StatAnalytica

200+ Biotechnology Research Topics: Let’s Shape the Future

biotechnology research topics

In the dynamic landscape of scientific exploration, biotechnology stands at the forefront, revolutionizing the way we approach healthcare, agriculture, and environmental sustainability. This interdisciplinary field encompasses a vast array of research topics that hold the potential to reshape our world. 

In this blog post, we will delve into the realm of biotechnology research topics, understanding their significance and exploring the diverse avenues that researchers are actively investigating.

Overview of Biotechnology Research

Table of Contents

Biotechnology, at its core, involves the application of biological systems, organisms, or derivatives to develop technologies and products for the benefit of humanity. 

The scope of biotechnology research is broad, covering areas such as genetic engineering, biomedical engineering, environmental biotechnology, and industrial biotechnology. Its interdisciplinary nature makes it a melting pot of ideas and innovations, pushing the boundaries of what is possible.

Unlock your academic potential with expert . Our experienced professionals are here to guide you, ensuring top-notch quality and timely submissions. Don’t let academic stress hold you back – excel with confidence!

How to Select The Best Biotechnology Research Topics?

  • Identify Your Interests

Start by reflecting on your own interests within the broad field of biotechnology. What aspects of biotechnology excite you the most? Identifying your passion will make the research process more engaging.

  • Stay Informed About Current Trends

Keep up with the latest developments and trends in biotechnology. Subscribe to scientific journals, attend conferences, and follow reputable websites to stay informed about cutting-edge research. This will help you identify gaps in knowledge or areas where advancements are needed.

  • Consider Societal Impact

Evaluate the potential societal impact of your chosen research topic. How does it contribute to solving real-world problems? Biotechnology has applications in healthcare, agriculture, environmental conservation, and more. Choose a topic that aligns with the broader goal of improving quality of life or addressing global challenges.

  • Assess Feasibility and Resources

Evaluate the feasibility of your research topic. Consider the availability of resources, including laboratory equipment, funding, and expertise. A well-defined and achievable research plan will increase the likelihood of successful outcomes.

  • Explore Innovation Opportunities

Look for opportunities to contribute to innovation within the field. Consider topics that push the boundaries of current knowledge, introduce novel methodologies, or explore interdisciplinary approaches. Innovation often leads to groundbreaking discoveries.

  • Consult with Mentors and Peers

Seek guidance from mentors, professors, or colleagues who have expertise in biotechnology. Discuss your research interests with them and gather insights. They can provide valuable advice on the feasibility and significance of your chosen topic.

  • Balance Specificity and Breadth

Strike a balance between biotechnology research topics that are specific enough to address a particular aspect of biotechnology and broad enough to allow for meaningful research. A topic that is too narrow may limit your research scope, while one that is too broad may lack focus.

  • Consider Ethical Implications

Be mindful of the ethical implications of your research. Biotechnology, especially areas like genetic engineering, can raise ethical concerns. Ensure that your chosen topic aligns with ethical standards and consider how your research may impact society.

  • Evaluate Industry Relevance

Consider the relevance of your research topic to the biotechnology industry. Industry-relevant research has the potential for practical applications and may attract funding and collaboration opportunities.

  • Stay Flexible and Open-Minded

Be open to refining or adjusting your research topic as you delve deeper into the literature and gather more information. Flexibility is key to adapting to new insights and developments in the field.

200+ Biotechnology Research Topics: Category-Wise

Genetic engineering.

  • CRISPR-Cas9: Recent Advances and Applications
  • Gene Editing for Therapeutic Purposes: Opportunities and Challenges
  • Precision Medicine and Personalized Genomic Therapies
  • Genome Sequencing Technologies: Current State and Future Prospects
  • Synthetic Biology: Engineering New Life Forms
  • Genetic Modification of Crops for Improved Yield and Resistance
  • Ethical Considerations in Human Genetic Engineering
  • Gene Therapy for Neurological Disorders
  • Epigenetics: Understanding the Role of Gene Regulation
  • CRISPR in Agriculture: Enhancing Crop Traits

Biomedical Engineering

  • Tissue Engineering: Creating Organs in the Lab
  • 3D Printing in Biomedical Applications
  • Advances in Drug Delivery Systems
  • Nanotechnology in Medicine: Theranostic Approaches
  • Bioinformatics and Computational Biology in Biomedicine
  • Wearable Biomedical Devices for Health Monitoring
  • Stem Cell Research and Regenerative Medicine
  • Precision Oncology: Tailoring Cancer Treatments
  • Biomaterials for Biomedical Applications
  • Biomechanics in Biomedical Engineering

Environmental Biotechnology

  • Bioremediation of Polluted Environments
  • Waste-to-Energy Technologies: Turning Trash into Power
  • Sustainable Agriculture Practices Using Biotechnology
  • Bioaugmentation in Wastewater Treatment
  • Microbial Fuel Cells: Harnessing Microorganisms for Energy
  • Biotechnology in Conservation Biology
  • Phytoremediation: Plants as Environmental Cleanup Agents
  • Aquaponics: Integration of Aquaculture and Hydroponics
  • Biodiversity Monitoring Using DNA Barcoding
  • Algal Biofuels: A Sustainable Energy Source

Industrial Biotechnology

  • Enzyme Engineering for Industrial Applications
  • Bioprocessing and Bio-manufacturing Innovations
  • Industrial Applications of Microbial Biotechnology
  • Bio-based Materials: Eco-friendly Alternatives
  • Synthetic Biology for Industrial Processes
  • Metabolic Engineering for Chemical Production
  • Industrial Fermentation: Optimization and Scale-up
  • Biocatalysis in Pharmaceutical Industry
  • Advanced Bioprocess Monitoring and Control
  • Green Chemistry: Sustainable Practices in Industry

Emerging Trends in Biotechnology

  • CRISPR-Based Diagnostics: A New Era in Disease Detection
  • Neurobiotechnology: Advancements in Brain-Computer Interfaces
  • Advances in Nanotechnology for Healthcare
  • Computational Biology: Modeling Biological Systems
  • Organoids: Miniature Organs for Drug Testing
  • Genome Editing in Non-Human Organisms
  • Biotechnology and the Internet of Things (IoT)
  • Exosome-based Therapeutics: Potential Applications
  • Biohybrid Systems: Integrating Living and Artificial Components
  • Metagenomics: Exploring Microbial Communities

Ethical and Social Implications

  • Ethical Considerations in CRISPR-Based Gene Editing
  • Privacy Concerns in Personal Genomic Data Sharing
  • Biotechnology and Social Equity: Bridging the Gap
  • Dual-Use Dilemmas in Biotechnological Research
  • Informed Consent in Genetic Testing and Research
  • Accessibility of Biotechnological Therapies: Global Perspectives
  • Human Enhancement Technologies: Ethical Perspectives
  • Biotechnology and Cultural Perspectives on Genetic Modification
  • Social Impact Assessment of Biotechnological Interventions
  • Intellectual Property Rights in Biotechnology

Computational Biology and Bioinformatics

  • Machine Learning in Biomedical Data Analysis
  • Network Biology: Understanding Biological Systems
  • Structural Bioinformatics: Predicting Protein Structures
  • Data Mining in Genomics and Proteomics
  • Systems Biology Approaches in Biotechnology
  • Comparative Genomics: Evolutionary Insights
  • Bioinformatics Tools for Drug Discovery
  • Cloud Computing in Biomedical Research
  • Artificial Intelligence in Diagnostics and Treatment
  • Computational Approaches to Vaccine Design

Health and Medicine

  • Vaccines and Immunotherapy: Advancements in Disease Prevention
  • CRISPR-Based Therapies for Genetic Disorders
  • Infectious Disease Diagnostics Using Biotechnology
  • Telemedicine and Biotechnology Integration
  • Biotechnology in Rare Disease Research
  • Gut Microbiome and Human Health
  • Precision Nutrition: Personalized Diets Using Biotechnology
  • Biotechnology Approaches to Combat Antibiotic Resistance
  • Point-of-Care Diagnostics for Global Health
  • Biotechnology in Aging Research and Longevity

Agricultural Biotechnology

  • CRISPR and Gene Editing in Crop Improvement
  • Precision Agriculture: Integrating Technology for Crop Management
  • Biotechnology Solutions for Food Security
  • RNA Interference in Pest Control
  • Vertical Farming and Biotechnology
  • Plant-Microbe Interactions for Sustainable Agriculture
  • Biofortification: Enhancing Nutritional Content in Crops
  • Smart Farming Technologies and Biotechnology
  • Precision Livestock Farming Using Biotechnological Tools
  • Drought-Tolerant Crops: Biotechnological Approaches

Biotechnology and Education

  • Integrating Biotechnology into STEM Education
  • Virtual Labs in Biotechnology Teaching
  • Biotechnology Outreach Programs for Schools
  • Online Courses in Biotechnology: Accessibility and Quality
  • Hands-on Biotechnology Experiments for Students
  • Bioethics Education in Biotechnology Programs
  • Role of Internships in Biotechnology Education
  • Collaborative Learning in Biotechnology Classrooms
  • Biotechnology Education for Non-Science Majors
  • Addressing Gender Disparities in Biotechnology Education

Funding and Policy

  • Government Funding Initiatives for Biotechnology Research
  • Private Sector Investment in Biotechnology Ventures
  • Impact of Intellectual Property Policies on Biotechnology
  • Ethical Guidelines for Biotechnological Research
  • Public-Private Partnerships in Biotechnology
  • Regulatory Frameworks for Gene Editing Technologies
  • Biotechnology and Global Health Policy
  • Biotechnology Diplomacy: International Collaboration
  • Funding Challenges in Biotechnology Startups
  • Role of Nonprofit Organizations in Biotechnological Research

Biotechnology and the Environment

  • Biotechnology for Air Pollution Control
  • Microbial Sensors for Environmental Monitoring
  • Remote Sensing in Environmental Biotechnology
  • Climate Change Mitigation Using Biotechnology
  • Circular Economy and Biotechnological Innovations
  • Marine Biotechnology for Ocean Conservation
  • Bio-inspired Design for Environmental Solutions
  • Ecological Restoration Using Biotechnological Approaches
  • Impact of Biotechnology on Biodiversity
  • Biotechnology and Sustainable Urban Development

Biosecurity and Biosafety

  • Biosecurity Measures in Biotechnology Laboratories
  • Dual-Use Research and Ethical Considerations
  • Global Collaboration for Biosafety in Biotechnology
  • Security Risks in Gene Editing Technologies
  • Surveillance Technologies in Biotechnological Research
  • Biosecurity Education for Biotechnology Professionals
  • Risk Assessment in Biotechnology Research
  • Bioethics in Biodefense Research
  • Biotechnology and National Security
  • Public Awareness and Biosecurity in Biotechnology

Industry Applications

  • Biotechnology in the Pharmaceutical Industry
  • Bioprocessing Innovations for Drug Production
  • Industrial Enzymes and Their Applications
  • Biotechnology in Food and Beverage Production
  • Applications of Synthetic Biology in Industry
  • Biotechnology in Textile Manufacturing
  • Cosmetic and Personal Care Biotechnology
  • Biotechnological Approaches in Renewable Energy
  • Advanced Materials Production Using Biotechnology
  • Biotechnology in the Automotive Industry

Miscellaneous Topics

  • DNA Barcoding in Species Identification
  • Bioart: The Intersection of Biology and Art
  • Biotechnology in Forensic Science
  • Using Biotechnology to Preserve Cultural Heritage
  • Biohacking: DIY Biology and Citizen Science
  • Microbiome Engineering for Human Health
  • Environmental DNA (eDNA) for Biodiversity Monitoring
  • Biotechnology and Astrobiology: Searching for Life Beyond Earth
  • Biotechnology and Sports Science
  • Biotechnology and the Future of Space Exploration

Challenges and Ethical Considerations in Biotechnology Research

As biotechnology continues to advance, it brings forth a set of challenges and ethical considerations. Biosecurity concerns, especially in the context of gene editing technologies, raise questions about the responsible use of powerful tools like CRISPR. 

Ethical implications of genetic manipulation, such as the creation of designer babies, demand careful consideration and international collaboration to establish guidelines and regulations. 

Moreover, the environmental and social impact of biotechnological interventions must be thoroughly assessed to ensure responsible and sustainable practices.

Funding and Resources for Biotechnology Research

The pursuit of biotechnology research topics requires substantial funding and resources. Government grants and funding agencies play a pivotal role in supporting research initiatives. 

Simultaneously, the private sector, including biotechnology companies and venture capitalists, invest in promising projects. Collaboration and partnerships between academia, industry, and nonprofit organizations further amplify the impact of biotechnological research.

Future Prospects of Biotechnology Research

As we look to the future, the integration of biotechnology with other scientific disciplines holds immense potential. Collaborations with fields like artificial intelligence, materials science, and robotics may lead to unprecedented breakthroughs. 

The development of innovative technologies and their application to global health and sustainability challenges will likely shape the future of biotechnology.

In conclusion, biotechnology research is a dynamic and transformative force with the potential to revolutionize multiple facets of our lives. The exploration of diverse biotechnology research topics, from genetic engineering to emerging trends like synthetic biology and nanobiotechnology, highlights the breadth of possibilities within this field. 

However, researchers must navigate challenges and ethical considerations to ensure that biotechnological advancements are used responsibly for the betterment of society. 

With continued funding, collaboration, and a commitment to ethical practices, the future of biotechnology research holds exciting promise, propelling us towards a more sustainable and technologically advanced world.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

  • Search by keyword
  • Search by citation

Page 1 of 36

Increased stable integration efficiency in CHO cells through enhanced nuclear localization of Bxb1 serine integrase

Mammalian display is an appealing technology for therapeutic antibody development. Despite the advantages of mammalian display, such as full-length IgG display with mammalian glycosylation and its inherent abi...

  • View Full Text

Screening of Candida spp. in wastewater in Brazil during COVID-19 pandemic: workflow for monitoring fungal pathogens

Fungal diseases are often linked to poverty, which is associated with poor hygiene and sanitation conditions that have been severely worsened by the COVID-19 pandemic. Moreover, COVID-19 patients are treated w...

Transgenic Arabidopsis thaliana plants expressing bacterial γ-hexachlorocyclohexane dehydrochlorinase LinA

γ-Hexachlorocyclohexane (γ-HCH), an organochlorine insecticide of anthropogenic origin, is a persistent organic pollutant (POP) that causes environmental pollution concerns worldwide. Although many γ-HCH-degra...

Molecular and agro-morphological characterization of new barley genotypes in arid environments

Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water ...

Microvesicles-delivering Smad7 have advantages over microvesicles in suppressing fibroblast differentiation in a model of Peyronie’s disease

This study compared the differences of microvesicles (MVs) and microvesicles-delivering Smad7 (Smad7-MVs) on macrophage M1 polarization and fibroblast differentiation in a model of Peyronie’s disease (PD).

Improvement and prediction of the extraction parameters of lupeol and stigmasterol metabolites of Melia azedarach with response surface methodology

Melia azedarach is known as a medicinal plant that has wide biological activities such as analgesic, antibacterial, and antifungal effects and is used to treat a wide range of diseases such as diarrhea, malaria, ...

Dual release of daptomycin and BMP-2 from a composite of β-TCP ceramic and ADA gelatin

Antibiotic-containing carrier systems are one option that offers the advantage of releasing active ingredients over a longer period of time. In vitro sustained drug release from a carrier system consisting of ...

Minimizing IP issues associated with gene constructs encoding the Bt toxin - a case study

As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal ( Cry )-encoded insecticidal (Bt) toxin for Indian an...

Activating the healing process: three-dimensional culture of stem cells in Matrigel for tissue repair

To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high...

biotech research paper topics

Co-overexpression of chitinase and β-1,3-glucanase significantly enhanced the resistance of Iranian wheat cultivars to Fusarium

Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and β-glucanases are two important ...

A new mRNA structure prediction based approach to identifying improved signal peptides for bone morphogenetic protein 2

Signal peptide (SP) engineering has proven able to improve production of many proteins yet is a laborious process that still relies on trial and error. mRNA structure around the translational start site is imp...

Correction: Transcriptomic and targeted metabolomic analyses provide insights into the flavonoids biosynthesis in the flowers of Lonicera macranthoides

The original article was published in BMC Biotechnology 2024 24 :19

A model approach to show that monocytes can enter microporous β-TCP ceramics

β-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous β-TCP ceramics has however not...

Nutritional composition, lipid profile and stability, antioxidant activities and sensory evaluation of pasta enriched by linseed flour and linseed oil

Pasta assortments fortified with high quality foods are a modern nutritional trends. This study, explored the effects of fortification with linseed flour (LF) and linseed oil (LO) on durum wheat pasta characte...

In vitro assessment of the effect of magnetic fields on efficacy of biosynthesized selenium nanoparticles by Alborzia kermanshahica

Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potentia...

ECM-mimetic, NSAIDs loaded thermo-responsive, immunomodulatory hydrogel for rheumatoid arthritis treatment

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and it leads to irreversible inflammation in intra-articular joints. Current treatment approaches for RA include non-steroidal anti-infla...

biotech research paper topics

Development of a chemiluminescence assay for tissue plasminogen activator inhibitor complex and its applicability to gastric cancer

Venous thromboembolism (VTE), is a noteworthy complication in individuals with gastric cancer, but the current diagnosis and treatment methods lack accuracy. In this study, we developed a t-PAIC chemiluminesce...

High-performance internal circulation anaerobic granular sludge reactor for cattle slaughterhouse wastewater treatment and simultaneous biogas production

This research investigates the efficacy of a high-performance pilot-scale Internal Circulation Anaerobic Reactor inoculated with Granular Sludge (ICAGSR) for treating cattle slaughterhouse wastewater while con...

Hindering the biofilm of microbial pathogens and cancer cell lines development using silver nanoparticles synthesized by epidermal mucus proteins from Clarias gariepinus

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive ...

3D printing of Ceffe-infused scaffolds for tailored nipple-like cartilage development

The reconstruction of a stable, nipple-shaped cartilage graft that precisely matches the natural nipple in shape and size on the contralateral side is a clinical challenge. While 3D printing technology can eff...

A cleavable peptide adapter augments the activity of targeted toxins in combination with the glycosidic endosomal escape enhancer SO1861

Treatment with tumor-targeted toxins attempts to overcome the disadvantages of conventional cancer therapies by directing a drug’s cytotoxic effect specifically towards cancer cells. However, success with targ...

Multiprotein collagen/keratin hydrogel promoted myogenesis and angiogenesis of injured skeletal muscles in a mouse model

Volumetric loss is one of the challenging issues in muscle tissue structure that causes functio laesa . Tissue engineering of muscle tissue using suitable hydrogels is an alternative to restoring the physiological...

Analysis of the impact of pluronic acid on the thermal stability and infectivity of AAV6.2FF

The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engin...

