook | Venmo | Apple | Android

Ask a question: Send the Help Desk your personal technology questions .

what is research and why it is important

What is innovation?

A light bulb above four open cartons

When you think of innovation, what springs to mind? Maybe it’s a flashy new gadget—but don’t be mistaken. There’s much more to the world of innovation, which extends far beyond new products and things you’ll find on a store shelf.

Get to know and directly engage with senior McKinsey experts on innovation.

Marc de Jong is a senior partner in McKinsey’s Amsterdam office, Laura Furstenthal is a senior partner in the Bay Area office, and Erik Roth is a senior partner in the Stamford office.

If products alone aren’t the full story, what is innovation? In a business context, innovation is the ability to conceive, develop, deliver, and scale new products, services, processes, and business models for customers.

Successful innovation delivers net new growth that is substantial. As McKinsey senior partner Laura Furstenthal  notes in an episode of the Inside the Strategy Room podcast , “However you measure it, innovation has to increase value and drive growth.”

As important as innovation is, getting it right can be challenging. Over 80 percent of executives surveyed  say that innovation is among their top three priorities, yet less than 10 percent report being satisfied with their organizations’ innovation performance. Many established companies are better operators than innovators , producing few new and creative game changers. Most succeed by optimizing existing core businesses.

Why is innovation important in business?

Some companies do succeed at innovation. Our research considered how proficient 183 companies were at innovation, and compared that assessment against a proprietary database of economic profit  (the total profit minus the cost of capital). We found that companies that harness the essentials of innovation see a substantial performance edge that separates them from others—with evidence that mastering innovation can generate economic profit that is 2.4 times higher than that of other players .

Learn more about our Strategy & Corporate Finance  practice.

How can leaders decide what innovations to prioritize?

Successful innovation has historically occurred at the intersection of several elements, which can guide prioritization efforts. The three most important elements are the who, the what, and the how :

  • An unmet customer need (the ‘who’): Who is the customer and what problem do they need to solve? Are macrotrends such as automation driving changes in customer needs?
  • A solution (the ‘what’): Is the solution compelling and can it be executed?
  • A business model that allows for the solution to be monetized (the ‘how’): How will the solution create value? What is the business model?

Successful innovation requires answers to each of these questions.

An example from inventor and businessman Thomas Edison helps illustrate the concept. “In every case, he did not just invent the what, he also invented a how,” says Furstenthal in a conversation on innovation . “In the case of the light bulb, he created the filament and the vacuum tube that allowed it to turn on and off, and he developed the production process that enabled mass production.”

Circular, white maze filled with white semicircles.

Introducing McKinsey Explainers : Direct answers to complex questions

How do organizations become better innovators.

McKinsey conducted research into the attributes and behaviors behind superior innovation performance , which were validated in action at hundreds of companies. This research yielded eight critical elements  for organizations to master:

  • Aspire: Do you regard innovation-led growth as critical, and have you put in place cascaded targets that reflect this?
  • Choose: Do you invest in a coherent, time- and risk-balanced portfolio of initiatives, and do you devote sufficient resources to it?
  • Discover: Are your business, market, and technology R&D efforts actionable and capable of being translated into winning value propositions?
  • Evolve: Do you create new business models that provide defensible, robust, and scalable profit sources?
  • Accelerate: Do you develop and launch innovations quickly and effectively?
  • Scale: Do you launch innovations at the right scale in the relevant markets and segments?
  • Extend: Do you create and capitalize on external networks?
  • Mobilize: Are your people motivated, rewarded, and organized to innovate repeatedly?

Of these eight essentials, two merit particular attention : aspire and choose . Without these two elements, efforts may be too scattershot to make a lasting difference. It’s particularly crucial to ensure that leaders are setting bold aspirations and making tough choices when it comes to resource allocation and portfolio moves. To do so successfully, many leaders will need to shift their mindsets or management approaches.

What are examples of successful innovators?