Rice yellow mottle virus is a suitable amplicon vector for an efficient production of an anti-leishmianiasis vaccine in Nicotiana benthamiana leaves

Since the 2000’s, plants have been used as bioreactors for the transient production of molecules of interest such as vaccines. To improve protein yield, “amplicon” vectors based on plant viruses are used. Thes...

Extraction and analysis of high-quality chloroplast DNA with reduced nuclear DNA for medicinal plants

Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy o...

Transcriptomic and targeted metabolomic analyses provide insights into the flavonoids biosynthesis in the flowers of Lonicera macranthoides

Flavonoids are one of the bioactive ingredients of Lonicera macranthoides ( L. macranthoides ), however, their biosynthesis in the flower is still unclear. In this study, combined transcriptomic and targeted metabo...

The Correction to this article has been published in BMC Biotechnology 2024 24 :33

Effects of solid lipid nanocarrier containing methyl urolithin A by coating folate-bound chitosan and evaluation of its anti-cancer activity

Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic a...

Neq2X7: a multi-purpose and open-source fusion DNA polymerase for advanced DNA engineering and diagnostics PCR

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus , enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties oth...

A solution for highly efficient electroporation of primary cytotoxic T lymphocytes

Cytotoxic T lymphocytes (CTLs) are central players in the adaptive immune response. Their functional characterization and clinical research depend on efficient and reliable transfection. Although various metho...

Adsorption of Hg 2+ /Cr 6+ by metal-binding proteins heterologously expressed in Escherichia coli

Removal of heavy metals from water and soil is a pressing challenge in environmental engineering, and biosorption by microorganisms is considered as one of the most cost-effective methods. In this study, the m...

Derivation of a novel antimicrobial peptide from the Red Sea Brine Pools modified to enhance its anticancer activity against U2OS cells

Cancer associated drug resistance is a major cause for cancer aggravation, particularly as conventional therapies have presented limited efficiency, low specificity, resulting in long term deleterious side eff...

Polyphyllin B inhibited STAT3/NCOA4 pathway and restored gut microbiota to ameliorate lung tissue injury in cigarette smoke-induced mice

Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD.

Quantifying carboxymethyl lysine and carboxyethyl lysine in human plasma: clinical insights into aging research using liquid chromatography-tandem mass spectrometry

The objective of this study was to establish a methodology for determining carboxymethyl lysine (CML) and carboxyethyl lysine (CEL) concentrations in human plasma using liquid chromatography-tandem mass spectr...

Iron/Copper/Phosphate nanocomposite as antimicrobial, antisnail, and wheat growth-promoting agent

One of the current challenges is to secure wheat crop production to meet the increasing global food demand and to face the increase in its purchasing power. Therefore, the current study aimed to exploit a new ...

Staphopain mediated virulence and antibiotic resistance alteration in co-infection of Staphylococcus aureus and Pseudomonas aeruginosa : an animal model

Polymicrobial communities lead to worsen the wound infections, due to mixed biofilms, increased antibiotic resistance, and altered virulence production. Promising approaches, including enzymes, may overcome th...

Strain-specific features of Pleurotus ostreatus growth in vitro and some of its biological activities

The production of Pleurotus ostreatus mycelium as a promising object for use in food and other industries is hampered by a lack of information about the strain-specificity of this fungus mycelium growth and its a...

Antibacterial, antibiofilm, and anticancer activity of silver-nanoparticles synthesized from the cell-filtrate of Streptomyces enissocaesilis

Silver nanoparticles (Ag-NPs) have a unique mode of action as antibacterial agents in addition to their anticancer and antioxidant properties. In this study, microbial nanotechnology is employed to synthesize ...

Deep orange gene editing triggers temperature-sensitive lethal phenotypes in Ceratitis capitata

The Mediterranean fruit fly, Ceratitis capitata , is a significant agricultural pest managed through area-wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only re...

Characterization, modeling, and anticancer activity of L.arginase production from marine Bacillus licheniformis OF2

L-arginase, is a powerful anticancer that hydrolyzes L-arginine to L-ornithine and urea. This enzyme is widely distributed and expressed in organisms like plants, fungi, however very scarce from bacteria. Our ...

Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants

Recently there have been a variety of methods to synthesize silver nanoparticles, among which the biosynthesis method is more noticeable due to features like being eco-friendly, simple, and cost-efficient. The...

Reaping the benefits of liquid handlers for high-throughput gene expression profiling in a marine model invertebrate

Modern high-throughput technologies enable the processing of a large number of samples simultaneously, while also providing rapid and accurate procedures. In recent years, automated liquid handling workstation...

Induction of antimicrobial, antioxidant metabolites production by co-cultivation of two red-sea-sponge-associated Aspergillus sp. CO2 and Bacillus sp. COBZ21

The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophy...

A novel starch-active lytic polysaccharide monooxygenase discovered with bioinformatics screening and its application in textile desizing

Lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative cleavage of different types of polysaccharides have potential to be used in various industries. However, AA13 family LPMOs which specificall...

Tuning spacer length improves the functionality of the nanobody-based VEGFR2 CAR T cell

The chimeric antigen receptor-expressing T (CAR-T) cells for cancer immunotherapy have obtained considerable clinical importance. CAR T cells need an optimized intracellular signaling domain to get appropriate...

Fabrication and characterization of metformin-loaded PLGA/Collagen nanofibers for modulation of macrophage polarization for tissue engineering and regenerative medicine

In tissue engineering (TE) and regenerative medicine, the accessibility of engineered scaffolds that modulate inflammatory states is extremely necessary. The aim of the current work was to assess the efficacy ...

Production of a potential multistrain probiotic in co-culture conditions using agro-industrial by-products-based medium for fish nutrition

Probiotics are viable microorganisms that when administered in adequate amounts confer health benefits to the host. In fish, probiotic administration has improved growth, and immunological parameters. For this...

Research on the targeted improvement of the yield of a new VB 12 -producing strain, Ensifer adhaerens S305, based on genomic and transcriptomic analysis

Vitamin B 12 (VB 12 ) has a wide range of applications and high economic value. In this study, a new strain with high VB 12 production potential, Ensifer adhaerens S305, was identified in sewage. Because E. adhaerens

Validation and calibration of a novel GEM biosensor for specific detection of Cd 2+ , Zn 2+ , and Pb 2+

In this study, we designed a novel genetic circuit sensitive to Cd 2+ , Zn 2+ and Pb 2+ by mimicking the CadA/CadR operon system mediated heavy metal homeostasis mechanism of Pseudomonas aeruginosa . The regular DNA m...

Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach

Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis...

The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa

Filamentous fungi are efficient degraders of plant biomass and the primary producers of commercial cellulolytic enzymes. While the transcriptional regulation mechanisms of cellulases have been continuously exp...

Important information

Editorial board

For authors

For editorial board members

For reviewers

  • Manuscript editing services
  • Follow us on Twitter

Annual Journal Metrics

2022 Citation Impact 3.5 - 2-year Impact Factor 3.5 - 5-year Impact Factor 0.880 - SNIP (Source Normalized Impact per Paper) 0.654 - SJR (SCImago Journal Rank)

2023 Speed 10 days submission to first editorial decision for all manuscripts (Median) 155 days submission to accept (Median)

2023 Usage  1,134,875 downloads 518 Altmetric mentions 

  • More about our metrics

BMC Biotechnology

ISSN: 1472-6750

Grad Coach

Research Topics & Ideas

Biotechnology and Genetic Engineering

Research topics and ideas about biotechnology and genetic engineering

If you’re just starting out exploring biotechnology-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from recent studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan  to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Research topic idea mega list

Biotechnology Research Topic Ideas

Below you’ll find a list of biotech and genetic engineering-related research topics ideas. These are intentionally broad and generic , so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • Developing CRISPR-Cas9 gene editing techniques for treating inherited blood disorders.
  • The use of biotechnology in developing drought-resistant crop varieties.
  • The role of genetic engineering in enhancing biofuel production efficiency.
  • Investigating the potential of stem cell therapy in regenerative medicine for spinal cord injuries.
  • Developing gene therapy approaches for the treatment of rare genetic diseases.
  • The application of biotechnology in creating biodegradable plastics from plant materials.
  • The use of gene editing to enhance nutritional content in staple crops.
  • Investigating the potential of microbiome engineering in treating gastrointestinal diseases.
  • The role of genetic engineering in vaccine development, with a focus on mRNA vaccines.
  • Biotechnological approaches to combat antibiotic-resistant bacteria.
  • Developing genetically engineered organisms for bioremediation of polluted environments.
  • The use of gene editing to create hypoallergenic food products.
  • Investigating the role of epigenetics in cancer development and therapy.
  • The application of biotechnology in developing rapid diagnostic tools for infectious diseases.
  • Genetic engineering for the production of synthetic spider silk for industrial use.
  • Biotechnological strategies for improving animal health and productivity in agriculture.
  • The use of gene editing in creating organ donor animals compatible with human transplantation.
  • Developing algae-based bioreactors for carbon capture and biofuel production.
  • The role of biotechnology in enhancing the shelf life and quality of fresh produce.
  • Investigating the ethics and social implications of human gene editing technologies.
  • The use of CRISPR technology in creating models for neurodegenerative diseases.
  • Biotechnological approaches for the production of high-value pharmaceutical compounds.
  • The application of genetic engineering in developing pest-resistant crops.
  • Investigating the potential of gene therapy in treating autoimmune diseases.
  • Developing biotechnological methods for producing environmentally friendly dyes.

Research topic evaluator

Biotech & GE Research Topic Ideas (Continued)

  • The use of genetic engineering in enhancing the efficiency of photosynthesis in plants.
  • Biotechnological innovations in creating sustainable aquaculture practices.
  • The role of biotechnology in developing non-invasive prenatal genetic testing methods.
  • Genetic engineering for the development of novel enzymes for industrial applications.
  • Investigating the potential of xenotransplantation in addressing organ donor shortages.
  • The use of biotechnology in creating personalised cancer vaccines.
  • Developing gene editing tools for combating invasive species in ecosystems.
  • Biotechnological strategies for improving the nutritional quality of plant-based proteins.
  • The application of genetic engineering in enhancing the production of renewable energy sources.
  • Investigating the role of biotechnology in creating advanced wound care materials.
  • The use of CRISPR for targeted gene activation in regenerative medicine.
  • Biotechnological approaches to enhancing the sensory qualities of plant-based meat alternatives.
  • Genetic engineering for improving the efficiency of water use in agriculture.
  • The role of biotechnology in developing treatments for rare metabolic disorders.
  • Investigating the use of gene therapy in age-related macular degeneration.
  • The application of genetic engineering in developing allergen-free nuts.
  • Biotechnological innovations in the production of sustainable and eco-friendly textiles.
  • The use of gene editing in studying and treating sleep disorders.
  • Developing biotechnological solutions for the management of plastic waste.
  • The role of genetic engineering in enhancing the production of essential vitamins in crops.
  • Biotechnological approaches to the treatment of chronic pain conditions.
  • The use of gene therapy in treating muscular dystrophy.
  • Investigating the potential of biotechnology in reversing environmental degradation.
  • The application of genetic engineering in improving the shelf life of vaccines.
  • Biotechnological strategies for enhancing the efficiency of mineral extraction in mining.

Recent Biotech & GE-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic in biotech, they are fairly generic and non-specific. So, it helps to look at actual studies in the biotech space to see how this all comes together in practice.

Below, we’ve included a selection of recent studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • Genetic modifications associated with sustainability aspects for sustainable developments (Sharma et al., 2022)
  • Review On: Impact of Genetic Engineering in Biotic Stresses Resistance Crop Breeding (Abebe & Tafa, 2022)
  • Biorisk assessment of genetic engineering — lessons learned from teaching interdisciplinary courses on responsible conduct in the life sciences (Himmel et al., 2022)
  • Genetic Engineering Technologies for Improving Crop Yield and Quality (Ye et al., 2022)
  • Legal Aspects of Genetically Modified Food Product Safety for Health in Indonesia (Khamdi, 2022)
  • Innovative Teaching Practice and Exploration of Genetic Engineering Experiment (Jebur, 2022)
  • Efficient Bacterial Genome Engineering throughout the Central Dogma Using the Dual-Selection Marker tetAOPT (Bayer et al., 2022)
  • Gene engineering: its positive and negative effects (Makrushina & Klitsenko, 2022)
  • Advances of genetic engineering in streptococci and enterococci (Kurushima & Tomita, 2022)
  • Genetic Engineering of Immune Evasive Stem Cell-Derived Islets (Sackett et al., 2022)
  • Establishment of High-Efficiency Screening System for Gene Deletion in Fusarium venenatum TB01 (Tong et al., 2022)
  • Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops (Tanwar et al., 2022)
  • Genetic research: legal and ethical aspects (Rustambekov et al., 2023). Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts (Thagun et al., 2022)
  • The role of genetic breeding in food security: A review (Sam et al., 2022). Biotechnology: use of available carbon sources on the planet to generate alternatives energy (Junior et al., 2022)
  • Biotechnology and biodiversity for the sustainable development of our society (Jaime, 2023) Role Of Biotechnology in Agriculture (Shringarpure, 2022)
  • Plants That Can be Used as Plant-Based Edible Vaccines; Current Situation and Recent Developments (İsmail, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Topic Kickstarter: Research topics in education

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Labmonk

Top 50 Research Topics in Biotechnology

Table of Contents

Biotechnology

Research in biotechnology can helps in bringing massive changes in humankind and lead to a better life. In the last few years, there have been so many leaps, and paces of innovations as scientists worldwide worked to develop and produce novel mRNA vaccinations and brought some significant developments in biotechnology. During this period, they also faced many challenges. Disturbances in the supply chain and the pandemic significantly impacted biotech labs and researchers, forcing lab managers to become ingenious in buying lab supplies, planning experiments, and using technology for maintaining research schedules.

The Biotech Research Technique is changing

How research is being done is changing, as also how scientists are conducting it. Affected by both B2C eCommerce and growing independence in remote and cloud-dependent working, most of the biotechnology labs are going through some digital transformations. This implies more software, automation, and AI in the biotech lab, along with some latest digital procurement plans and integrated systems for various lab operations.

Look at some of the top trends in biotech research and recent Biotechnology Topics that are bringing massive changes in this vast world of science, resulting in some innovation in life sciences and biotechnology ideas .

We share different job or exam notices on Labmonk Notice Board . You can search “ Labmonk Notice Board ” on google search to check out latest jobs of your field.

Leave a Comment Cancel reply

Biomedical Research Paper Topics

Academic Writing Service

This page offers students an extensive list of biomedical research paper topics , expert advice on how to choose these topics, and guidance on how to write a compelling biomedical research paper. The guide also introduces the services of iResearchNet, an academic assistance company that caters to the unique needs of each student. Offering expert writers, custom-written works, and a host of other features, iResearchNet provides the tools and support necessary for students to excel in their biomedical research papers.

100 Biomedical Research Paper Topics

Biomedical research is a vibrant field, with an extensive range of topics drawn from various sub-disciplines. It encompasses the study of biological processes, clinical medicine, and even technology and engineering applied to the domain of healthcare. Given the sheer breadth of this field, choosing a specific topic can sometimes be overwhelming. To help you navigate this rich landscape, here is a list of biomedical research paper topics, divided into ten categories, each with ten specific topics.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

1. Genetics and Genomics

  • Role of genetics in rare diseases
  • Advances in gene editing: CRISPR technology
  • Human genome project: findings and implications
  • Genetic basis of cancer
  • Personalized medicine through genomics
  • Epigenetic modifications and disease progression
  • Genomic data privacy and ethical implications
  • Role of genetics in mental health disorders
  • Prenatal genetic screening and ethical considerations
  • Gene therapy in rare genetic disorders

2. Bioengineering and Biotechnology

  • Tissue engineering in regenerative medicine
  • Bioprinting of organs: possibilities and challenges
  • Role of nanotechnology in targeted drug delivery
  • Biosensors in disease diagnosis
  • Bioinformatics in drug discovery
  • Development and application of biomaterials
  • Bioremediation and environmental cleanup
  • Biotechnology in agriculture and food production
  • Therapeutic applications of stem cells
  • Role of biotechnology in pandemic preparedness

3. Neuroscience and Neurology

  • Pathophysiology of Alzheimer’s disease
  • Advances in Parkinson’s disease research
  • Role of neuroimaging in mental health diagnosis
  • Understanding the brain-gut axis
  • Neurobiology of addiction
  • Role of neuroplasticity in recovery from brain injury
  • Sleep disorders and cognitive function
  • Brain-computer interfaces: possibilities and ethical issues
  • Neural correlates of consciousness
  • Epigenetic influence on neurodevelopmental disorders

4. Immunology

  • Immune response to COVID-19
  • Role of immunotherapy in cancer treatment
  • Autoimmune diseases: causes and treatments
  • Vaccination and herd immunity
  • The hygiene hypothesis and rising allergy prevalence
  • Role of gut microbiota in immune function
  • Immunosenescence and age-related diseases
  • Role of inflammation in chronic diseases
  • Advances in HIV/AIDS research
  • Immunology of transplantation

5. Cardiovascular Research

  • Advances in understanding and treating heart failure
  • Role of lifestyle factors in cardiovascular disease
  • Cardiovascular disease in women
  • Hypertension: causes and treatments
  • Pathophysiology of atherosclerosis
  • Role of inflammation in heart disease
  • Novel biomarkers for cardiovascular disease
  • Personalized medicine in cardiology
  • Advances in cardiac surgery
  • Pediatric cardiovascular diseases

6. Infectious Diseases

  • Emerging and re-emerging infectious diseases
  • Role of antiviral drugs in managing viral diseases
  • Antibiotic resistance: causes and solutions
  • Zoonotic diseases and public health
  • Role of vaccination in preventing infectious diseases
  • Infectious diseases in immunocompromised individuals
  • Role of genomic sequencing in tracking disease outbreaks
  • HIV/AIDS: prevention and treatment
  • Advances in malaria research
  • Tuberculosis: challenges in prevention and treatment

7. Aging Research

  • Biological mechanisms of aging
  • Impact of lifestyle on healthy aging
  • Age-related macular degeneration
  • Role of genetics in longevity
  • Aging and cognitive decline
  • Social aspects of aging
  • Advances in geriatric medicine
  • Aging and the immune system
  • Role of physical activity in aging
  • Aging and mental health

8. Endocrinology

  • Advances in diabetes research
  • Obesity: causes and health implications
  • Thyroid disorders: causes and treatments
  • Role of hormones in mental health
  • Endocrine disruptors and human health
  • Role of insulin in metabolic syndrome
  • Advances in treatment of endocrine disorders
  • Hormones and cardiovascular health
  • Reproductive endocrinology
  • Role of endocrinology in aging

9. Mental Health Research

  • Advances in understanding and treating depression
  • Impact of stress on mental health
  • Advances in understanding and treating schizophrenia
  • Child and adolescent mental health
  • Mental health in the elderly
  • Impact of social media on mental health
  • Suicide prevention and mental health services
  • Role of psychotherapy in mental health
  • Mental health disparities

10. Oncology

  • Advances in cancer immunotherapy
  • Role of genomics in cancer diagnosis and treatment
  • Lifestyle factors and cancer risk
  • Early detection and prevention of cancer
  • Advances in targeted cancer therapies
  • Role of radiation therapy in cancer treatment
  • Cancer disparities and social determinants of health
  • Pediatric oncology: challenges and advances
  • Role of stem cells in cancer
  • Cancer survivorship and quality of life

These biomedical research paper topics represent a wide array of studies within the field of biomedical research, providing a robust platform to delve into the intricacies of human health and disease. Each topic offers a unique opportunity to explore the remarkable advancements in biomedical research, contributing to the ongoing quest to enhance human health and wellbeing.

Choosing Biomedical Research Paper Topics

The selection of a suitable topic for your biomedical research paper is a critical initial step that will largely influence the course of your study. The right topic will not only engage your interest but will also be robust enough to contribute to the existing body of knowledge. Here are ten tips to guide you in choosing the best topic for your biomedical research paper.

  • Relevance to Your Coursework and Interests: Your topic should align with the courses you have taken or are currently enrolled in. Moreover, a topic that piques your interest will motivate you to delve deeper into research, resulting in a richer, more nuanced paper.
  • Feasibility: Consider the practicality of your proposed research. Do you have access to the necessary resources, including the literature, laboratories, or databases needed for your study? Ensure that your topic is one that you can manage given your resources and time constraints.
  • Novelty and Originality: While it is essential to ensure your topic aligns with your coursework and is feasible, strive to select a topic that brings a new perspective or fresh insight to your field. Originality enhances the contribution of your research to the broader academic community.
  • Scope: A well-defined topic helps maintain a clear focus during your research. Avoid choosing a topic too broad that it becomes unmanageable, or so narrow that it lacks depth. Balancing the scope of your research is key to a successful paper.
  • Future Career Goals: Consider how your chosen topic could align with or benefit your future career goals. A topic related to your future interests can provide an early start to your career, showcasing your knowledge in that particular field.
  • Available Supervision and Mentoring: If you’re in a setting where you have a mentor or supervisor, choose a topic that fits within their area of expertise. This choice will ensure you have the best possible guidance during your research process.
  • Ethical Considerations: Some topics may involve ethical considerations, particularly those involving human subjects, animals, or sensitive data. Make sure your topic is ethically sound and you’re prepared to address any related ethical considerations.
  • Potential Impact: Consider the potential impact of your research on the field of biomedical science. The best research often addresses a gap in the current knowledge or has the potential to bring about change in healthcare practices or policies.
  • Literature Gap: Literature review can help identify gaps in the existing body of knowledge. Choosing a topic that fills in these gaps can make your research more valuable and unique.
  • Flexibility: While it’s essential to start with a clear topic, remain open to slight shifts or changes as your research unfolds. Your research might reveal a different angle or a more exciting question within your chosen field, so stay flexible.

Remember, choosing a topic should be an iterative process, and your initial ideas will likely evolve as you conduct a preliminary literature review and discuss your thoughts with your mentors or peers. The ultimate goal is to choose a topic that you are passionate about, as this passion will drive your work and make the research process more enjoyable and fulfilling.

How to Write a Biomedical Research Paper

Writing a biomedical research paper can be a daunting task. However, with careful planning and strategic execution, the process can be more manageable and rewarding. Below are ten tips to help guide you through the process of writing a biomedical research paper.

  • Understand Your Assignment: Before you begin your research or writing, make sure you understand the requirements of your assignment. Know the expected length, due date, formatting style, and any specific sections or components you need to include.
  • Thorough Literature Review: A comprehensive literature review allows you to understand the current knowledge in your research area and identify gaps where your research can contribute. It will help you shape your research question and place your work in context.
  • Clearly Define Your Research Question: A well-defined research question guides your research and keeps your writing focused. It should be clear, specific, and concise, serving as the backbone of your study.
  • Prepare a Detailed Outline: An outline helps organize your thoughts and create a roadmap for your paper. It should include all the sections of your research paper, such as the introduction, methods, results, discussion, and conclusion.
  • Follow the IMRaD Structure: Most biomedical research papers follow the IMRaD format—Introduction, Methods, Results, and Discussion. This structure facilitates the orderly and logical presentation of your research.
  • Use Clear and Concise Language: Biomedical research papers should be written in a clear and concise manner to ensure the reader understands the research’s purpose, methods, and findings. Avoid unnecessary jargon and ensure that complex ideas are explained clearly.
  • Proper Citation and Reference: Always properly cite the sources of information you use in your paper. This not only provides credit where it’s due but also allows your readers to follow your line of research. Be sure to follow the citation style specified in your assignment.
  • Discuss the Implications: In your discussion, go beyond simply restating your findings. Discuss the implications of your results, how they relate to previous research, and how they contribute to the existing knowledge in the field.
  • Proofread and Edit: Never underestimate the importance of proofreading and editing. Checking for grammatical errors, punctuation mistakes, and clarity of language can enhance the readability of your paper.
  • Seek Feedback Before Final Submission: Before submitting your paper, seek feedback from peers, mentors, or supervisors. Fresh eyes can often spot unclear sections or errors that you may have missed.

Writing a biomedical research paper is a significant academic endeavor, but remember that every researcher started where you are right now. It’s a process that requires time, effort, and patience. Remember, the ultimate goal is not just to get a good grade but also to contribute to the vast body of biomedical knowledge.

iResearchNet’s Custom Writing Services

Navigating the process of writing a biomedical research paper can be complex and demanding. At iResearchNet, we understand these challenges and strive to offer a stress-free, seamless solution to support your academic journey. With our roster of highly skilled, degree-holding writers, we are committed to delivering top-quality, custom-written papers tailored specifically to your individual requirements and desired outcomes.

  • Expert Degree-Holding Writers: iResearchNet takes pride in our team of knowledgeable and experienced writers who hold advanced degrees in diverse fields. These writers are not only academic experts but are also keenly in tune with the complex landscape of biomedical research. This breadth and depth of expertise ensure that your paper benefits from a thorough understanding of the topic, resulting in a well-informed, academically credible document.
  • Custom Written Works: We appreciate the unique academic goals and distinct requirements of each student. That’s why iResearchNet specializes in providing custom-written papers. Our aim is to capture your individual academic voice and perspective, blending it with our professional acumen to create a paper that reflects your specific academic needs and aspirations.
  • In-Depth Research: Every paper that we produce is founded on the bedrock of extensive and in-depth research. Our writers are committed to exploring a wide range of credible and reputable sources to enrich your paper with diverse viewpoints and comprehensive information. This dedication to rigorous research ensures that your paper is not only thoroughly informed but also accurately referenced, adding to its academic integrity.
  • Custom Formatting: Academic institutions often require different formatting styles. Be it APA, MLA, Chicago/Turabian, or Harvard, our writers are adept at all these academic formatting styles. We strive to adhere strictly to your specified formatting style, contributing to the polished and professional presentation of your paper.
  • Top Quality: Quality is the cornerstone of our services at iResearchNet. We believe that each paper we craft should demonstrate a high standard of scholarship. Our writers dedicate their skills and effort to ensure every aspect of your paper, from clarity of language to depth of analysis and precision of information, reflects top-quality work.
  • Customized Solutions: Recognizing that each research paper brings a distinct set of challenges and requirements, we offer customized solutions. Our approach is to thoroughly understand your specific needs and shape our writing services accordingly. We ensure that every aspect of your paper, from its overarching structure to the smallest details, aligns with your expectations.
  • Flexible Pricing: We believe that high-quality academic writing services should be accessible. That’s why we offer our top-quality services at competitive prices, striking a careful balance between affordability and excellence. We provide a range of pricing options designed to cater to various budget needs without compromising on the quality of our services.
  • Short Deadlines: Facing a fast-approaching deadline can be nerve-wracking. But with iResearchNet, you need not worry. Our expert writers are skilled at delivering high-quality papers under tight deadlines, even as short as three hours. Despite the time pressure, we ensure that the quality of your paper remains top-notch.
  • Timely Delivery: At iResearchNet, we understand the critical importance of adhering to deadlines in the academic world. We commit to the timely delivery of all orders, ensuring that you are always able to submit your work on time. With our service, you can put aside worries about late submissions.
  • 24/7 Support: Academic queries or concerns can arise at any time, and we are here to assist you around the clock. We have a dedicated support team ready to answer your questions, address your concerns, or simply provide guidance about your project, at any time of the day or night.
  • Absolute Privacy: Your privacy is of utmost importance to us. All personal and financial information you share with us is handled with the highest level of confidentiality and security. Our strict privacy policies ensure that your details remain safe and private.
  • Easy Order Tracking: We believe in providing a seamless experience for our clients. With our user-friendly platform, you can track your order’s progress easily and stay updated on your paper’s status. This feature provides real-time status reports, giving you peace of mind and assurance about the progress of your work.
  • Money Back Guarantee: Your satisfaction is our ultimate goal. We strive to meet your expectations, but if for any reason the final work falls short, we offer a money-back guarantee. This policy is a testament to our confidence in the quality of our services and our commitment to your academic success.

At iResearchNet, we strive to be more than just a writing service provider. We aspire to be a trusted academic partner, providing support and expertise to help you navigate the complexities of writing a biomedical research paper. With our combination of expert knowledge, high commitment to quality, and excellent customer service, we are the ideal choice for all your academic writing needs.

Start Your Journey to Academic Success with iResearchNet Today!

Are you ready to elevate your academic journey and achieve your full potential? At iResearchNet, we are prepared to be your trusted partner every step of the way. Our team of expert writers, experienced in biomedical research, are ready and waiting to transform your academic vision into a top-quality, custom-written biomedical research paper that meets all your requirements.

Navigating the complexities of biomedical research can be overwhelming, but with iResearchNet, you don’t have to do it alone. Our dedicated team of professionals is committed to taking the stress out of the writing process, allowing you to focus on your learning. Imagine the relief of knowing your assignment is in the hands of experienced, degree-holding experts who are passionate about your success. With our meticulous research and thorough understanding of biomedical topics, we guarantee a paper that not only meets but surpasses your expectations.

From in-depth research and custom formatting to a final product that reflects the highest academic standards, iResearchNet provides a comprehensive solution for your academic needs. And it’s not just about delivering excellent papers. Our commitment extends to providing an exceptional experience marked by 24/7 support, absolute privacy, and a transparent order tracking system.

The clock is ticking, and your academic success is just a click away. Don’t let the opportunity to excel in your biomedical research paper slip through your fingers. Reach out to us today to start your journey with iResearchNet. You bring your academic aspirations, and we’ll bring our expertise and commitment. Together, let’s make your academic dreams come true.

ORDER HIGH QUALITY CUSTOM PAPER

biotech research paper topics

  • Google Meet
  • Mobile Dialer

biotech research paper topics

Resent Search

image

Management Assignment Writing

image

Technical Assignment Writing

image

Finance Assignment Writing

image

Medical Nursing Writing

image

Resume Writing

image

Civil engineering writing

image

Mathematics and Statistics Projects

image

CV Writing Service

image

Essay Writing Service

image

Online Dissertation Help

image

Thesis Writing Help

image

RESEARCH PAPER WRITING SERVICE

image

Case Study Writing Service

image

Electrical Engineering Assignment Help

image

IT Assignment Help

image

Mechanical Engineering Assignment Help

image

Homework Writing Help

image

Science Assignment Writing

image

Arts Architecture Assignment Help

image

Chemical Engineering Assignment Help

image

Computer Network Assignment Help

image

Arts Assignment Help

image

Coursework Writing Help

image

Custom Paper Writing Services

image

Personal Statement Writing

image

Biotechnology Assignment Help

image

C Programming Assignment Help

image

MBA Assignment Help

image

English Essay Writing

image

MATLAB Assignment Help

image

Narrative Writing Help

image

Report Writing Help

image

Get Top Quality Assignment Assistance

image

Online Exam Help

image

Macroeconomics Homework Help

image

Change Management Assignment Help

image

Operation management Assignment Help

image

Strategy Assignment Help

image

Human Resource Management Assignment Help

image

Psychology Assignment Writing Help

image

Algebra Homework Help

image

Best Assignment Writing Tips

image

Statistics Homework Help

image

CDR Writing Services

image

TAFE Assignment Help

image

Auditing Assignment Help

image

Literature Essay Help

image

Online University Assignment Writing

image

Economics Assignment Help

image

Programming Language Assignment Help

image

Political Science Assignment Help

image

Marketing Assignment Help

image

Project Management Assignment Help

image

Geography Assignment Help

image

Do My Assignment For Me

image

Business Ethics Assignment Help

image

Pricing Strategy Assignment Help

image

The Best Taxation Assignment Help

image

Finance Planning Assignment Help

image

Solve My Accounting Paper Online

image

Market Analysis Assignment

image

4p Marketing Assignment Help

image

Corporate Strategy Assignment Help

image

Project Risk Management Assignment Help

image

Environmental Law Assignment Help

image

History Assignment Help

image

Geometry Assignment Help

image

Physics Assignment Help

image

Clinical Reasoning Cycle

image

Forex Assignment Help

image

Python Assignment Help

image

Behavioural Finance Assignment Help

image

PHP Assignment Help

image

Social Science Assignment Help

image

Capital Budgeting Assignment Help

image

Trigonometry Assignment Help

image

Java Programming Assignment Help

image

Corporate Finance Planning Help

image

Sports Science Assignment Help

image

Accounting For Financial Statements Assignment Help

image

Robotics Assignment Help

image

Cost Accounting Assignment Help

image

Business Accounting Assignment Help

image

Activity Based Accounting Assignment Help

image

Econometrics Assignment Help

image

Managerial Accounting Assignment Help

image

R Studio Assignment Help

image

Cookery Assignment Help

image

Solidworks assignment Help

image

UML Diagram Assignment Help

image

Data Flow Diagram Assignment Help

image

Employment Law Assignment Help

image

Calculus Assignment Help

image

Arithmetic Assignment Help

image

Write My Assignment

image

Business Intelligence Assignment Help

image

Database Assignment Help

image

Fluid Mechanics Assignment Help

image

Web Design Assignment Help

image

Student Assignment Help

image

Online CPM Homework Help

image

Chemistry Assignment Help

image

Biology Assignment Help

image

Corporate Governance Law Assignment Help

image

Auto CAD Assignment Help

image

Public Relations Assignment Help

image

Bioinformatics Assignment Help

image

Engineering Assignment Help

image

Computer Science Assignment Help

image

C++ Programming Assignment Help

image

Aerospace Engineering Assignment Help

image

Agroecology Assignment Help

image

Finance Assignment Help

image

Conflict Management Assignment Help

image

Paleontology Assignment Help

image

Commercial Law Assignment Help

image

Criminal Law Assignment Help

image

Anthropology Assignment Help

image

Biochemistry Assignment Help

image

Get the best cheap assignment Help

image

Online Pharmacology Course Help

image

Urgent Assignment Help

image

Paying For Assignment Help

image

HND Assignment Help

image

Legitimate Essay Writing Help

image

Best Online Proofreading Services

image

Need Help With Your Academic Assignment

image

Assignment Writing Help In Canada

image

Assignment Writing Help In UAE

image

Online Assignment Writing Help in the USA

image

Assignment Writing Help In Australia

image

Assignment Writing Help In the UK

image

Scholarship Essay Writing Help

image

University of Huddersfield Assignment Help

image

Ph.D. Assignment Writing Help

image

Law Assignment Writing Help

image

Website Design and Development Assignment Help

image

University of Greenwich Assignment Assistance in the UK

biotech research paper topics

Research Proposal Topics In Biotechnology

Biotechnology is a fascinating subject that blends biology and technology and provides a huge chance to develop new ideas. However, before pursuing a career in this field, a person needs to complete a number of studies and have a thorough knowledge of the matter. When we begin our career must we conduct study to discover some innovative innovations that could benefit people around the world. Biotechnology is one of a variety of sciences of life, including pharmacy. Students who are pursuing graduation, post-graduation or PhD must complete the research work and compose their thesis to earn the satisfaction in their education. When choosing a subject for biotechnology-related research it is important to choose one that is likely to inspire us. Based on our passion and personal preferences, the subject to study may differ.

What is Biotechnology?

In its most basic sense, biotechnology is the science of biology that enables technology Biotechnology harnesses the power of the biomolecular and cellular processes to create products and technologies that enhance our lives and the wellbeing of the planet. Biotechnology has been utilizing microorganisms' biological processes for over six thousand years to create useful food items like cheese and bread as well as to keep dairy products in good condition.

Modern biotechnology has created breakthrough products and technology to treat rare and debilitating illnesses help reduce our footprint on the environment and feed hungry people, consume less energy and use less and provide safer, more clean and productive industrial production processes.

Introduction

Biotechnology is credited with groundbreaking advancements in technological development and development of products to create sustainable and cleaner world. This is in large part due to biotechnology that we've made progress toward the creation of more efficient industrial manufacturing bases. Additionally, it assists in the creation of greener energy, feeding more hungry people and not leaving a large environmental footprint, and helping humanity fight rare and fatal diseases.

Our writing services for assignments within the field of biotechnology covers all kinds of subjects that are designed to test and validate the skills of students prior to awarding their certificates. We assist students to successfully complete their course in all kinds of biotechnology-related courses. This includes biological sciences for medical use (red) and eco-biotechnology (green) marine biotechnology (blue) and industrial biotechnology (white).

What do we hope to gain from all these Initiatives?

Our primary goal in preparing this list of the top 100 biotechnology assignment subjects is to aid students in deciding on effective time management techniques. We've witnessed a large amount of cases where when looking for online help with assignments with the topic, examining sources of information, and citing the correct order of reference students find themselves stuck at various points. In the majority of cases, students have difficulty even to get through their dilemma of choosing a topic. This is why we contribute in our effort to help make the process easier for students in biotech quickly and efficiently. Our students are able to save time and energy in order to help them make use of the time they are given to write the assignment with the most appropriate topics.

Let's look at some of the newest areas of biotechnology research and the related areas.

  • Renewable Energy Technology Management Promoting Village
  • Molasses is a molasses-based ingredient that can be used to produce and the treatment of its effluent
  • Different ways to evapotranspirate
  • Scattering Parameters of Circulator Bio-Technology
  • Renewable Energy Technology Management Promoting Village.