Real-world examples of successful innovation, related to some of the eight essentials listed , can highlight the benefits of pursuing innovation systematically :

  • Mercedes-Benz Group invested extensively in digitizing its product development system. That allowed the company to shorten its innovation cycles significantly , and its capabilities for personalizing cars have improved, even as assembly efficiency rose by 25 percent.
  • Gavi, a public–private partnership founded to save children’s lives and protect their health by broadening access to immunization, used nonfinancial targets to help drive its innovation efforts —and this helped the organization broaden its aspiration for impact in a way that was bold, specific, measurable, and time bound.
  • Lantmännen, a large Nordic agricultural cooperative, faced flat organic growth. Leadership created a vision and strategic plan  connected to financial targets cascaded down to business units and product groups. Doing so allowed the organization to move from 4 percent annual growth to 13 percent, on the back of successfully launching several new brands.
  • The information services organization RELX Group brought discipline to choosing its innovation portfolio  by running ten to 15 experiments in each customer segment in its pipeline every year. It selects one or two of the most successful ideas from the portfolio to continue.
  • International insurance company Discovery Group mobilized the organization around innovation  by creating incentives for a thousand of the company’s leaders using semiannual divisional scorecards. Innovation isn’t a choice; it’s a requirement and a part of the organization’s culture.

These examples aren’t necessarily what you may think of when you imagine disruptive innovation—which calls to mind moves that shake up an entire industry, and might be more associated with top tech trends  such as the Bio Revolution . Yet these examples show how committing to innovation can make a sizable difference.

How can my organization improve the volume and quality of new ideas?

Steps to help aspiring innovators  get started include the following:

  • Hold collision sessions: Cross-functional groups gather in a structured process to think through the intersection of unmet customer needs, technology trends, and business models, bringing creativity and specificity to the process of idea generation. Then, a venture panel considers these ideas and iterates on them, prioritizing what to do.
  • Challenge orthodoxies: Participants gather and describe beliefs that are common but that prevent the organization from innovating for customers. Examples of these orthodoxies include statements such as “budgets are limited” or “we don’t have the digital capabilities to pull it off.” Once the orthodoxies are laid out, teams brainstorm after being prompted to consider if the opposite of the statement were true.
  • Make analogies to other industries: A team might create a list of companies with unique value propositions. Then, they systematically apply these value propositions to their ideas to see if the analogy can create new sources of value or fresh opportunities.
  • Apply constraints: Rather than searching for blue-sky ideas, tighten the constraints on an idea’s business or operating model and explore potential new solutions. What if you served only one type of customer? What if the only channel you could access was online?

In the words of chemist Linus Pauling, “The way to get to good ideas is to get lots of ideas and throw the bad ones away.”

What is an innovation portfolio?

An innovation portfolio  is a thoughtfully curated bundle of potentially innovative initiatives, with clear aspirations and required resources defined for each. Managing the portfolio this way helps find new opportunities and determine the appropriate number and mix of initiatives, including the following:

  • confirming the total value of the portfolio needed
  • evaluating existing innovation projects based on incremental value delivered, risk, and alignment with strategic priorities
  • getting comfortable saying “no” to stop projects that are dilutive, and resisting the siren song of incremental initiatives that are unlikely to pay for themselves
  • reallocating resources—including competencies and skills—to new initiatives or to current ones that additional support can accelerate or amplify
  • identifying portfolio gaps and defining new initiatives to close them

How to measure innovation?

One way to measure innovation is to look at innovation-driven net new growth, which we call the “green box.”  This phrase refers to how you quantify the growth in revenue or earnings that an innovation needs to provide within a defined timeframe. This concept can help clarify aspirations and influence choices on the innovation journey.

While many imagine that innovation is solely about creativity and generating ideas, at its core, innovation is a matter of resource allocation . To put it another way: it’s one thing to frame innovation as a catalyst for growth, and another to act upon it by refocusing people, assets, and management attention on the organization’s best ideas.

The green box can help to solidify a tangible commitment  by defining the value that a company creates from breakthrough and incremental innovation, on a defined timeline (say, five years), with quantifiable metrics such as net new revenue or earnings growth. Crucially, the green box looks at growth from innovation alone, setting aside other possible sources such as market momentum, M&A, and so forth. And once defined, the growth aspiration can be cascaded into a set of objectives and metrics that the company’s various operating units can incorporate into its individual innovation portfolios.