Structural Biology of Infectious Diseases

A variety of studies are being conducted into the techniques used by pathogens in order to infect humans and other species and for designing strategies for countering the disease. The main areas that are available to study by biotech researchers include:

  • inlA from Listeria monocytogenes when combined with E-cadherin from humans.
  • InlC in Listeria monocytogenes that are multipart with human Tuba.
  • Phospholipase PatA of Legionella pnemophila.
  • The inactivation process of mammalian TLR2 by inhibiting antibody.
  • There are many proteins that come originate from Mycobacterium tuberculosis.

Plant Biotechnology

Another significant area for research in biotechnology for plants is to study the genetic causes of the plant's responses to scarcity and salinity, which have a significant impact on yields of the crop and food.

  • Recognition and classification of genes that influence the responses of plants to drought and salinity.
  • A component of small-signing molecules in plants' responses to salinity and drought.
  • Genetic enhancement of plant sensitivity salinity and drought.

Pharmacogenetics

It's also a significant area for conducting research in biotechnology. One of the most important reasons for doing so could be the identification of various genetic factors that cause differences in drug effectiveness and susceptibility for adverse reactions. Some of the subjects which can be studied are,

  • Pharmacogenomics of Drug Transporters
  • Pharmacogenomics of Metformin's response to type II mellitus
  • The pharmacogenomics behind anti-hypertensive medicines
  • The Pharmacogenomics of anti-cancer drugs

Forensic DNA

A further area of research in biotechnology research is the study of the genetic diversity of humans for its applications in criminal justice. Some of the topics that could be studied include,

  • Y-chromosome Forensic Kit, Development of commercial prototype.
  • Genetic testing of Indels in African populations.
  • The Y-chromosome genotyping process is used for African populations.
  • Study of paternal and maternal ancestry of mixed communities in South Africa.
  • The study of the local diversity in genetics using highly mutating Y-STRs and Indels.
  • South African Innocence Project: The study of DNA extracted from historical crime scene.
  • Nanotechnology is a new technology that can be applied to DNA genotyping.
  • Nanotechnology methods to isolate DNA.

Food Biotechnology

It is possible to conduct research in order to create innovative methods and processes in the fields of food processing and water. The most fascinating topics include:

  • A molecular-based technology that allows for the rapid identification and detection of foodborne pathogens in intricate food chains.
  • The effects of conventional and modern processing techniques on the bacteria that are associated with Aspalathus lineriasis.
  • DNA-based identification of species of animals that are present in meat products that are sold raw.
  • The phage assay and PCR are used to detect and limit the spread of foodborne pathogens.
  • Retention and elimination of pathogenic, heat-resistant and other microorganisms that are treated by UV-C.
  • Analysis of an F1 generation of the cross Bon Rouge x Packham's Triumph by Simple Sequence Repeat (SSR/microsatellite).
  • The identification of heavy metal tolerant and sensitive genotypes
  • Identification of genes that are involved in tolerance to heavy metals
  • The isolation of novel growth-promoting bacteria that can help crops cope with heavy metal stress . Identification of proteins that signal lipids to increase the tolerance of plants to stress from heavy metals

This topic includes high-resolution protein expression profiling for the investigation of proteome profiles. The following are a few of the most fascinating topics:

  • The identification and profile of stress-responsive proteins that respond to abiotic stress in Arabidopsis Thalian and Sorghum bicolor.
  • Analyzing sugar biosynthesis-related proteins in Sorghum bicolor, and study of their roles in drought stress tolerance
  • Evaluation of the viability and long-term sustainability of Sweet Sorghum for bioethanol (and other by-products) production in South Africa
  • In the direction of developing an environmentally sustainable, low-tech hypoallergenic latex Agroprocessing System designed specifically especially for South African small-holder farmers.

Bioinformatics

This is an additional aspect of biotechnology research. The current trend is to discover new methods to combat cancer. Bioinformatics may help identify proteins and genes as well as their role in the fight against cancer. Check out some of the areas that are suitable to study.

  • Prediction of anticancer peptides with HIMMER and the the support vector machine.
  • The identification and verification of innovative therapeutic antimicrobial peptides for Human Immunodeficiency Virus In the lab and molecular method.
  • The identification of biomarkers that are associated with cancer of the ovary using an molecular and in-silico method.
  • Biomarkers identified in breast cancer, as possible therapeutic and diagnostic agents with a combination of molecular and in-silico approaches.
  • The identification of MiRNA's as biomarkers for screening of cancerous prostates in the early stages an in-silico and molecular method
  • Identification of putatively identified the genes present in breast cancer tissues as biomarkers for early detection of lobular and ductal breast cancers.
  • Examining the significance of Retinoblastoma Binding Protein 6 (RBBP6) in the regulation of the cancer-related protein Y-Box Binding Protein 1 (YB-1).
  • Examining the role played by Retinoblastoma Binding Protein 6 (RBBP6) in the regulation of the cancer suppressor p53 through Mouse Double Minute 2 (MDM2).
  • Structural analysis of the anti-oxidant properties of the 1-Cys peroxiredoxin Prx2 found in the plant that resurrects itself Xerophyta viscosa.

Nanotechnology

This is a fascinating aspect of biotechnology, which can be used to identify effective tools to address the most serious health issues.

  • Evaluation of cancer-specific peptides to determine their applications for the detection of cancer.
  • The development of a quantum dot-based detection systems for breast cancer.
  • The creation of targeted Nano-constructs for in vivo imaging as well as the treatment of tumors.
  • Novel quinone compounds are being tested as anti-cancer medicines.
  • Embedelin is delivered to malignant cells in a specific manner.
  • The anti-cancer activities of Tulbaghia Violacea extracts were studied biochemically .
  • Novel organic compounds are screened for their anti-cancer potential.
  • To treat HIV, nanotechnology-based therapeutic techniques are being developed.

Top 100 Biotechnology Research Proposal Topics to Consider in 2022

We've prepared a list of the top 100 most suggested dissertation topics, which were compiled by our experts in research. They've made sure to offer a an extensive list of topics that cover all aspects of the topic. We hope that this list will meet all of the requirements for assistance with your dissertation . Let us start with our list of subjects, one at a time each one

  • Achieving effective control of renewable power technologies to help the village
  • The production of ethanol through the aid of molasses and the treatment of its effluent
  • Different approaches and aspects of Evapotranspiration
  • Its scattering parameter is biotechnology circulator
  • The inactivation of mammalian TLR2 via an inhibiting antibody
  • The number of proteins produced by Mycobacterium tuberculosis
  • Recognition and classification of genes that shape the responses of plants to drought and salinity.
  • The small sign molecules that are involved in the response that plants have to the effects of salinity as well as drought
  • Genetic improvement of the plant's sensitivity to drought and saltiness
  • The pharmacogenomics of drug transporters
  • The anti-cancer drugs' pharmacogenomics are based on pharmac
  • The pharmacogenomics of antihypertensive medications
  • Indels genotyping of African populations
  • Genomics of the Y-chromosomes of African populations
  • The profiling of DNA extracted from historical crime scenes Consider the implications of South African Innocence Project
  • Nanotechnology-related methods for DNA isolation
  • Nanotechnology applications in the context of DNA genotyping
  • Recognizing the heavy metals that are tolerant with genotypes that are sensitive.
  • Genetic characteristics that play a role within the procedure of gaining tolerance to metals
  • The animal's DNA is authenticated by the species by the commercial production of raw meat products
  • The use of molecular-based technology is in the sense of detection and identification of foodborne pathogens in complicated food systems
  • Assessing the effectiveness of cancer-specific peptides that are suitable for efficient implementations in the area of diagnosis and treatment for cancer
  • Quantum Dot-based detection system is being developed in relation to a positive breast cancer diagnosis
  • It is targeted delivery of the embelin to cancerous cells
  • Exploring the potential of novel quinone compounds as anti-cancer agents
  • Treatment strategies for treating HIV in addition to the significance of nanotechnology the treatment of HIV.
  • A review of the medicinal value the antioxidants found in nature.
  • An in-depth examination of the structure of COVID spike proteins
  • A review of the immune response to the stem therapy using cells
  • CRISPR-Cas9 technology to aid in the process of editing the genome
  • Tissue engineering and delivery of drugs through the application of Chitosan
  • Evaluation of beneficial effects of cancer vaccines
  • Use of PacBio sequencing in relation to genome assembly of model organisms
  • Examining the connection between mRNA suppression and its effect on the growth of stem cells
  • Biomimicry is a method of identifying of cancer cells
  • The sub-classification and characterisation of the Yellow enzymes
  • The process of producing food products that are hypoallergenic and fermented.
  • The production of hypoallergenic milk
  • The purification process for the thermostable phytase
  • Bioconversion of the cellulose produce products that are significant for industry
  • The investigation of the gut microbiota of the model organisms
  • The use of fungal enzymes for the manufacture of chemical glue
  • A look at those inhibitors to exocellulase as well as endocellulase
  • Examine the value of microorganisms to aid in the recovery of gas from shale.
  • Examine the thorough analysis of the method of natural decomposition
  • Examine ways to recycle bio-wastes
  • Improved bio-remediation in the case of oil spills
  • The process of gold biosorption is accomplished with the aid of the cyanobacterium
  • A healthy equilibrium between the biotic and the abiotic elements by using biotechnological devices
  • The measurement of the mercury level in fish by means of markers
  • Exploring the biotechnological capabilities from Jellyfish related microbiomes Jellyfish related microbiome
  • What is the role of marine fungi to aid in attempts to break down plastics and polymers?
  • Examine the biotechnological possibilities that can be extracted of dinoflagellates
  • Removing endosulfan residues using the use of biotechnology the agriculture sector
  • The creation of the ELISA method for the detection of crop virus
  • Enhancing the quality of drinking water by the aid of the E.coli consortium
  • The characterisation of E.coli is its isolation from the feces of Zoo animals
  • Enhancing the resistance of crops to the attack of insects
  • The reduction of the expenditure on agriculture by using efficient bio-tools
  • Are there the most efficient ways to stop erosion of soils using the help of biotechnology-based tools?
  • What can biotechnology do to assist in increasing the levels of vitamin content in GM food items?
  • Enhancing the distribution of pesticides by using biotechnology
  • Comparing the biofortification of folate in various types of corpses
  • Examine the photovoltaic-based generation of ocean-based crop
  • What is the best way to use nanotechnology will improve the efficiency of the agriculture sector?
  • Analyzing the mechanisms that govern resistance to water stresses in models of plants
  • Production and testing of human immune boosters within the test organisms
  • Comparing genomic analysis to the usefulness of tools intended for bioinformatics
  • The Arabinogalactan protein sequence and its value in the field of computational methods
  • Analyzing and interpreting gut microbiota from model organisms
  • Different methods of purification of proteins A comparative analysis
  • The diagnosis of microbes and their function in micro-arrays of oligonucleotide oligonu
  • The use of diverse techniques within the biomedical research field that includes micro-arrays technology
  • The use of microbial community to produce the greenhouse effect
  • Evaluation of the computational properties of various proteins that are derived from the marine microbiota
  • E.coli gene mapping through the help of different tools for microbial research
  • Intensifying the strains of Cyanobacterium the aid of gene sequencing
  • Assessment and description by computation of crystallized proteins that are found in the natural world.
  • MTERF protein and the use of it to end the process of transcription that occurs in mitochondrial DNA inside algae
  • Reverse column chromatography in phase and its use in the separation of proteins
  • The study of the various proteins that are found within Mycobacterium leprae.
  • A review of the methods that are ideal to ensure the success of cloning RNA
  • Examine the most common mistakes of biotechnology in conserving the ecology and natural environment.
  • Is there a method to ensure that the medicinal plants are free of insects? Discuss
  • What are the dangers caused by pest resistant animals on birds and human beings?
  • What are the many areas of biotechnology that remain unexplored in terms research?
  • What's the future of biotechnology in the medical field?
  • Recombinant DNA technology to develop of new medical treatments
  • What is the reason for the type of bacteria that is used to make vaccines with the aid of biotechnology?
  • How can biotechnology aid in the development of new medicines that are resistant to the mutations of viruses and bacteria?
  • Is there a long-term treatment for cancer that is available in the near term? Biotechnology could play an essential role in this?
  • What is the reason it is so important that students remember the DNA codes in biotechnology?
  • How can we create hybrid seeds with assistance of biotechnology?
  • How can one create resistant plants to pests and what are the benefits of these seeds in final yields in agriculture?
  • Examine bio-magnification and its effects on the ecology
  • What are the causes to the reasons ecologists do not approve the use of pest-resistant seed, even though they are in application in agriculture?
  • How has biotechnology influenced the lives of farmers in developing countries?
  • Biotechnology can be used to boost the yield of plant species?
  • Examine the role played by biotechnology to increase the production of the seasonal crops
  • Are there any adverse side effects associated with pharmaceutical drugs when they are manufactured with biotechnological techniques? Let the issue with real-world examples

We attempted to cover the essential topics needed for research work. Other topics are available that could be picked based on our interests, the facilities available and resources available for the research, as well as resources and time limits.

We have reached the end of this list. We feel it was beneficial in satisfying the selection criteria. Furthermore, the inclusion of biotechnology-related assignment themes was done in such a manner that they may help us with the requirements of assignment writing kinds and forms. The themes listed above can meet our demands for topic selection linked to aid with case studies and essay assistance, research paper writing help , or thesis writing help .

Frequently asked questions

What are some biotechnology research proposal topics .

Some of biotechnology topics are:

What are the research areas in biotechnology ?

What is best topic for research in biotechnology , what are some examples of biotechnology , what is the scope of biotechnology , what is master in biotechnology , is biotechnology a high paying job , is biotechnology hard to study , is biotechnology a good career , which agecy is best for biotechnology assignment help , can a biotechnologist become a doctor , is biotechnology better than microbiology , is b tech biotechnology a good course .

biotech research paper topics

Top 10 Best Universities Ranking list in India 2022

Generic Conventions: Assignment Help

Generic Conventions: Assignment Help Services

Research Paper Topics For Medical | AHECounselling

Research Paper Topics For Medical

Top 5 Resources for Writing Excellent Academic Assignmentsb

Top 5 Resources for Writing Excellent Academic Assignments

How to Write a Literature Review for Academic Purposes

How to Write a Literature Review for Academic Purposes

biotech research paper topics

Tips for Writing a killer introduction to your assignment

How To Write A Compelling Conclusion For Your University Assignment

How To Write A Compelling Conclusion For Your University Assignment

Social Science, research ideas

Research Papers Topics For Social Science

Best 150 New Research Paper Ideas For Students

Best 150 New Research Paper Ideas For Students

7 Best Plagiarism Checkers for Students And Teachers in 2024

7 Best Plagiarism Checkers for Students And Teachers in 2024

Enquiry form.

  • Criminal Law Assignment Help
  • Taxation Law Assignment Help
  • Business Law Assignment Help
  • Contract Law Assignment Help
  • Civil Law Assignment Help
  • Land Law Assignment Help
  • Tort Law Assignment Help
  • Company Law Assignment Help
  • Employment Law Assignment Help
  • Environmental Law Assignment Help
  • Commercial Law Assignment Help
  • Criminology Assignment Help
  • Corporate Governance Law Assignment Help
  • Constitutional Law Assignment Help
  • Operations Assignment Help
  • HRM Assignment Help
  • Marketing Management Assignment Help
  • 4 Ps Of Marketing Assignment Help
  • Strategic Marketing Assignment Help
  • Project Management Assignment Help
  • Strategic Management Assignment Help
  • Risk Management Assignment Help
  • Organisational Behaviour Assignment Help
  • Business Development Assignment Help
  • Change Management Assignment Help
  • Consumer Behavior Assignment Help
  • Operations Management Assignment Help
  • Public Relations Assignment Help
  • Supply Chain Management Assignment Help
  • Conflict Management Assignment Help
  • Environmental Assignment Help
  • Public Policy Assignment Help
  • Childcare Assignment Help
  • Business Report Writing Help
  • Pricing Strategy Assignment Help
  • Corporate Strategy Assignment Help
  • Managerial Accounting Assignment Help
  • Capital Budgeting Assignment Help
  • Accounting Assignment Help
  • Cost Accounting Assignment Help
  • Financial Accounting Assignment Help
  • Corporate Finance Assignment Help
  • Behavioural Finance Assignment Help
  • Financial Ethics Assignment Help
  • Financial Management Assignment Help
  • Financial Reporting Assignment Help
  • Forensic Accounting Assignment Help
  • International Finance Assignment Help
  • Cost-Benefit Analysis Assignment Help
  • Financial Engineering Assignment Help
  • Financial Markets Assignment Help
  • Private Equity and Venture Capital Assignment Help
  • Psychology Assignment Help
  • Sociology Assignment Help
  • English Assignment Help
  • Political Science Assignment Help
  • Arts Assignment Help
  • Civil Engineering Assignment Help
  • Computer Science And Engineering Assignment Help
  • Economics Assignment Help
  • Climate Change Economics Assignment Help
  • Java Assignment Help
  • MATLAB Assignment Help
  • Database Assignment Help
  • PHP Assignment Help
  • UML Diagram Assignment Help
  • Web Designing Assignment Help
  • Networking Assignment Help
  • Chemistry Assignment Help
  • Biology Assignment Help
  • Nursing Assignment Help
  • Biotechnology Assignment Help
  • Mathematics Assignment Help
  • Assignment Assistance
  • Assignment Help Online
  • Cheap Assignment Help
  • Assignment Paper Help
  • Solve My Assignment
  • Do My Assignment
  • Get Assignment Help
  • Urgent Assignment Help
  • Write My Assignment
  • Assignment Provider
  • Quality Assignment Help
  • Make My Assignment
  • Online Assignment Writers
  • Paid Assignment Help
  • Top Assignment Help
  • Writing Assignment For University
  • Buy Assignment Online
  • All Assignment Help
  • Academic Assignment Help
  • Assignment Help Tutors
  • Student Assignment Help
  • Custom Assignment Writing Service
  • English Essay Help
  • Law Essay Help
  • Management Essay Help
  • MBA Essay Help
  • History Essay Help
  • Literature Essay Help
  • Online Essay Help
  • Plagiarism Free Essay
  • Write My Essay
  • Admission Essay Help
  • TOK Essay Help
  • Best Essay Writing Service
  • Essay Assignment Help
  • Essay Writers Online
  • Professional Essay Writers
  • Academic Writing
  • Homework Help
  • Dissertation Help
  • University Assignment Help
  • College Assignment Help
  • Research Paper Writing Help
  • Case Study Help
  • Coursework Help
  • Thesis Help
  • PowerPoint Presentation Service
  • Job Openings

Top 100 Biotechnology Dissertation Topics for the Year 2021

  • September 14, 2021 September 14, 2021

Biotechnology is one of the major streams of science where students request for our reliable and time-tested assignment help from prestigious universities, colleges, and institutes around the globe. The subject helps us understand how we can effectively utilise biological systems, living organisms, or their parts to develop or create different types of products.