It’s useful to note that some organizations may find that measures not solely financial in nature are more appropriate or relevant. For instance, metrics such as the number of subscribers or patients—or customer satisfaction—can resonate. What’s critical is selecting a metric that is a proxy for value creation. A large US healthcare payer , for example, looked to spur innovation that would improve patient satisfaction and the quality of care.

Separate from the concept of the green box, two simple metrics  can also offer surprising insight about innovation vis-à-vis the effectiveness of an organization’s R&D spending. Both of these lend themselves to benchmarking, since they can be gauged from the outside in, and they offer insight at the level of a company’s full innovation portfolio. The two R&D conversion metrics are as follows:

  • R&D-to-product conversion: This metric is calculated by looking at the ratio of R&D spending (as a portion of sales) to sales from new products. It can show how well your R&D dollars convert to actual sales of new products—and it might reveal that spending more doesn’t necessarily translate into stronger performance.
  • New-products-to-margin conversion: This metric considers the ratio of gross margin percentage to sales from new products. It can indicate how new-product sales contribute to lifting margins.

While no metric is perfect, these may offer perspective that keeps the focus squarely on returns from innovation and the value it creates—often more meaningful than looking inward at measures of activity, such as the number of patents secured.

How do you create a high-performing innovation team?

Innovation is a team sport. Experience working with strong innovators and start-ups has helped identify ten traits of successful innovation teams . Those fall into four big categories: vision , or the ability to spot opportunities and inspire others to go after them; collaboration , which relates to fostering effective teamwork and change management (for instance, by telling a good innovation story ); learning or absorbing new ideas; and execution , with traits that facilitate snappy decision making even when uncertainty arises.

Being strategic about the composition of an innovation team can help minimize failures and bring discipline to the process.

What innovation advice can help business leaders?

One broad piece of advice centers on creating a culture that accounts for the human side of innovation . When people worry about failure, criticism, or the career impact of a wrong move, it can keep them from embracing innovation. In a recent poll, 85 percent of executives say fear holds back their organization’s innovation efforts often or always—but there are ways to overcome these barriers .

Additionally, the Committed Innovator podcast and related articles share perspectives from leading experts who have helped their organizations tackle inertia and unlock bold strategic moves. If you are looking for words of wisdom, their insights can help spark inspiration to innovate:

  • Naomi Kelman, CEO, Willow . “Creating a safe environment for innovation is really what you need to do to get the greatness out of the people who work with you, which is ultimately what drives growth.”
  • Safi Bahcall, author, Loonshots . “Most of the important breakthroughs failed many times before they succeeded. That is where ‘fail fast’ goes wrong. Most companies are too impatient.”
  • Amy Brooks, chief innovation officer, National Basketball Association . “You can use data or examples to convince people about what is working in the market or what other industries are doing. We like to share best practices within our own leagues and within sports, but we also pay attention to every other industry that sells to consumers.”
  • Tanya Baker, global leader, Goldman Sachs Accelerate . “If someone knowledgeable thinks what you are doing is a bad idea, make sure they have a seat at the table. Put them on your board; make them one of your advisers so you don’t have any blind spots.”
  • Neal Gutterson, former chief technology officer, Corteva . “[A] key skill is being able to hold two divergent thoughts and approaches in your brain and in your team at the same time. The great companies will be ambidextrous innovators, able to disrupt themselves in the future while serving the core [business] today.”
  • Anjali Sud, CEO, Vimeo . “What keeps me up at night is execution and, within that, focus. Because when you are in a market like ours, at a time like now, the opportunity is huge. We are this nimble, fast-growing, fast-moving company, and everywhere I look I see opportunity. But am I providing enough focus for my teams so that we can truly be great at something? You don’t want to miss a big boat, and it’s hard sometimes to say no to valid, exciting ideas that could be transformative.”

For more in-depth exploration of these topics, see McKinsey’s insights on Strategy & Corporate Finance . Learn more about McKinsey’s Growth & Innovation  work—and check out innovation-related job opportunities if you’re interested in working at McKinsey.