GET HELP INSTANTLY Place your order to get best assignment help

(since 2006)

Apart from genetics, bioengineering and research, the subject offers decent career options in industrial sectors like textiles, food, agriculture, pharmaceutical and animal husbandry.

biotech research paper topics

Introduction

Modern biotechnology has been credited with breakthrough innovations in the field of product development and technologies to help us develop a cleaner and more sustainable world. It is primarily because of biotechnology; we have progressed towards the development of more efficient industrial manufacturing base. Besides, it is helping in the production of cleaner energy, feed more hungry people without leaving much of our environmental footprint, and help mankind combat rare and debilitating diseases.

Our assignment writing services in the field of biotechnology cover all types of subject topics that test and vindicate the skill sets of the students before awarding them with their respective degrees. We help students successfully pass their syllabus in all forms of biotechnology courses. These include medical biotechnology (red), environmental biotechnology (green), marine biotechnology (blue) and industrial biotechnology (white).

What are We Expecting to Gain from All these Efforts?

Our sole objective of preparing this marathon list of top 100 biotechnology assignment topics is to help students decide upon effective time management skills. We have seen an immense numbers of cases where while exploring online assignment help related to topic selection, exploration of information sources, and citing them in correct reference order, students get stuck at different stages. Amongst them, most of the students find it difficult even to pass their topic selection dilemma. That is where we contribute to our efforts to make things easy for the biotech students right in one go. We help our students save time and energy, so that they can prudently use the assigned time to prepare the content of their assignment around the best topics.

Are you keen to master your dissertation writing skills in just a couple of weeks? Read the below amazing article and do not miss the golden opportunity to learn from the experts absolutely for free!

Must read: wish to master dissertation skills in 2 weeks learn from the experts here, top 100 biotechnology dissertation topics trending in the year 2021.

We have prepared the list of top 100 most recommended dissertation topics prepared by our research experts. They have ensured to provide a comprehensive list of topics that are covering all the dimensions of the subject. We fully hope that the list would cover all your dissertation help requirements. So, let us begin with the prepared list of topics one by one –

  • Effective management of renewable energy technology to promote a village
  • The production of ethanol with the help of molasses as well as its effluent treatment
  • Different methods and aspects of evapotranspiration
  • The scattering parameters of the circulator biotechnology
  • The inactivation of the mammalian TLR2 through an inhibiting antibody
  • Number of proteins through Mycobacterium tuberculosis
  • The recognition and classification of the genes shaping the plant responses to salinity and drought
  • The segment of small signing molecules in the responses of plants to salinity and drought
  • Genetic improvement of the plant lenience to salinity and drought
  • Pharmacogenomics of the drug transporters
  • Pharmacogenomics of the anti-cancer drugs
  • Pharmacogenomics of the anti-hypertensive drugs
  • Indels genotyping of the African populations
  • Y-chromosome genotyping of the African populations
  • Profiling of the DNA isolated from the historical crime scenes: Discuss in terms of South African Innocence Project
  • Nanotechnology methods in terms of DNA isolation
  • Nanotechnology applications in terms of DNA genotyping
  • Recognizing heavy metal tolerant along with sensitive genotypes
  • Features of genes that participate in the process of heavy metal tolerance
  • DNA authentication of the animal species through raw meat products reared commercially
  • Molecular based technology in terms of rapid identification and detection of the food borne pathogens with respect to complex food systems
  • Making an assessment of cancer specific peptides for successful implementations in the field of cancer diagnosis
  • Quantum dot-based detection system development with respect to successful breast cancer diagnosis
  • Targeted delivery of the embelin to the cancer cells
  • Accessing the role of novel quinone compounds to perform as anti-cancer agents
  • Therapeutic approaches to the treatment of HIV and the role of nanotechnology in it
  • An assessment of the medicinal value of the natural antioxidants
  • An indepth study of the structure of the COVID spike proteins
  • An assessment of the immune response of the stem cell therapy
  • The use of CRISPR-Cas9 technology for the purpose of genome editing
  • Tissue engineering and the drug delivery with the application of Chitosan
  • An assessment of therapeutic effects of the cancer vaccines
  • Utilization of PacBio sequencing with respect to genome assembly of the model organisms
  • Studying the relationship between the mRNA suppression and its impact on the expansion of the stem cell
  • Utilizing biomimicry for the identification of the tumor cells
  • The sub-classification and characterization of the Yellow enzymes
  • The production of the hypoallergenic fermented foods
  • The production of the hypoallergenic milk
  • The purification process of the thermostable phytase
  • Bioconversion of the cellulose to successfully yield the products that are industrially significant
  • The examination of the gut microbiota in the model organisms
  • The utilization of the fungal enzymes in the production of chemical glue
  • An examination of the inhibitors of exocellulase and endocellulase
  • Discuss the utility of microorganisms in the recovery of shale gas
  • Discuss the in-depth study of the procedure of natural decomposition
  • Discuss the process of recycling the bio-wastes
  • Enhanced bio-remediation for the cases of oil spills
  • The process of gold biosorption with the help of cyanobacterium
  • Maintaining a healthy balance between the biotic and the abiotic factors with the help of biotechnological tools
  • Labeling the level of mercury in fish with the help of markers
  • Exploring out the biotechnological potential of the Jellyfish related microbiome
  • What is the potential of marine fungi in the efforts to degrade polymers and plastics?
  • Discuss the biotechnological potential that one can fetch out of dinoflagellates
  • Tracing out endosulfan residues with the application of biotechnology in the field of agricultural products
  • The development of the ELISA technique for the identification of crop viruses
  • Boosting the quality of drinking water with the help of E.coli consortium
  • The characterization of E.coli isolation from the feces of the zoo animals
  • Improving the resistance of the crops against the invasion of the insects
  • Reducing the spending on agriculture with the help of effective bio-tools
  • What are the most effective steps to reduce soil erosion with the utility of tools derived from biotechnology?
  • How biotechnology can help in the improvement the levels of vitamin in GM foods?
  • Improving the delivery of pesticide with the help of biotechnology
  • Comparing folate biofortification in different kinds of corps
  • Discuss the photovoltaic-based production of the ocean crops
  • How the application of nanotechnology to improve the activities of the agricultural sector?
  • Examining the mechanisms of water stress tolerance in the model plants
  • Testing and production of the human immune boosters in the experimental organisms
  • Comparing genomic analysis with the utility of tools meant for bioinformatics
  • Arabinogalactan protein sequencing and its utility in computational methods
  • Evaluating and interpreting gut microbiota in the model organisms
  • Different techniques of protein purification: A comparative analysis
  • Diagnosing microbes and their role in o ligonucleotide micro-arrays
  • The application of different techniques in the field of biomedical research comprising micro-arrays technology
  • The application of microbial consortium in producing the greenhouse effect
  • Computational assessment of various proteins accessed from marine microbiota
  • E.coli gene mapping with the application of various microbial tools
  • Enhancing the strains of cyanobacterium with the help of gene sequencing
  • Computational assessment and description of the crystallized proteins present in nature
  • mTERF protein and its application to terminate the transcription of mitochondrial DNA in algae
  • Reverse phase column chromatography and its application in separating proteins
  • The study of various proteins present within Mycobacterium leprae
  • An assessment of the strategies that are ideally suitable for successful cloning of RNA
  • Discuss the common failures of biotechnology in saving the ecology and the environment
  • Is there a way to make the medicinal plants free of pests? Discuss
  • What are the harms imposed by pest resistant corps on humans and birds?
  • What are the diverse fields of biotechnology that still remain unexplored in terms of research?
  • What is the future of biotechnology in the field of medicine?
  • The application of recombinant DNA technology in the invention of new forms of medicine
  • Why is the strain of bacteria used to create vaccine with the help of biotechnology?
  • How biotechnology can help in the creation of medicines that are more resistant towards the mutating forms of viruses and bacteria?
  • Can there be a permanent cure for cancer in the future? How biotechnology can play a decisive role in it?
  • Why it is critical for the students to effectively remember the DNA coding in the field of biotechnology?
  • How one can make hybrid seeds with the help from biotechnology?
  • How one can generate pest resistant seeds and what are their benefits in the end yielding in agriculture?
  • Discuss bio-magnification and its impact on ecology
  • What are the reasons due to which the ecologists disapprove the usage of pest resistant seeds, despite their usage in the field of agriculture?
  • How biotechnology positively influenced the lives of farmers in the developing economies?
  • How biotechnology functions to increase in yield of the crop plants?
  • Discuss the role of biotechnology in boosting the output of seasonal crops
  • Are there adverse effects of medicines in pharmacology when manufactured with biotechnological principles? Throw some light on the question with real-life cases

Now with that, we have reached the end of this list and fully hope that it would have served the purpose of topic selection requirements. Besides, the inclusion of biotechnology assignment topics has been done in such a manner that it can help us out with our needs related to different other assignment writing formats as well. For instance, all our topic selection requirements related to case study help , essay help , research paper writing help or thesis help can also be met with the topics in the above-mentioned list.

Biotechnology Assignment Help

Are you facing the heat of topic selection dilemma in your biology assignment homework? Check the below link to rely upon the topic list that the most respected experts recommend.

Must read: top 100 biology dissertation topics for the year 2021.

Biotechnology is a subject that is meant to offer a plethora of research prospects. A successful completion of course in one or more streams of biotechnology will ensure job placement opportunities in different research and development companies dedicated to the field. The objective of recommending this list is to help you make the right topic selection in less amount of time and dedicate more time to assignment research, and adequate content writing. After all, going an extra mile in terms of efforts will ensure that the final submission is good enough to help you earn the grades that can help you beat the competition.

If you have liked our recommended list of 100 biotechnology topics, then we invite you to reach our paid assignment help to unburden all the biotech assignment worries onto the shoulders of the most trusted professional assignment writers. Reach biotechnology assignment help to learn how the most trusted online homework help agency has helped thousands of biotechnology students to skyrocket to better career opportunities in the last 15 years. It is the time to step-in and reap the benefits from what the best in business has to offer!

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Current research in biotechnology: Exploring the biotech forefront

Profile image of Andy Wai Kan Yeung

2019, Current Research in Biotechnology

Biotechnology is an evolving research field that covers a broad range of topics. Here we aimed to evaluate the latest research literature, to identify prominent research themes, major contributors in terms of institutions, countries/re-gions, and journals. The Web of Science Core Collection online database was searched to retrieve biotechnology articles published since 2017. In total, 12,351 publications were identified and analyzed. Over 8500 institutions contributed to these biotechnology publications, with the top 5 most productive ones scattered over France, China, the United States of America, Spain, and Brazil. Over 140 countries/regions contributed to the biotechnology research literature, led by the United States of America, China, Germany, Brazil, and India. Journal of Bioscience and Bioengineer-ing was the most productive journal in terms of number of publications. Metabolic engineering was among the most prevalent biotechnology study themes, and Escherichia coli and Saccharomyces cerevisiae were frequently used in biotechnology investigations, including the biosynthesis of useful biomolecules, such as myo-inositol (vitamin B8), mono-terpenes, adipic acid, astaxanthin, and ethanol. Nanoparticles and nanotechnology were identified too as emerging biotechnology research themes of great significance. Biotechnology continues to evolve and will remain a major driver of societal innovation and development.

Related Papers

ASHOK PANDEY

biotech research paper topics

Applied Biochemistry and Microbiology - APPL BIOCHEM MICROBIOL-ENGL T

Abdullahi Hassan

Current Developments in Biotechnology and Bioengineering

saumya khare

ADURI PRAKASH REDDY

Biolife 2(3):905-916

Shabir Wani , Saroj Sah

Scientists worldwide are continuing to discover unique properties of every day materials at the submicrometer scale. This size domain is better known as nanometer domain and technology concerned with this is known as nanotechnology that involves working with particles at nano level. One of the most important emerging fields of science in this centur y is Nanotechnology. It deals with designing, construction, investigation and utilization of systems at the nanoscale. The interface between nanotechnology and biotechnology is nanobiotechnology, which exploits nanotechnology and biotechnology to analyse a nd create nanobiosystems to meet a wide variety of challenges and develops a wide range of applications. Biotechnology gives us a way to understand biological system and to utilize our knowledge for industrial manufacturing. Nanotechnology has great potent ial and by the help of its application it can enhance the quality of life through in various fields like agriculture and the food system. Around the world, it has become the future of any nation. Important tools used in nanotechnology and application of nanobiotechnology in agriculture sector will be discussed in this review.

Revista Peruana de Biología

Gretty K Villena Chavez

Rahul J Desale

Anand Kumar Thakur

Jay D Keasling

theppanya charoenrat

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Scripown publication, New Delhi

Arulmozhi Ranjan

Yusuf Deeni , MICHELE MAFFIA

Hwa A. Lim, "Biotechnology - Past, present and future", Symbiosis, October 2004, pp. 31-34.

Hwa A . Lim

World Journal of Pharmaceutical Sciences

Nanobiotechnology in Food: Concepts, Applications and Perspectives

Zahra Sayyar

Journal of the National Science Foundation of Sri Lanka

Ranjan Ramasamy

Rashid Amin

Martin Philbert

melissa Tielke

book chapter

Abrar Hussain

Biotechnology Journal

Mohamad Faizal Ibrahim

Wei-Seng Ho

BioEnergy Research

International Journal of Current Microbiology and Applied Sciences

Ranjeet Verma

Stylianos Anestis

Food Technology and Biotechnology

Karl Friedl

G.Ali Mansoori

anchal srivastava

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • Privacy Policy

Biotechnology Research Topics

What is biotechnology.

What first pops up in your mind when you hear the term Biotechnology? Maybe you started thinking of GMOs ( Genetically Modified Organisms ), transgenic cloning, and other gene therapies. Of course, you got it right, but the horizon of biotechnology is not so tiny. It has a wide range of applications in the industry that can improve our living standards. Let us first understand the term Biotechnology. In simple words, it is the utilization of living organisms or their components in the industrial sector to generate various products that are beneficial for the human race. We have been utilizing microorganisms for more than thousands of years to develop useful commodities such as cheese, bread, and various other dairy-related products. Even its implementation in the medical sector has led to the manufacturing of different vaccines, biofuel, chitosan-coated dressing for wounds, brewing, and even age-defying products. As the biotechnology scope is expanding day by day, researchers felt an urge to classify main areas and types of biotechnology depending on some commonalities and their ultimate objectives:

Red Biotechnology- involves the utilization of organisms for upgrading the quality of health care departments and aiding the body’s immune system to fight against various diseases. Examples include; the development of different vaccines, antibiotics, medicinal drugs, and various molecular techniques.

White Biotechnology- mainly comprises industrial biotechnology and involves the utilization of microorganisms and their by-products for manufacturing more eco-friendly and energy-efficient products. White biotechnology examples include the production of biofuel, Lactic acid, and 3- hydroxy propionic acid.

Yellow Biotechnology- it is related to the use of Biotech in the food production area, i.e., making bread, cheese, beer, and wine by the fermentation process.

Grey Biotechnology – mainly deals with the removal of pollutants from the environment by using various microorganisms and plants. For example., different strains of bacteria can be used for the degradation of kitchen waste into compost.

  Green Biotechnology- concentrates on the agriculture sector and focuses on generating new varieties of plants and producing good quality bio-pesticides & bio-fertilizers.

  Blue Biotechnology – it mainly refers to the utilization of aquatic or marine organisms to create goods that can aid various industrial processes, such as using Chitosan (sugar derived from the shells of crabs and shrimps) for the dressing of wounds.

Biotechnology Topics for Research Paper

In the modern world, students are apprehending the benefits of Biotech and want to study it with more enthusiasm and interest. They are actively opting for this subject and compiling their research work to contribute their efforts in the field of Biotechnology. They are indulged in exhaustive research to find the best topic for the research purpose. So, here are a few potential research topics in the domain of Biotechnology:

Red Biotechnology Research Topics:

  • Studying the relationship between the intake of iron-folic acid during pregnancy and its impact on the overall health of the fetus.
  • Pharmacogenomics of antimicrobial drugs.
  • Identifying the biomarkers linked with breast cancer.
  • Study the medicinal value of natural antioxidants.
  • Study the structure of coronavirus spike proteins.
  • Studying the immune response of stem cell therapy.
  • Utilization of CRISPR-Cas9 technology for genome editing.
  • Application of Chitosan in tissue engineering and drug delivery.
  • Study the therapeutic effects of cancer vaccines.
  • Utilizing PacBio sequencing for the genome assembly of model organisms.
  • Study the relationship between the suppression of mRNA and its effect on stem cell expansion.
  • Study the application of nanoprobes in molecular imaging.
  • Incorporating biomimicry for the detection of tumor cells.
  • Study of immune-based therapies in treating COVID-19.
  • Regulation of immune response using the cellular and molecular mechanism
  • Microchip implantation – a vaccine for coronavirus.
  • The Use of CRISPR for Human Genome Editing

Yellow Biotechnology Research Topics:

  • Production of hypoallergenic milk.
  • Production of hypoallergenic fermented foods.
  • Yellow enzymes subclassification and their characterization.

White Biotechnology Research Topics:

  • Bioconversion of cellulose to yield industrially important products.
  • Studying the inhibitors of endocellulase and exocellulase.
  • Fungal enzymes used in the production of chemical glue.
  • Mechanism of fungal enzymes in the biodegradation of lignin.
  • Studying gut microbiota in model organisms.
  • Study the lactic acid bacteria for probiotic potential.
  • Purification of thermostable phytase.
  • Mesophilic and Thermophilic aerobic and anaerobic bacteria from compost.
  • Study the dietary strategies for the prophylaxis of Alzheimer’s and dementia.
  • Examine the positive effects of probiotics and prebiotics on the nervous system.

Examples of Grey Biotechnology Research Topics:

  • Production of sustainable, low-cost, and environmentally friendly microbial biocement and biogrouts.
  • Use of microorganisms for the recovery of shale gas.
  • Studying the procedure of natural decomposition.
  • Treatment of grey water in a multilayer reactor with passive aeration.
  • Excavation of various anaerobic microbes using grey biotechnology.
  • Improving the biodegradation of micro-plastics using GMOs.
  • Removal of pollutants from the land.
  • Use of microbes to excavate the hidden metals from earth.
  • Managing the processes of environmental biotechnology using microbial ecology.
  • In situ product removal techniques using the process of biocatalysis.
  • Production of biodegradable, disposable plastic for the storage of food.
  • Plastic waste decomposition management.  
  • Maintaining a healthy equilibrium between biotic and abiotic factors using biotechnological tools.
  • Recycling of biowastes.
  • Restoration of biodiversity using tools.
  • Improved Recombinant DNA technology for bioremediation.
  • Gold biosorption using cyanobacterium.
  • Improved bioremediation of oil spills.
  • Biodegradation of oil and natural gas.

Blue Biotechnology Research Ideas:

  • Various bioactive compounds derived from marine sponges.
  • Controlling the emerged biological contaminant using the sustainable future.
  • Protecting the environment using grey, blue, and green biotechnology.  
  • Exploring marine biota which survives the extreme conditions.
  • Studying the patterns of Arctic and Antarctic microbiota for the benefits of humans.
  • Excavation of bioactive molecules from extreme environmental conditions.
  • Studying the potential of sponge-associated microbes.
  • Mercury labeling in the fish using markers.
  • Sea urchin repelling ocean macroalgal afforestation.
  • Microbial detection techniques to find sea animals.
  • Studying the mechanisms in deep-sea hydrothermal vent bacteria.
  • Production of antibiotics using marine fungi.
  • Exploring the biotechnological potential of Jellyfish associated microbiome.  
  • Exploring the potential of marine fungi in degrading plastics and polymers.
  • Expl oring the biotechnological potential of dinoflagellates.

Green Biotechnology Research Paper Topics:

  • Detection of endosulfan residues using biotechnology in agricultural products.
  • Development of ELISA technique for the detection of crops’ viruses.
  • Use of Green Fluorescent Protein (GFP) as a cytoplasmic folding reporter.
  • E.coli as an all-rounder in biotechnological studies.
  • Improving the water quality for drinking using E.coli consortium.
  • E.coli characterization isolated from the zoo animals’ feces.  
  • Biocatalysis and agricultural biotechnology in situ studies.
  • Improving the insect resistance of the crops.
  • Improving the nutritional value and longer shelf life of GM crops.
  • Improving the qualities of hydroponic GM plants.
  • Reducing the cost of agriculture using bio-tools.
  • Production of heavy cotton balls in agricultural biotechnology using in situ technique.
  • Steps to minimize soil erosion using the tools of biotechnology.
  • Enhancement of vitamin levels in GM Foods .
  • Improving pesticide delivery using biotechnology.
  • Comparison of folate biofortification of different crops.
  • Photovoltaic-based production of crops in the ocean.
  • Application of nanotechnology in the agricultural sector.
  • Study the water stress tolerance mechanisms in model plants.

Combination and Analytical Topics:

  • Sequencing of infectious microbes using molecular probes.
  • Production and testing of human immune boosters in experimental organisms.
  • Comparative genomic analysis using the tools of bioinformatics.
  • Arabinogalactan protein sequencing using computational methods.
  • Comparative analysis of different protein purification techniques.
  • Oligonucleotide microarrays used in the diagnosis of the microbes.
  • Uses of different techniques in biomedical research including microarray technology.
  • Microbial consortium used to produce the greenhouse effect.
  • Computational analysis of different proteins obtained from marine microbiota.
  • Gene mapping of E.coli using different microbial tools.
  • Computational analysis and characterization of the crystallized proteins in nature.
  • Improving the strains of cyanobacterium using gene sequencing.
  • mTERF protein used to terminate the mitochondrial DNA transcription in algae.  
  • Reverse phase column chromatography used to separate proteins.
  • Study of different proteins present in Mycobacterium leprae.
  • Study the strategies best suitable for cloning RNA
  • Study the application of nanocarriers for the gene expression in model plants.
  • Exploring thermotolerant microorganisms for their biotechnological potential.

Biotechnology is full of research prospects. Various research and development companies are working day and night to achieve the required outcomes for different branches of biotechnology. If you find these list of Biotechnology research topics helpful, you may visit our blog for further assistance.

Also look for Biology Research Topics

Related Posts

How does product photography helps boosts online sales, elevate your style game with double cross necklace, transform your space with timeless appeal of stained..., learn a new language with this new trending..., top safety measures for small vehicle owners on..., balancing free speech and user safety in the..., the ultimate guide to e-commerce website design, unable to work after an injury, securing fair treatment after workplace injuries, anton kreil – trading masterclass course: an over-review.

I find this helpful.

I found this very helpful

I found it helpful

Leave a Comment Cancel Reply

Please enter an answer in digits:

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

animals-logo

Article Menu

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Base characteristics, preservation methods, and assessment of the genetic diversity of autochthonous breeds of cattle, sheep and pigs in serbia: a review.