Articles referenced include:

  • “ Fear factor: Overcoming human barriers to innovation ,” June 3, 2022, Laura Furstenthal , Alex Morris, and Erik Roth
  • “ Innovation—the launchpad out of crisis ,” September 15, 2021, Laura Furstenthal  and Erik Roth
  • “ The innovation commitment ,” October 24, 2019, Daniel Cohen, Brian Quinn, and Erik Roth
  • “ Fielding high-performing innovation teams ,” January 17, 2019, Matt Banholzer , Fabian Metzeler, and Erik Roth
  • “ Taking the measure of innovation ,” April 20, 2018, Guttorm Aase, Erik Roth , and Sri Swaminathan
  • “ The eight essentials of innovation ,” April 1, 2015, Marc de Jong , Nathan Marston, and Erik Roth

A light bulb above four open cartons

Want to know more about innovation?

Related articles.

""

Fear factor: Overcoming human barriers to innovation

The innovation commitment

The innovation commitment

Eight_essentials_1536x1536_Original

The eight essentials of innovation

what is research and why it is important

American Psychological Association Logo

Crying in psychotherapy

June 18, 2024

Results of the study demonstrate that the association of client crying events in therapy with outcome and the therapeutic relationship is not necessarily about quantity (i.e., the number of crying episodes) but rather about the quality of that experience (i.e., the way these crying episodes are both emotionally and cognitively experienced or processed with the therapist). These findings remain significant even when controlling for the therapeutic alliance or attachment security.

The data also reinforce the accumulating evidence for the importance of responding to crying events with compassion and support, as well as using an episode of crying as a valuable source of information about the therapeutic relationship. That is, how the crying experience is perceived or internalized by the client is strongly linked with their experience of the strength or weakness of the therapeutic relationship. Crying events thus have the potential to deepen the therapeutic relationship, reflect the existing bond in treatment, or both. In addition, although clients reporting less secure attachment reported greater discomfort during crying events, they also expressed greater confidence that their therapist understood them better after they cried.

The clinical implications of the study are clear: Therapists, when faced with a crying client, should slow down, explore the crying experience more fully, and avoid quickly moving past the tears. Therapists should help clients express and explore the feelings behind and the reason for these tears, as well as the potential new information that conversations about the crying event can reveal. After the crying is explored, therapists should process what it was like for the client to share these tears with them in the moment and their experience of doing so in the therapeutic space.

Additionally, the authors suggest revisiting crying episodes in the following session (e.g., “I wonder if you’ve had any further thoughts about your tears from last session?”). It is also important to recognize the unique role that crying in therapy may play for insecurely attached patients, given that the experience can be both challenging and uniquely rewarding.

In sum, clients’ crying events provide a window of opportunity for therapists to deepen the working alliance and promote improvement in therapy.

This article is in the Clinical Psychology topic area.

Katz, M., Hilsenroth, M., Johnson, N., Budge, S., & Owen, J. (2024). “Window of opportunity”: Clients’ experiences of crying in psychotherapy and their relationship with change, the alliance, and attachment. Professional Psychology: Research and Practice . Advance online publication. https://doi.org/10.1037/pro0000559

About the authors

Michael Katz , PhD, received his PhD in clinical psychology from the Derner School of Psychology at Adelphi University. He is an assistant professor in the clinical psychology program at Long Island University Post. His primary areas of professional interest include crying in psychotherapy, variations in psychotherapy techniques, the relationship between therapy technique and treatment process and outcome, and psychotherapy for grief. Contact Katz .

Mark J. Hilsenroth , PhD, received his PhD in clinical psychology from the University of Tennessee and completed his clinical internship at The Cambridge Hospital/Harvard Medical School. He is a professor of psychology at the Derner School of Psychology at Adelphi University and the primary investigator of the Adelphi University Psychotherapy Project. He served as the editor of the APA Division 29 journal Psychotherapy from 2011 to 2020, and his areas of professional interest include personality assessment, training and supervision, and psychotherapy process and treatment outcomes. Contact Hilsenroth .

Natassia Johnson , PhD, earned her PhD in clinical psychology from the Derner School of Psychology at Adelphi University. She is currently in private practice at DNJ Psychology and an adjunct clinical associate professor at Fielding Graduate University. Her areas of professional interest include psychodynamic, interpersonal, and relational psychotherapy; attachment styles; and family dynamics. Contact Johnson .

Stephanie L. Budge , PhD, received her PhD in counseling psychology from the University of Wisconsin–Madison. She is an associate professor in the Department of Counseling Psychology and the director of the Advancing Health Equity and Diversity program in the Collaborative Center for Health Equity at the University of Wisconsin–Madison. Her areas of professional interest include improving access to mental health care for transgender and nonbinary communities, well-being for LGBTQ populations, and psychotherapy process and outcomes. Contact Budge .

Jesse Owen , PhD, earned his PhD at the University of Denver. He is a full professor at the University of Denver and studies psychotherapy processes and outcomes, with a focus on multicultural orientation and therapist effects. He also serves as the senior research advisor at SonderMind and is the current editor of the journal Psychotherapy . Contact Owen .

APA Journals Article Spotlight ®

APA Journals Article Spotlight is a free summary of recently published articles in an APA Journal .

Browse Article Spotlight topics

  • Basic/Experimental Psychology
  • Clinical Psychology
  • Core of Psychology
  • Developmental Psychology
  • Educational Psychology, School Psychology, and Training
  • Forensic Psychology
  • Health Psychology and Medicine
  • Industrial/Organizational Psychology and Management
  • Neuroscience and Cognition
  • Social Psychology and Social Processes

Contact APA Publications

Juneteenth: What to know about the historical celebration that's now a federal holiday

On june 19, 1865 slaves in galveston, texas were given the news that they were freed by president abraham lincoln. now, the day is a holiday that celebrates the "second independence day" in america..

Three years after it was made a federal holiday , Juneteenth 2024 marks a day of celebration as well as education.

The federal holiday known as “Second Independence Day,” marks the day the last African American slaves were notified that they had been freed from their masters, the National Museum of African American History and Culture said.

Dr. Tim Goler, a professor of urban affairs and sociology courses and director of research for the Center for African American Public Policy at Norfolk State University, told USA TODAY that Juneteenth or "Freedom Day" is a day that shows the "beauty of our culture" that everyone should participate in.

The origins of Juneteenth date back to June 19, 1865 – more than two years after President Abraham Lincoln signed the Emancipation Proclamation - when the Union Maj. Gen. Gordon Granger arrived in Galveston, Texas, and announced the end of the Civil War and the emancipation of enslaved African Americans, Goler said.

“This delay and the enforcement of the emancipation in Texas was due to a lack of enforcement until this general arrived," Goler said. "Then Juneteenth thus became this kind of powerful symbol of freedom and the long struggle for civil rights."

The Juneteenth National Independence Day A ct was passed by the U.S. House of Representatives and Senate in June 2021. The bill was signed by President Joe Biden on June 17, 2021, which officially made the day a federal holiday.

Here's what you need to know about Juneteenth.

An African American holiday: Predating Juneteenth was nearly lost to history. It's back.

Black History, Juneteenth becoming more cemented in fabric of US

Although Juneteenth is now becoming a part of the conversation regarding Black History, there was a time when Black History was not widely discussed within the educational system, especially for historians, said Dr. Alan Singer, a professor of teaching, learning and technology at Hofstra University who writes about the history of slavery and racism.

“I didn't learn it (until) I was an adult, really (in the) 1990s, when as a teacher, I started studying more, so I (could) incorporate it into my lessons,” he said. “I went to City College in the 1960s and they had first introduced a course called ‘American Negro History’ and that was the first time I had learned about any of these things. I took the course because I became a political activist while at City College and I needed to know more about the African American civil rights struggles.”

Singer also adds that he attended high school during the Civil Rights Movement and was never taught about Black History. To change that, he decided to educate himself more to properly teach his students.

“I just felt a heavy responsibility as a teacher to really present a much more accurate picture of the history of the United States,” he said.

Goler adds that Juneteenth has been recognized for years within the Black community and history. Now, the day has become more publicly known.

"In recent years, Juneteenth has gained a much wider recognition. It's only been since 2021 that it became that designated as a federal holiday," he said. "Many Black people and Black communities around the country have celebrated Juneteenth. It's just becoming much more wider and much more visible now."