biotech research paper topics

Simple Summary

1. introduction, 2. origin, size of the population, and phenotypic characteristics of animal genetic resources, 2.1. cattle, 3. conservation strategies and new biotechnology methods of upgrading animal genetic resources, 3.1. in situ conservation, 3.2. ex situ conservation, 3.3. gene banks, 3.4. application of dna markers, 3.5. genome editing and cloning, 4. application of dna analysis for the identification, preservation, and improvement of animal genetic resources in serbia, 4.1. cattle, 5. advanced methods of analyzing animal genomes, 6. conclusions, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Maksimović, D.; Đerčan, B.; Bubalo-Živković, M. Geography of Serbia ; Institute for Textbooks: Belgrade, Serbia, 2023; pp. 1–277. (In Serbian) [ Google Scholar ]
  • Draft Rural Development Strategy 2010–2013 ; Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia: Belgrade, Serbia, 2010; pp. 1–73. (In Serbian)
  • Ivanković, A.; Šubara, G.; Bittante, G.; Šuran, E.; Amalfitano, N.; Aladrović, J.; Kelava Ugarković, N.; Pađen, L.; Pećina, M.; Konjačić, M. Potential of Endangered Local Donkey Breeds in Meat and Milk Production. Animals 2023 , 29 , 13. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Latinović, D.; Đedović, R.; Trifunović, G.; Skalicki, Z.; Perišić, P. Possibilities of Genetic and Phenotypic Improvement of Milk Yield Characteristics of Autochthonous and Noble Breeds of Cattle. Chapter in the Monograph: Autochthonous White Cheeses in Salamura ; University of Belgrade, Faculty of Agriculture: Belgrade, Serbia, 2006; pp. 1–26. ISBN 86-7834-008-8. (In Serbian) [ Google Scholar ]
  • Gaspardy, A. Reality of Mitogenome Investigation in Preservation of Native Domestic Sheep Breeds. Available online: https://www.intechopen.com/chapters/74909 (accessed on 8 February 2023).
  • Mihailova, Y.; Rusanov, K.; Rusanova, M.; Vassileva, P.; Atanassov, I.; Nikolov, V.; Todorovska, G.E. Genetic Diversity and Population Structure of Bulgarian Autochthonous Sheep Breeds Revealed by Microsatellite Analysis. Animals 2023 , 13 , 1878. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Drobnjak, D.; Urošević, M.; Matarugić, D. Sustainable cultivation systems for preservation of autochthonous breeds. Agroknowledge J. 2013 , 14 , 143–151. [ Google Scholar ] [ CrossRef ]
  • Medjugorac, I.; Veit-Kensch, C.E.; Ramljak, J.; Brka, M.; Markovic, B.; Stojanovic, S.; Bytyqi, H.; Kochoski, L.; Kume, K.; Grunenfelder, H.; et al. Conservation priorities of genetic diversity in domesticated metapopulations: A study in taurine cattle breeds. Ecol. Evol. 2011 , 1 , 408–420. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Đedović, R.; Trifunović, G. Animal genetic resources the function of sustainable agricultural production. In Proceedings of the International Scientific Meeting “Sustainable Agriculture and Rural Development in Terms of the Republic of Serbia Strategic Goals Realization within the Danube region”, Tara, Serbia, 6–8 December 2012; pp. 519–538. [ Google Scholar ]
  • Hoda, A.; Hykaj, G.; Sena, L.; Delia, E. Population structure in three Albanian sheep breeds using 36 single nucleotide polymorphisms. Acta Agric. Scand. (Sect. A) 2011 , 61 , 12–20. [ Google Scholar ] [ CrossRef ]
  • Djokic, M.; Drzaic, I.; Shihabi, M.; Markovic, B.; Cubric-Curik, V. Genomic Diversity Analyses of Some Indigenous Montenegrin Sheep Populations. Diversity 2023 , 15 , 640. [ Google Scholar ] [ CrossRef ]
  • Mitić, N.; Ferčej, J.; Zeremski, D.; Lazarević, L. Cattle Breeding ; Institute for Textbooks: Belgrade, Serbia, 1987; pp. 1–668. (In Serbian) [ Google Scholar ]
  • Bunevski, G.; Nikitovic, J.; Saltamarski, Z. Conservation of the genetic material of Macedonian Busha cattle. Acta Agric. Serbica 2016 , 21 , 17–24. [ Google Scholar ] [ CrossRef ]
  • Gantner, V.; Brka, M.; Gregić, M.; Bunevski, G.; Turalija, A.; Kučević, D. Characteristics and possible utilisation of Busha population in different Balkan countries. Acta Fytotechn Zootech. 2018 , 21 , 155–158. [ Google Scholar ] [ CrossRef ]
  • FAO: Domestic Animal Diversity Information System (DAD-IS). Available online: https://www.fao.org/dad-is/data/en/ (accessed on 12 January 2024).
  • Popović, N.; Beskorovajni, R.; Trailović, R.; Jovanović, R.; Berisavljević, B. The national and global significance of busha conservation based on the results of the examination of racial characteristics. In Proceedings of the Fourth Regional Symposium: Protection of Agrobiodiversity and Preservation of Autochthonous Breeds of Domestic Animals, Dimitrovgrad, Serbia, 29 June–1 July 2023; pp. 60–61. [ Google Scholar ]
  • Medugorac, I.; Medugorac, A.; Russ, I.; Veit-Kensch, C.E.; Tabe-let, P.; Lunty, B.; Mix, H.M.; Forster, M. Genetic diversity of European cattle breeds highlights the conservation value of traditional unselected breeds with high effective population size. Mol. Ecol. 2009 , 18 , 3394. [ Google Scholar ] [ CrossRef ]
  • Faukal, K. Available online: http://www.agrobiodiversity.net/balkan/pogradec/pdf/submitted_papers/busha_breed.pdf (accessed on 10 October 2023).
  • Leka, F. Available online: http://www.ideassonline.org/public/pdf/BrochureIllyricCattle.pdf (accessed on 10 October 2023).
  • Bunevski, G. Busha cattle in the R. of Macedonia. In Proceedings of the International Workshop on Shorthorn Cattle of the Balkan, Sarajevo, Bosnia and Herzegovina, 18–19 April 2013; pp. 15–21. [ Google Scholar ]
  • Certificate for Designation of Geographical Origin for Staroplaninski Kackavalj. Available online: https://www.zis.gov.rs/wp-content/uploads/G-55-Staroplaninski-kackavalj.pdf (accessed on 11 February 2023). (In Serbian)
  • Vakanjac, S.; Nedić, S.; Magaš, V.; Blagojević, J.; Maletić, M. The possible use of cryopreservation of reproductive material of autochthonous animals aimed for conservation of animal genetic resources. In Proceedings of the Fourth Regional Symposium: Protection of Agrobiodiversity and Preservation of Autochthonous Breeds of Domestic Animals, Dimitrovgrad, Serbia, 29 June–1 July 2023; pp. 75–84. [ Google Scholar ]
  • Ivanković, A.; Paprika, S.; Ramljak, J.; Dovč, P.; Konjačić, M. Mitochondrial DNA-based genetic evaluation of autochthonous cattle breeds in Croatia. Czech J. Anim. Sci. 2014 , 59 , 519–552. [ Google Scholar ] [ CrossRef ]
  • Ramljak, J.; Bunevski, G.; Bytyqi, H.; Marković, B.; Brka, M.; Ivanković, A.; Kume, K.; Stojanović, S.; Nikolov, V.; Simčič, M.; et al. Conservation of a domestic metapopulation structured into related and partly admixed strains. Mol. Ecol. 2018 , 27 , 1633–1650. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Malinova, R.; Nikolov, V. Study on the reproductive capacity of bulls of the autochthonous Rhodope Shorthorn cattle breed. J. Cent. Eur. Agric. 2015 , 16 , 47–53. [ Google Scholar ] [ CrossRef ]
  • Dzabirski, V.; Porču, K.; Bunevski, G.; Kocevski, D.; Vukovik, V.; Kiprijanovska, H.; Uzunov, A. Livestock biodiversity protection in the Republic of North Macedonia. In Proceedings of the Protection of Agrobiodiversity and Preservation of Autochtonous Domestic Animal Breeds, Dimitrovgrad, Serbia, 25–27 June 2021; pp. 21–23. [ Google Scholar ]
  • Berisha, K.; Bytyçi, H.; Mednyanszky, Z.; Kiss, E.; Simon-Sarkadi, L. Amino acid and biogenic amine composition of Busha cattle milk. Acta Aliment. 2021 , 50 , 144–152. [ Google Scholar ] [ CrossRef ]
  • Petrović, M.P.; Petrović, M.M.; Ružić-Muslić, D.; Caro-Petrović, V.; Maksimović, N.; Ilić, Z.; Vučković, S. Opportunities and challenges for sustainable sheep production in Serbia. Biotechnol. Anim. Husb. 2011 , 27 , 463–472. [ Google Scholar ] [ CrossRef ]
  • Zeder, M.A. Domestication and Early Agriculture in the Mediterranean Basin: Origins, Diffusion and Impact. Proc. Natl. Acad. Sci. USA 2008 , 105 , 11597–11604. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Trailović, R.; Savić, M. Preservation of autochthonous animal breeds through sustainable production and ambiental protection. In Proceedings of the Protection of Agrobiodiversity and Preservation of Autochtonous Domestic Animal Breeds, Dimitrovgrad, Serbia, 25–27 June 2021; pp. 169–180. [ Google Scholar ]
  • Ciani, E.; Mastrangelo, S.; Mastrangelo, S.; Da Silva, A.; Marroni, F.; Ferenčaković, M.; Ajmone-Marsan, P.; Baird, H.; Barbato, M.; Colli, L.; et al. On the Origin of European Sheep as Revealed by the Diversity of the Balkan Breeds and by Optimizing Population-Genetic Analysis Tools. Genet. Sel. Evol. 2020 , 52 , 25. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Stojanović, S. Rare Breeds and Varieties of the Balkan, Atlas, Waltraud Kugler ; Monitoring Institute for Rare Breeds and Seeds in Europe: Stuttgart, Germany, 2009; pp. 1–128. (In Serbian) [ Google Scholar ]
  • Stojanović, S. The state of animal genetic resources in the Republic of Serbia, Protection of agrobiodiversity and preservation of indigenous breeds of domestic animals. In Proceedings of the Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia, Belgrade, Serbia; 2018; pp. 5–7. (In Serbian). [ Google Scholar ]
  • Mitić, N. Sheep Farming ; Institute for Textbooks: Belgrade, Serbia, 1984; pp. 1–508. (In Serbian) [ Google Scholar ]
  • Mekić, C.; Latinović, D.; Grubić, G. Breeding, Reproduction, Selection and Nutrition of Sheep, Monograph ; University of Beograd, Faculty of Agriculture: Belgrade, Serbia, 2007. (In Serbian) [ Google Scholar ]
  • Popović-Vranješ, A.; Graca, F.; Bauman, F. Report on the Protection of the Name of Origin of Sjenica Sheep’s Cheese. 2012. Available online: https://www.zis.gov.rs/wp-content/uploads/G-59-Sjenicki-ovciji-sir.pdf (accessed on 10 February 2023). (In Serbian)
  • Certificate for Designation of Geographical Origin for Sjenica Lamb. Available online: https://www.zis.gov.rs/wp-content/uploads/G-60-Sjenicka-jagnjetina.pdf (accessed on 10 February 2023). (In Serbian)
  • Certificate for Designation of Geographical Origin for Sjenica Stelja. Available online: https://www.zis.gov.rs/wp-content/uploads/ELABORAT-sjeni_ka-stelja-Finalna-verzija.pdf (accessed on 10 February 2023). (In Serbian)
  • Certificate for Designation of Geographical Origin for Svrljig Kackavalj. Available online: https://www.zis.gov.rs/wp-content/uploads/G-48-Svrljiski-kackavalj.pdf (accessed on 10 February 2023). (In Serbian)
  • Certificate for Designation of Geographical Origin for Svrljig Belmuz. Available online: https://www.zis.gov.rs/wp-content/uploads/G-53-Svrljiski-belmuz_compressed.pdf (accessed on 10 February 2023). (In Serbian)
  • Savić, M.; Trailović, R.; Petrujkić, B.; Beckei, Ž.; Dimitrijević, B.; Dimitrijević, V. Determining the value of Vlashko-Vitoroga Zackel sheep for the conservation process. Acta Vet. 2013 , 63 , 621–629. [ Google Scholar ] [ CrossRef ]
  • Cekić, B.; Ružić-Muslić, D.; Maksimović, N.; Caro-Petrović, V.; Ćosić, I.; Stamenić, T.; Anreeva, M. Importance, productivity and potentials of local Serbian sheep breeds. In Proceedings of the 13th International Symposium Modern Trends in Livestock Production, Belgrade, Serbia, 6–8 October 2021; pp. 500–508. [ Google Scholar ]
  • Belić, J.; Gajić, Ž.; Isakov, D.; Ognjanović, A.; Šterk, V. Modern Pig Farming. Economic Review ; University of Beograd, Faculty of Agriculture: Belgrade, Serbia, 1972; pp. 1–621. (In Serbian) [ Google Scholar ]
  • Zsolnai, A.; Radnóczy, L.; Fésüs, L.; Anton, I. Do Mangulica pigs of different colours really belong to different breeds? Arch. Tierzucht. 2006 , 49 , 477–483. [ Google Scholar ] [ CrossRef ]
  • Radović, Č.; Savić, R.; Petrović, M.; Gogić, M.; Lukić, M.; Radojković, D.; Batorek-Lukač, N. Mangalitsa (Swallow-Belly Mangalitsa) Pig. In European Local Pig Breeds-Diversity and Performance. A Study of Project TREASURE ; IntechOpen: London, UK, 2019. [ Google Scholar ] [ CrossRef ]
  • Institute of Animal Husbandry Belgrade-Zemun. The Main Breeding Program for Indigenous Pig Breeds 2020–2024 ; Institute of Animal Husbandry Belgrade-Zemun: Dobanovci, Serbia, 2019. (In Serbian) [ Google Scholar ]
  • Official Gazette of RS. Rulebook on the List of Genetic Reserves of Domestic Animals, the Method of Preserving the Genetic Reserves of Domestic Animals, as Well as the List of Autochthonous Breeds of Domestic Animals and Endangered Autochthonous Breeds ; Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia: Belgrade, Serbia, 2017; Volume 33. (In Serbian) [ Google Scholar ]
  • Živković, R.; Kostić, J. A contribution to the insight of black and colorful pigs (Moravka and Resavka). Arch. Agric. Sci. 1952 , 5 , 23–46. (In Serbian) [ Google Scholar ]
  • Petrović, M.; Mijatović, M.; Radojković, D.; Radović, Č.; Marinkov, G.; Stojanović, L. Genetic resources in pig breeding: Moravka. Biotechnol. Anim. Husb. 2007 , 23 , 1–11. [ Google Scholar ] [ CrossRef ]
  • Petrović, M.; Mijatović, M.; Radović, Č.; Radojković, D.; Josipović, S. Genetic resources in pig breeding–carcass qualitytraits of breeds Moravka and Mangalitsa. Biotechnol. Anim. Husb. 2007 , 23 , 421–429. [ Google Scholar ] [ CrossRef ]
  • Savić, R.; Radović, Č.; Petrović, M.; Gogić, M.; Radojković, D.; Batorek-Lukač, N. Moravka Pig. In European Local Pig Breeds-Diversity and Performance. A Study of Project TREASURE ; IntechOpen: London, UK, 2019. [ Google Scholar ] [ CrossRef ]
  • Radović, Č.; Petrović, M.; Katanić, N.; Radojković, D.; Savić, R.; Gogić, M.; Terzić, N. Fertility traits of autochthonous breeds of Mangalitsa, Moravka and Resavka. Biotechnol. Anim. Husb. 2017 , 33 , 389–396. [ Google Scholar ] [ CrossRef ]
  • Lalević, D. The influence of the method and time of feeding on the fertility of sows. In Proceedings of the Faculty of Agriculture, Belgrade, Serbia, 15 November 1954; pp. 1–7. (In Serbian). [ Google Scholar ]
  • Radović, Č.; Petrović, M.; Savić, R.; Gogić, M.; Lukić, M.; Stanišić, N.; Čandek-Potokar, M. Growth Potential of Serbian Local Pig Breeds Mangalitsa and Moravka. Agric. Conspec. Sci. 2017 , 82 , 217–220, ISSN 1331-7768 e-ISSN 1331-7776. [ Google Scholar ]
  • Petrović, M.; Radović, Č.; Mijatović, M.; Radojković, D.; Stanišić, N.; Parunović, N. The share of tissues in pig carcass sides of autochthonous breeds depending on the body mass and sex. Biotechnol. Anim. Husb. 2011 , 27 , 561–569. [ Google Scholar ] [ CrossRef ]
  • Petrović, M.; Waehner, M.; Radović, Č.; Radojković, D.; Parunovic, N.; Savić, R.; Brkić, N. Fatty acid profile of m. longissimus dorsi of Mangalitsa and Moravka pig breeds. Arch. Fur Tierz.–Arch. Anim. Breed. 2014 , 57 , 17. [ Google Scholar ] [ CrossRef ]
  • WHO/FAO Diet, Nutrition and the Prevention of Chronic Diseases. WHO Technical Report Series 916, Report of a Joint WHO/FAO Consultation, World Health Organization and Food and Agriculture Organization of the United Nations, Geneva. 2003. Available online: https://www.who.int/publications/i/item/924120916X (accessed on 30 October 2023).
  • Magoro, A.M.; Mtileni, B.; Hadebe, K.; Zwane, A. Assessment of Genetic Diversity and Conservation in South African Indigenous Goat Ecotypes: A Review. Animals 2022 , 12 , 3353. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Cao, J.; Baumung, R.; Boettcher, P.; Scherf, B.; Besbes, B.; Leroy, G. Monitoring and Progress in the Implementation of the Global Plan of Action on Animal Genetic Resources. Sustainability 2021 , 13 , 775. [ Google Scholar ] [ CrossRef ]
  • Paiva, S.R.; McManus, C.M.; Blackburn, H. Conservation of animal genetic resources—A new tact. Livest. Sci. 2016 , 193 , 32–38. [ Google Scholar ] [ CrossRef ]
  • Dovenski, T.; Petkov, V.; Trojačanec, P.; Nikolovski, M.; Atanasov, B.; Popovska Perčinić, F.; Dovenska, M.; Dimitrievski, Z.; Džabirski, V. Our experiences in the ex-situ conservation process of indigenous breeds of domestic animals using assisted reproduction tehnologies (ART). In Proceedings of the Fourth Regional Symposium: Protection of Agrobiodiversity and Preservation of Autochthonous Breeds of Domestic Animals, Dimitrovgrad, Serbia, 29 June–1 July 2023; pp. 85–97. [ Google Scholar ]
  • Zegeye, H. In situ and ex situ conservation: Complementary approaches for maintaining biodiversity. Int. J. Environ. Stud. 2017 , 4 , 1–12. [ Google Scholar ]
  • Oseni, O.; Pande, V.; Nailwal, T.K. A Review on Plant Tissue Culture, A Technique for Propagation and Conservation of Endangered Plant Species. Int. J. Curr. Microbiol. Appl. Sci. 2018 , 7 , 3778–3786. [ Google Scholar ] [ CrossRef ]
  • Eusebi, P.G.; Martinez, A.; Cortes, O. Genomic Tools for Effective Conservation of Livestock Breed Diversity. Diversity 2020 , 12 , 8. [ Google Scholar ] [ CrossRef ]
  • Trzcińska, M.; Samiec, M.; Duda, M. Creating Ex Situ Protected Bioreservoirs as a Powerful Strategy for the Reproductive Biotechnology-Mediated Rescue of Threatened Polish Livestock Breeds. Agriculture 2023 , 13 , 1426. [ Google Scholar ] [ CrossRef ]
  • Jeong, P.S.; Sim, B.W.; Park, S.H.; Kim, M.J.; Kang, H.G.; Nanjidsuren, T.; Lee, S.; Song, B.S.; Koo, D.B.; Kim, S.U. Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and autophagic activity. Int. J. Mol. Sci. 2020 , 21 , 4836. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Matoba, S.; Zhang, Y. Somatic cell nuclear transfer reprogramming: Mechanisms and applications. Cell Stem Cell 2018 , 23 , 471–485. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ferré, L.B.; Kjelland, M.E.; Strøbech, L.B.; Hyttel, P.; Mermillod, P.; Ros, P.J. Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal 2020 , 14 , 991–1004. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Mapiye, C.; Chikwanha, O.C.; Chimonyo, M.; Dzama, K. Strategies for Sustainable Use of Indigenous Cattle Genetic Resources in Southern Africa. Diversity 2019 , 11 , 214. [ Google Scholar ] [ CrossRef ]
  • Eugena. Available online: https://eugena-erfp.net/en/ (accessed on 10 February 2024).
  • Blackburn, H.D.; Wilson, C.S.; Krehbiel, B. Conservation and Utilization of Livestock Genetic Diversity in the United States of America through Gene Banking. Diversity 2019 , 11 , 244. [ Google Scholar ] [ CrossRef ]
  • Cinkulov, M.; Popovski, Z.; Porcu, K.; Tanaskovska, B.; Hodzić, A.; Bytyqi, H.; Mehmeti, H.; Margeta, V.; Djedović, R.; Hoda, A.; et al. Genetic diversity and structure of the West Balkan Pramenka sheep types as revealed by microsatellite and mitochondrial DNA analysis. J. Anim. Breed Genet. 2008 , 125 , 417–426, PMID: 1913407. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Delgado, J.V.; Martínez, A.M.; Acosta, A.; Alvarez, L.A.; Armstrong, E.; Camacho, E.; Cañón, J.; Cortés, O.; Dunner, S.; Landi, V. Genetic characterization of Latin-American Creole cattle using microsatellite markers. Anim. Genet. 2012 , 43 , 2–10. [ Google Scholar ] [ CrossRef ]
  • Medugorac, I.; Graf, A.; Grohs, C.; Rothammer, S.; Zagdsuren, Y.; Gladyr, E.; Zinovieva, N.; Barbieri, J.; Seichter, D.; Russ, I.; et al. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat. Genet. 2017 , 49 , 470. [ Google Scholar ] [ CrossRef ]
  • Gligović, N.; Stanojević, D.; Bogdanović, V.; Đedović, R.; Zeljić-Stojiljković, K.; Moravčíková, N.; Kasarda, R.; Mészárosová, M. Application of genomic tools in the characterisation of the Vlaško-Vitoroga strain of Pramenka sheep in the Republic of Serbia. In Proceedings of the Book of Abstracts of the 1st Regional Meeting of the European Federation of Animal Science, Nitra, Slovakia, 26–28 April 2023; p. 37. [ Google Scholar ]
  • Muñoz, M.; Bozzi, R.; García-Casco, J.; Núñez, Y.; Ribani, A.; Franci, O.; García, F.; Škrlep, M.; Schiavo, G.; Bovo, S.; et al. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci. Rep. 2019 , 9 , 13546. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Schiavo, G.; Bovo, S.; Muñoz, M.; Ribani, A.; Alves, E.; Araújo, J.P.; Bozzi, R.; Čandek Potokar, M.; Charneca, R.; Fernandez, A.I.; et al. Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds. Anim. Genet. 2021 , 52 , 155–170. [ Google Scholar ] [ CrossRef ]
  • Dadousis, C.; Muñoz, M.; Óvilo, C.; Fabbri, M.C.; Araújo, J.P.; Bovo, S.; Potokar, M.Č.; Charneca, R.; Crovetti, A.; Gallo, M.; et al. Admixture and breed traceability in European indigenous pig breeds and wild boar using genome-wide SNP data. Sci. Rep. 2022 , 12 , 7346–7356. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Oldenbroek, J.K. The Use of Genomic Information for the Conservation of Animal Genetic Diversity. Animals 2021 , 11 , 3208. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Meuwissen, T.; Hayes, B.; Goddard, M. Accelerating improvement of livestock with genomic selection. Annu. Rev. Anim. Biosci. 2013 , 1 , 221–237. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • He, Z.; Proudfoot, C.; Mileham, A.J.; McLaren, D.G.; Whitelaw, C.B.A.; Lillico, S.G. Highly efficient targeted chromosome deletions using CRISPR/Cas9. Biotechnol. Bioeng. 2015 , 112 , 1060–1064. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Proudfoot, C.; Carlson, D.F.; Huddart, R.; Long, C.R.; Pryor, J.H.; King, T.J. Genome edited sheep and cattle. Transgenic Res. 2015 , 24 , 147–153. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tait-Burkard, C.; Doeschl-Wilson, A.; McGrew, M.J. Livestock 2.0–genome editing for fitter, healthier, and more productive farmed animals. Genome Biol. 2018 , 19 , 204. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Mueller, M.L.; Van Eenennaam, A.L. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric. Biosci. 2022 , 3 , 13. [ Google Scholar ] [ CrossRef ]
  • Tian, X.C.; Kubota, C.; Enright, B.; Yang, X. Cloning animals by somatic cell nuclear transfer–biological factors. Reprod. Biol. Endocrinol. 2003 , 1 , 98. [ Google Scholar ] [ CrossRef ]
  • Nicholas, F.W.; Smith, C. Increased rates of Genetic Changes in Dairy Cattle by Embryo transfer and Splitting. Anim. Prod. 1983 , 36 , 341–353. [ Google Scholar ] [ CrossRef ]
  • Bousquet, D.; Blondin, P. Potential Uses of Cloning in Breeding Schemes: Dairy Catlle. Cloning Stem Cells 2004 , 16 , 190–197. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Stevanov-Pavlović, M.; Dimitrijević, V.; Marić, S.; Radović, D.; Stevanović, J.; Stanimirović, Z. Applicability assessment of a standardized microsatellite marker set in endangered Busha cattle. Slov. Vet. Res. 2015 , 52 , 133–139. [ Google Scholar ]
  • Rogić, B.; Tomić, L.; Važić, B.; Jelić, M.; Jovanović, S.; Savić, M. Assessment of Genetic Diversity of Buša Cattle from Bosnia and Herzegovina Using Microsatellite DNA Markers. Arch. Biol. Sci. 2011 , 63 , 1077–1085. [ Google Scholar ] [ CrossRef ]
  • Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007 , 6 , 25. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Mahmoudi, P.; Rostamzadeh, J.; Rashidi, A.; Zergani, E.; Razmkabir, M. A meta-analysis on association between CSN3 gene variants and milk yield and composition in cattle. Anim. Genet. 2020 , 51 , 369–381. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Azevedo, A.L.; Nascimento, C.S.; Steinberg, R.S.; Carvalho, M.R.; Peixoto, M.G.; Teodoro, R.L. Genetic polymorphism of the kappa-casein gene in Brazilian cattle. Genet. Mol. Res. 2008 , 7 , 623–630. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Djedović, R.; Bogdanović, V.; Perišić, P.; Stanojević, D.; Popović, J.; Brka, M. Relationship between genetic polymorphism of κ- casein and quantitative milk yield traits in cattle breeds and crossbreds in Serbia. Genetika 2015 , 47 , 23–32. [ Google Scholar ] [ CrossRef ]
  • Barbosa, S.B.P.; Araújo, Í.I.M.D.; Martins, M.F.; Silva, E.C.; Jacopini, L.A.; Batista, A.M.V.; Silva, M.V.B. Genetic association of variations in the kappa-casein and β-lactoglobulin genes with milk traits in girolando cattle. Rev. Bras. Saúde Prod. Anim. 2019 , 20 , 1–12. [ Google Scholar ] [ CrossRef ]
  • Marković, M.; Radonjić, D.; Đokić, M.; Kandić, A.; Marković, B. Allelic polymorphism of k-casein gene (csn3) in three Montenegrin cattle breeds. Agric. For. 2021 , 67 , 61–70. [ Google Scholar ] [ CrossRef ]
  • Brka, M.; Hodžic, A.; Reinsch, N.; Zecevic, E.; Dokso, A.; Djedovic, R.; Rukavina, D.; Kapur, L.; Vegara, M.; Šabanovic, M.; et al. Polymorphism of the kappa-casein gene in two Bosnian autochthonous cattle breeds. Arch. Tierz. 2010 , 53 , 277–282. [ Google Scholar ] [ CrossRef ]
  • Maletić, M.; Aleksić, N.; Vejnović, B.; Nikšić, D.; Kulić, M.; Đukić, B.; Ćirković, D. Polymorphism of κ-casein and β-lactoglobulin genes in Busha and Holstein Friesian dairy cows in Serbia. Mljekarstvo 2016 , 66 , 198–205. [ Google Scholar ] [ CrossRef ]
  • Ivanković, A.; Ramljak, J.; Dokso, A.; Kelava, N.; Konjačić, M.; Paprika, S. Genetic polymorphism of β-lactoglobulin and κ-casein in cattle breeds in Croatia. Mljekarstvo 2011 , 61 , 301–308. (In Croatian) [ Google Scholar ]
  • Druml, T.; Salajpal, K.; Dikic, M.; Urosevic, M.; Grilz-Segler, G.; Baumung, R. Genetic diversity, population structure and subdivision of local Balkan pig breeds in Austria, Croatia, Serbia and Bosnia-Herzegovina and its practical value in conservation programs. Genet. Sel. Evol. 2012 , 44 , 5. [ Google Scholar ] [ CrossRef ]
  • Lukić, B.; Ferenčakovć, M.; Šalamon, D.; Čačić, M.; Orehovački, V.; Iacolina, L.; Curik, I.; Cubric-Curik, V. Conservation Genomic Analysis of the Croatian Indigenous Black Slavonian and Turopolje Pig Breeds. Front. Genet. 2020 , 11 , 261. [ Google Scholar ] [ CrossRef ]
  • Edea, Z.; Kim, S.-W.; Lee, K.-T.; Kim, T.H.; Kim, K.-S. Genetic Structure of and evidence for admixture between Western and Korean native pig breeds revealed by single nucleotide polymorphisms. Asian-Australas. J. Anim. Sci. 2014 , 27 , 1263–1269. [ Google Scholar ] [ CrossRef ]
  • SanCristobal, M.; Chevalet, C.; Haley, C.S.; Joosten, R.; Rattink, A.P.; Harlizius, B.; Groenen, M.A.; Amigues, Y.; Boscher, M.Y.; Russell, G.; et al. Genetic diversity within and between European pig breeds using microsatellite markers. Anim. Genet. 2006 , 37 , 189–198. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Stanojević, D.; Djedović, R. Population Genetics and Breeding of Domestic Animals ; University of Belgrade: Belgrade, Serbia, 2022; pp. 1–187. (In Serbian) [ Google Scholar ]
  • Núñez, Y.; Radović, Č.; Savić, R.; García-Casco, J.M.; Čandek-Potokar, M.; Benítez, R.; Radojković, D.; Lukić, M.; Gogić, M.; Muñoz, M.; et al. Muscle Transcriptome Analysis Reveals Molecular Pathways Related to Oxidative Phosphorylation, Antioxidant Defense, Fatness and Growth in Mangalitsa and Moravka Pigs. Animals 2021 , 11 , 844. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ribani, A.; Utzeri, V.J.; Geraci, C.; Tinarelli, S.; Djan, M.; Velicković, N.; Doneva, R.; Dall’Olio, S.; Nanni Costa, L.; Schiavo, G.; et al. Signatures of de-domestication in autochthonous pig breeds and of domestication in wild boar populations from MC1R and NR6A1 allele distribution. Anim. Genet. 2019 , 50 , 166–171. [ Google Scholar ] [ CrossRef ]
  • Fontanesi, L.; Scotti, E.; Gallo, M.; Nanni Costa, L.; Dall’Olio, S. Authentication of “mono-breed” pork products: Identification of a coat colour gene marker in Cinta Senese pigs useful to this purpose. Livest. Sci. 2016 , 184 , 71–77. [ Google Scholar ] [ CrossRef ]
  • Martin, J.; Schackwitz, W.; Lipzen, A. Genomic Sequence Variation Analysis by Resequencing. Methods Mol. Biol. 2018 , 1775 , 229–239. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Benjelloun, B.; Boyer, F.; Streeter, I.; Zamani, W.; Engelen, S.; Alberti, A.; Alberto, F.J.; BenBati, M.; Ibnelbachyr, M.; Chentouf, M.; et al. An evaluation of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity. Mol. Ecol. Resour. 2019 , 19 , 1497–1515. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Meuwissen, T.; Goddard, M. Accurate Prediction of Genetic Values for Complex Traits by Whole Genome Resequencing. Genetics 2010 , 185 , 623–631. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Primers 2012 , 1 , 59. [ Google Scholar ] [ CrossRef ]
  • Hatzikotoulas, K.; Gilly, A.; Zeggini, E. Using population isolates in genetic association studies. Brief. Funct. Genom. 2014 , 13 , 371–377. [ Google Scholar ] [ CrossRef ]
  • Chheda, H.; Palta, P.; Pirinen, M.; McCarthy, S.; Walter, K.; Koskinen, S.; Salomaa, V.; Daly, M.; Durbin, R.; Palotie, A. Whole-genome view of the consequences of a population bottleneck using genome sequences from Finland and United Kingdom. Eur. J. Hum. Genet. 2017 , 25 , 477–484. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Local BreedBushaReferences
Year
20042023
Population maximum 10003000[ ]
Breeding males10403
Breeding females901796
N *36.001316.58
Animal productsMilk, meat[ , , , ]
Product certificationNational certificate with designation of geographical origin for Stara Planina Kashkaval cheese[ ]
Production systemExtensive, semi-intensive[ ]
Type of conservationIn situ and ex situ (gene bank)[ ]
TraitsValuesReferences
MalesFemales
Height at the withers (cm)≥120105–115[ ]
12090[ ]
Body mass (kg)245–301150[ ]
350–400135–264[ ]
330–350200–250[ ]
300–350250[ ]
Weight of calves at birth (kg)18–2014–16[ ]
Daily gain (kg)0.2–0.6[ ]
Sexual maturity (months)1820–25[ ]
Age at first calving (months)35[ ]
Milk yield in lactation (kg)800–1500[ ]
Fat content (%)4–6[ ]
3.62–4.04[ ]
Protein content (%)3.72[ ]
Dry matter content (%)13.47[ ]
Local Breed-PramenkaSjenica Pramenka StrainSvrljig Pramenka StrainVlach-Vitohorn Pramenka StrainReferences
Year200420232004202320042023[ ]
Population maximum50,000300,00050,00035,000/2000
Breeding males0655901193/42
Breeding females0217,855031,666/1096
N *0.0025,469.190.004598.74/161.80
Animal productsMeat, milk, wool[ , ]
Product
certification
National certificate with designation of geographical origin for Sjenica Sheep Cheese, Sjenica lamb, and Sjenica litterNational certificates with designation of geographical origin for Svrljig Kashkaval cheese and Svrljig Belmuz Kaymak/[ , , , , ]
Production systemExtensive, semi-intensiveExtensiveExtensive[ , ]
Type of conservationIn situ and ex situ (gene bank)In situIn situ[ ]
Local Breed/TraitsSjenica Pramenka StrainReferencesSvrljig Pramenka StrainReferencesVlach-Vitohorn Pramenka StrainReferences
MalesFemalesMalesFemalesMalesFemales
Body mass (kg) 100–13075–100[ ]6550[ ]4254[ ]
Lamb weight at 30 days (kg)3026[ ]1113[ ]10–12[ ]
Sexual maturity- females (months)7–10[ ]12[ ]18[ ]
Lambing index1.3–1.8[ ]1.9[ ]1.2[ ]
Milk yield in lactation (kg) 130–200[ ]64[ ]80–110[ ]
Local BreedMangalitsaMoravkaResavkaReferences
Year
200420232004202320042023
Population maximum1000400010005500100500[ ]
Breeding males201115237220
Breeding females20023493038248204
N *72.73423.9717.14892.678.4072.86
Animal productsMeat, fat[ ]
Product certification///
Production systemExtensiveExtensiveExtensive[ ]
Type of conservationIn situIn situIn situ[ ]
Local Breed/TraitsMangalitsaReferencesMoravkaReferencesResavkaReferences
MalesFemalesMalesFemalesMalesFemales
Body mass (kg) 190165[ ]72–15270–160[ ]9894[ ]
Number of piglets per litter5[ ]7.31[ ]7.96[ ]
//6[ ]8[ ]
Sexual maturity—females (months)8–12[ ]5–6[ ]//
Daily gain (kg)0.480[ ]0.545[ ]//
0.307[ ]0.316[ ]
Saturated fatty acids, SFAs, %39.45[ ]41.64[ ]//
Monounsaturated fatty acids, MUFAs, %56.41[ ]53.78[ ]//
Proportion of polyunsaturated fatty acids, PUFAs, %4.10[ ]4.54[ ]//
Aautochthonous Breeds CattleMarkersMarker DensityReferences
BushaMicrosatellite12 Microsatellite loci[ ]
Aautochthonous breeds sheep
SjenickaMicrosatellite15 microsatellite loci[ ]
Vlach-vitohornSNP MarkersThe Illumina Ovine 50K chip[ ]
Aautochthonous breeds
pigs
MangalitsaSNP MarkersThe Illumina Pig 70K HD chip[ ]
MoravkaSNP MarkersThe Illumina Pig 70K HD chip[ , ]
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Djedovic, R.; Radojkovic, D.; Stanojevic, D.; Savic, R.; Vukasinovic, N.; Popovac, M.; Bogdanovic, V.; Radovic, C.; Gogic, M.; Gligovic, N.; et al. Base Characteristics, Preservation Methods, and Assessment of the Genetic Diversity of Autochthonous Breeds of Cattle, Sheep and Pigs in Serbia: A Review. Animals 2024 , 14 , 1894. https://doi.org/10.3390/ani14131894