Commercialization of Juneteenth

Since Juneteenth has been declared a federal holiday, many retailers have unveiled Juneteenth attire through clothing, footwear, hats and other merchandise.

"The question is, 'who benefits from the commercialization of Juneteenth?' I’d definitely like to see more African American (and) more Black businesses benefit," Goler said. "The trend of commercialization, we risk the overshadowing of the historical context, and the ongoing struggle for racial equality that Juneteenth represents."

Singer hopes that companies that are selling Juneteenth products are also advocating for more inclusivity.

“What I'm arguing is that what we need to do is to use a day like Juneteenth as a launching pad to build a more just society,” he said. “It should not just be about the past, it has to be about the future.”

Goler hopes that the holiday will bring everyone together but also educate them about this important day in Black History.

"I think as we observe Juneteenth, it's important to focus on the education, reflection, the community engagement aspect and really ensure that the day remains of a pungent reminder of our continued and enduring fight for freedom and justice," he said.

Ahjané Forbes is a reporter on the National Trending Team at USA TODAY. Ahjané covers breaking news, car recalls, crime, health, lottery and public policy stories. Email her at  [email protected] . Follow her on  Instagram ,  Threads  and  X (Twitter) .

IMAGES

  1. Reasons Why Research Is Important

    what is research and why it is important

  2. 7 Reasons Why Research Is Important

    what is research and why it is important

  3. What is Research

    what is research and why it is important

  4. 15 Reasons Why Research Is Important

    what is research and why it is important

  5. 10 Reasons Why Research is Important!

    what is research and why it is important

  6. How to do research

    what is research and why it is important

VIDEO

  1. Why there's so much confusion about nutrition research

  2. Importance of Research

  3. Fundamental concepts of Research

  4. Report Writing || Very important questions of Research

  5. LECTURE 1. THE MEANING OF RESEARCH

  6. Research Proposal || Very Important question of Research

COMMENTS

  1. 2.1 Why is Research Important

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  2. 2.1 Why Is Research Important?

    Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ...

  3. 7 Reasons Why Research Is Important

    Why Is Research Important? The significance of research cannot be understated. It is an integral part of school and many professions, including law, writing, and finance. The main purpose of research is to inform action, gather evidence for theories, and contribute to developing knowledge in a field of study. This article discusses the ...

  4. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  5. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  6. Why does research matter?

    Abstract. A working knowledge of research - both how it is done, and how it can be used - is important for everyone involved in direct patient care and the planning & delivery of eye programmes. A research coordinator collecting data from a health extension worker. ethiopia. The mention of 'research' can be off-putting and may seem ...

  7. 2.1: Why Is Research Important?

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  8. 10 Why is Research Important?

    Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck. While many of us feel confident in our abilities to decipher and interact ...

  9. Purpose of Research

    The importance of research lies in its ability to generate new knowledge and insights, to test existing theories and ideas, and to solve practical problems. Some of the key reasons why research is important are: Advancing knowledge: Research is essential for advancing knowledge and understanding in various fields. It enables us to explore and ...

  10. PDF Why research is important

    Why research is important 3 concepts or constructs. A piece of research is embedded in a frame-work or way of seeing the world. Second, research involves the application of a method, which has been designed to achieve knowledge that is as valid and truthful as possible. 4 The products of research are propositions or statements. There is a

  11. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  12. What is Research?

    The purpose of research is to further understand the world and to learn how this knowledge can be applied to better everyday life. It is an integral part of problem solving. Although research can take many forms, there are three main purposes of research: Exploratory: Exploratory research is the first research to be conducted around a problem ...

  13. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  14. What Is Research and Why We Do It

    Research can span a broad range of approaches, from purely theoretical to practice-oriented; different approaches often coexist and fertilize each other. Research ignites human progress and societal change. In turn, society drives and supports research. The specific role of research in Informatics is discussed.

  15. What Is the Importance of Research? 5 Reasons Why Research is Critical

    Builds up credibility. People are willing to listen and trust someone with new information on one condition - it's backed up. And that's exactly where research comes in. Conducting studies on new and unfamiliar subjects, and achieving the desired or expected outcome, can help people accept the unknown.

  16. Six Reasons Why Research Is Important

    2- Research Helps in Problem-solving. The goal of the research is to broaden our understanding. Research gives us the information and knowledge to solve problems and make decisions. To differentiate between research that attempts to advance our knowledge and research that seeks to apply pre-existing information to real-world situations.

  17. Why is Research Important?

    Research is fundamental to advances in human society. It emerges from our innate desire as human beings to seek to improve our lives and to control the world around us. To do this we have to improve our understanding and our insight - we have to know how things work (or don't work) so that we can find different ways to use them or make them ...

  18. Why should I do research? Is it a waste of time?

    Research is the most important activity to achieve scientific progress. Although it is an easy process on a theoretical basis, practically it is a laborious process, and full commitment and dedication are of paramount importance. Currently, given that the financial crisis has a key influence in daily practice, the need to stress the real ...

  19. The Role Of Research At Universities: Why It Matters

    Strength in research helps to define a university's "brand" in the national and international marketplace, impacting everything from student recruitment, to faculty retention, to attracting ...

  20. What Is Research Methodology? (Why It's Important and Types)

    Research methodology is a way of explaining how a researcher intends to carry out their research. It's a logical, systematic plan to resolve a research problem. A methodology details a researcher's approach to the research to ensure reliable, valid results that address their aims and objectives. It encompasses what data they're going to collect ...

  21. The Why: Explaining the significance of your research

    According to the Unite for Sight online module titled " The Importance of Research ": "The purpose of research is to inform action. Thus, your study should seek to contextualize its findings within the larger body of research. Research must always be of high quality in order to produce knowledge that is applicable outside of the research ...

  22. 10 Reasons Why Research is Important

    Research unlocks the unknowns, lets you explore the world from different perspectives, and fuels a deeper understanding. In some areas, research is an essential part of success. In others, it may not be absolutely necessary, but it has many benefits. Here are ten reasons why research is important: #1. Research expands your knowledge base.

  23. Research Impact: The What, Why, When and How

    An indication of how important research impact has become is demonstrated by it accounting for 25% of the total REF profile in the next exercise, up from 20% in the previous iteration. Research outputs will account for 65% and research environment 15%. Considering that the results of the exercise enable the allocation of over £10-12 billion ...

  24. ‎Honestly with Bari Weiss: Steven Pinker: Why Smart People Believe

    Steven Pinker is a world-renowned cognitive psychologist, and is widely regarded as one of the most important public intellectuals of our time. His work delves into the complexities of cognition, language, and social behavior, and his research offers a window into the fundamental workings of the hum…

  25. What Are Critical Thinking Skills and Why Are They Important?

    Analysis: Analyzing your research will lead to you having a better understanding of the things you've heard and read. As a true critical thinker, you'll want to seek out the truth and get to the source of issues. It's important to avoid taking things at face value and always dig deeper.

  26. What research actually says about social media and kids' health

    There is no clear scientific evidence that social media is causing mental health issues among young people. Public health officials are pushing for regulation anyway. U.S. Surgeon General Vivek H ...

  27. What is innovation?

    Why is innovation important in business? Some companies do succeed at innovation. Our research considered how proficient 183 companies were at innovation, and compared that assessment against a proprietary database of economic profit (the total profit minus the cost of capital).

  28. Crying in psychotherapy: Why is it important and what do therapists

    Michael Katz, PhD, received his PhD in clinical psychology from the Derner School of Psychology at Adelphi University.He is an assistant professor in the clinical psychology program at Long Island University Post. His primary areas of professional interest include crying in psychotherapy, variations in psychotherapy techniques, the relationship between therapy technique and treatment process ...

  29. Letting go of parent guilt over screen time

    An expert explains why it's important to let parental screen guilt go and calls for a nuanced view of the research claims on the impacts of screen time. CNN values your feedback 1.

  30. Juneteenth 2024: What to know about the federal holiday

    Black History, Juneteenth becoming more cemented in fabric of US. Although Juneteenth is now becoming a part of the conversation regarding Black History, there was a time when Black History was ...