Djedovic R, Radojkovic D, Stanojevic D, Savic R, Vukasinovic N, Popovac M, Bogdanovic V, Radovic C, Gogic M, Gligovic N, et al. Base Characteristics, Preservation Methods, and Assessment of the Genetic Diversity of Autochthonous Breeds of Cattle, Sheep and Pigs in Serbia: A Review. Animals . 2024; 14(13):1894. https://doi.org/10.3390/ani14131894

Djedovic, Radica, Dragan Radojkovic, Dragan Stanojevic, Radomir Savic, Natasha Vukasinovic, Mladen Popovac, Vladan Bogdanovic, Cedomir Radovic, Marija Gogic, Nikolija Gligovic, and et al. 2024. "Base Characteristics, Preservation Methods, and Assessment of the Genetic Diversity of Autochthonous Breeds of Cattle, Sheep and Pigs in Serbia: A Review" Animals 14, no. 13: 1894. https://doi.org/10.3390/ani14131894

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

  • Interesting
  • Scholarships
  • UGC-CARE Journals

Top 50 Emerging Research Topics in Biotechnology

Trending Research Topics in Biotechnology

Dr. Sowndarya Somasundaram

Biotechnology is a dynamic field that continuously shapes our world, enabling innovation, breakthroughs, and solutions to various challenges. As we move into the future, numerous emerging research areas promise to revolutionize healthcare, agriculture, environmental sustainability, and more. The top 50 emerging research topics in biotechnology are presented in this article.

1. Gene Editing and Genomic Engineering

an artist s illustration of artificial intelligence ai this image depicts how ai could assist in genomic studies and its applications it was created by artist nidia dias as part of the

a. CRISPR and Gene Editing

Precision Medicine : Developing targeted therapies for various diseases using CRISPR/Cas9 and other gene-editing tools.

Ethical Implications : Exploring and addressing ethical concerns surrounding CRISPR use in human embryos and germline editing.

Agricultural Advancements : Enhancing crop resistance and nutritional content through gene editing of improved farm outcomes.

Gene Drive Technology : Investigating the potential of gene drive technology to control vector-borne diseases like malaria and dengue fever.

Regulatory Frameworks : Establishing global regulations for responsible gene editing applications in different fields.

b. Synthetic Biology

Bioengineering Microbes : Creating engineered microorganisms for sustainable production of fuels, pharmaceuticals, and materials.

Designer Organisms : Designing novel organisms with specific functionalities for environmental remediation or industrial processes.

Cell-Free Systems : Developing cell-free systems for various applications, including drug production and biosensors.

Biosecurity Measures : Addressing concerns regarding the potential misuse of synthetic biology for bioterrorism.

Standardization and Automation : Standardizing synthetic biology methodologies and automating processes to streamline production.

2. Personalized Medicine and Pharmacogenomics

green purple flower

a. Precision Medicine

Individualized Treatment : Tailoring medical treatment based on a person’s genetic makeup and environmental factors.

Cancer Therapy : Advancing targeted cancer therapies based on the genetic profile of tumors and patients.

Data Analytics : Implementing big data and AI for comprehensive analysis of genomic and clinical data to improve treatment outcomes.

Clinical Implementation : Integrating genetic testing into routine clinical practice for personalized healthcare.

Public Health and Policy : Addressing the challenges of integrating personalized medicine into public health policies and practices.

b. Pharmacogenomics

Drug Development : Optimizing drug development based on individual genetic variations to improve efficacy and reduce side effects.

Adverse Drug Reactions : Understanding genetic predispositions to adverse drug reactions and minimizing risks.

Dosing Optimization : Tailoring drug dosage based on an individual’s genetic profile for better treatment outcomes.

Economic Implications : Assessing the economic impact of pharmacogenomics on healthcare systems.

Education and Training : Educating healthcare professionals on integrating pharmacogenomic data into clinical practice.

3. Nanobiotechnology and Nanomedicine

thermometer on medical pills

a. Nanoparticles in Medicine

Drug Delivery Systems : Developing targeted drug delivery systems using nanoparticles for enhanced efficacy and reduced side effects.

Theranostics : Integrating diagnostics and therapeutics through nanomaterials for personalized medicine.

Imaging Techniques : Advancing imaging technologies using nanoparticles for better resolution and early disease detection.

Biocompatibility and Safety : Ensuring the safety and biocompatibility of nanoparticles used in medicine.

Regulatory Frameworks : Establishing regulations for the use of nanomaterials in medical applications.

b. Nanosensors and Diagnostics

Point-of-Care Diagnostics : Developing portable and rapid diagnostic tools for various diseases using nanotechnology.

Biosensors : Creating highly sensitive biosensors for detecting biomarkers and pathogens in healthcare and environmental monitoring.

Wearable Health Monitors : Integrating nanosensors into wearable devices for continuous health monitoring.

Challenges and Limitations : Addressing challenges in scalability, reproducibility, and cost-effectiveness of nanosensor technologies.

Future Applications : Exploring potential applications of nanosensors beyond healthcare, such as environmental monitoring and food safety.

4. Immunotherapy and Vaccine Development

person holding syringe and vaccine bottle

a. Cancer Immunotherapy

Immune Checkpoint Inhibitors : Enhancing the efficacy of immune checkpoint inhibitors and understanding resistance mechanisms.

CAR-T Cell Therapy : Improving CAR-T cell therapy for a wider range of cancers and reducing associated side effects.

Combination Therapies : Investigating combination therapies for better outcomes in cancer treatment.

Biomarkers and Predictive Models : Identifying predictive biomarkers for immunotherapy response.

Long-Term Effects : Studying the long-term effects and immune-related adverse events of immunotherapies.

b. Vaccine Technology

mRNA Vaccines : Advancing mRNA vaccine technology for various infectious diseases and cancers.

Universal Vaccines : Developing universal vaccines targeting multiple strains of viruses and bacteria.

Vaccine Delivery Systems : Innovating vaccine delivery methods for improved stability and efficacy.

Vaccine Hesitancy : Addressing vaccine hesitancy through education, communication, and community engagement.

Pandemic Preparedness : Developing strategies for rapid vaccine development and deployment during global health crises.

5. Environmental Biotechnology and Sustainability

person holding pine cone

a. Bioremediation and Bioenergy

Biodegradation Techniques : Using biotechnology to enhance the degradation of pollutants and contaminants in the environment.

Biofuels : Developing sustainable biofuel production methods from renewable resources.

Microbial Fuel Cells : Harnessing microbial fuel cells for energy generation from organic waste.

Circular Economy : Integrating biotechnological solutions for a circular economy and waste management.

Ecosystem Restoration : Using biotechnology for the restoration of ecosystems affected by pollution and climate change.

b. Agricultural Biotechnology

Genetically Modified Crops : Advancing genetically modified crops for improved yields, pest resistance, and nutritional content.

Precision Agriculture : Implementing biotechnological tools for precise and sustainable farming practices.

Climate-Resilient Crops : Developing crops resilient to climate change-induced stresses.

Micro-biome Applications : Leveraging the plant micro-biome for enhanced crop health and productivity.

Consumer Acceptance and Regulation : Addressing consumer concerns and regulatory challenges related to genetically modified crops.

The field of biotechnology is a beacon of hope for addressing the challenges of our time, offering promising solutions for healthcare, sustainability, and more. As researchers explore these emerging topics, the potential for ground-breaking discoveries and transformative applications is immense.

I hope this article will help you to find the top research topics in biotechnology that promise to revolutionize healthcare, agriculture, environmental sustainability, and more.

  • Drug delivery
  • Environmental Engineering
  • Gene editing
  • Genomic Engineering
  • Molecular Biology
  • Nanoparticles
  • Pharmacogenomics
  • Research Ideas
  • Synthetic biology

Dr. Sowndarya Somasundaram

How to Write a Research Paper in a Month?

Example of abstract for research paper – tips and dos and donts, phd in india 2024 – cost, duration, and eligibility for admission, most popular, 40 part-time jobs websites for phd scholars to earn extra income, advantages and disadvantages of getting a patent, icmr call for research proposal 2024, working sci-hub proxy links – 2024, call for applications: dst inspire faculty fellowship (2024), should you quit your phd explore reasons & alternatives, india – sri lanka joint research funding opportunity, how to check scopus indexed journals 2024, apply for the dst-jsps indo-japan call 2024, india-eu partner up for explainable and robust ai research, best for you, 24 best online plagiarism checker free – 2024, what is phd, popular posts, scopus indexed journals list 2024, popular category.

  • POSTDOC 317
  • Interesting 258
  • Journals 234
  • Fellowship 131
  • Research Methodology 102
  • All Scopus Indexed Journals 92

Mail Subscription

ilovephd_logo

iLovePhD is a research education website to know updated research-related information. It helps researchers to find top journals for publishing research articles and get an easy manual for research tools. The main aim of this website is to help Ph.D. scholars who are working in various domains to get more valuable ideas to carry out their research. Learn the current groundbreaking research activities around the world, love the process of getting a Ph.D.

Contact us: [email protected]

Google News

Copyright © 2024 iLovePhD. All rights reserved

  • Artificial intelligence

biotech research paper topics

biotech research paper topics

Verify originality of an essay

Get ideas for your paper

Find top study documents

150+ Medical research paper topics for students

Published 26 Jun 2024

Med Research Topics: What Makes a Good One?

Several essential attributes characterize an excellent medical research topic. First and foremost, it should address a significant and relevant issue within the medical field. The topic must have practical implications, contributing to advancing medical knowledge and improving patient care. For example, researching a new treatment for a prevalent disease or understanding the underlying mechanisms of a standard physical and mental health condition can provide valuable insights that can be applied in clinical practice.

Furthermore, a robust medical research topic should be specific and well-defined, allowing for a focused investigation. Vague or overly broad issues can make formulating a straightforward research question and designing a robust study challenging. Interested researchers can delve deeper into the subject matter by narrowing the scope and producing more detailed and meaningful findings. For instance, instead of broadly studying "cancer and treatment options," a more defined topic like "the efficacy of a specific immunotherapy in treating melanoma" would yield more actionable results.

Another critical aspect of an excellent medical research topic is feasibility. Researchers need to consider the availability of resources, such as funding, equipment, and expertise, as well as ethical considerations. The topic should be practical to study within the given constraints and timeframe. The feasibility of interesting topics also encompasses recruiting sufficient participants if human subjects are involved, ensuring that the study can be conducted effectively and ethically.

Lastly, a compelling medical research topic should be innovative and contribute new knowledge. It should challenge existing paradigms, explore uncharted areas, or offer new perspectives on established concepts. Innovation drives progress in medicine, leading to breakthroughs that can revolutionize patient care and improve patient outcomes. By choosing a topic that pushes the boundaries of current knowledge, healthcare researchers can make a lasting impact on the medical community and beyond.

How to Pick a Good Medical Research Paper Topic

Selecting a good medical research paper topic involves carefully considering several key factors. Firstly, choosing a topic that addresses a significant and current issue in the medical field is essential. One such issue is healthcare access, which is crucial in addressing inequities and barriers leading to health disparities and injustices. This ensures that the research will be relevant and contribute valuable knowledge to ongoing discussions and advancements in oral health elsewhere. Reviewing recent literature on medical research topics and identifying gaps in existing research can help pinpoint areas that need further exploration.

Next, the chosen topic should be specific and focused. A narrow scope allows for a more in-depth investigation and produces more detailed and actionable findings. For example, instead of a broad topic like "diabetes management," focusing on "the impact of a specific diet on blood sugar levels in Type 2 diabetes patients" can yield more precise and practical insights.

Feasibility is another crucial aspect to consider. Ensure that the necessary resources, including time, funding, and access to data or study participants, are available to complete the research effectively. Ethical considerations should be addressed, mainly when human subjects are involved. This involves obtaining the appropriate approvals and ensuring the study design protects participants' rights and well-being.

Lastly, the topic should be innovative and advance medical knowledge or practice. Aim to explore new perspectives, challenge existing assumptions, or investigate novel treatments or interventions. By selecting a topic that pushes the boundaries of understanding herbal medicine, researchers can significantly impact trends in the field and contribute to meaningful advancements in medicine.

150 medical research topics for college students

  • Impact of lifestyle changes on hypertension management
  • Genetic predispositions to heart disease
  • Advances in minimally invasive heart surgery
  • Role of diet in preventing cardiovascular diseases
  • Efficacy of new anticoagulants in stroke prevention
  • Long-term effects of statins on heart health
  • Emerging treatments for congestive heart failure
  • Non-invasive techniques for detecting coronary artery disease
  • Impact of mental health on cardiac health
  • Role of inflammation in atherosclerosis development
  • Immunotherapy for advanced melanoma
  • Genetic markers for early cancer detection
  • Impact of diet and lifestyle on cancer prognosis
  • New targeted therapies for breast cancer
  • Role of microRNA in cancer progression
  • Advances in radiotherapy for brain tumors
  • Psychological support for cancer patients
  • Personalized medicine in oncology
  • Impact of environmental toxins on cancer incidence
  • Survivorship and quality of life post-cancer treatment
  • New treatments for Alzheimer's disease
  • Role of genetics in multiple sclerosis
  • Advances in the understanding of Parkinson's disease
  • Impact of sleep disorders on neurological health
  • Efficacy of new migraine treatments
  • Neuroplasticity in stroke recovery
  • Role of gut microbiome in neurodegenerative diseases
  • Emerging therapies for epilepsy
  • Impact of chronic stress on brain health
  • Non-pharmacological interventions for ADHD
  • Vaccination and childhood disease prevention
  • Impact of screen time on child development
  • Pediatric obesity and associated health risks
  • Advances in neonatal care
  • Genetic disorders in children and early interventions
  • Efficacy of behavioral therapies for autism
  • Role of nutrition in childhood growth and development
  • Preventing and treating pediatric asthma
  • Long-term outcomes of premature birth
  • Pediatric mental health and early intervention

Endocrinology

  • New treatments for Type 1 diabetes
  • Impact of thyroid disorders on overall health
  • Advances in understanding insulin resistance
  • Role of hormones in metabolic syndrome
  • Long-term effects of hormone replacement therapy
  • Efficacy of new medications for osteoporosis
  • Relationship between stress and endocrine disorders
  • Impact of endocrine disruptors on health
  • Role of diet and exercise in managing diabetes
  • Advances in adrenal gland disorder treatments

Infectious Diseases

  • Impact of antibiotic resistance on public health
  • New vaccines for emerging infectious diseases
  • Role of climate change in disease spread
  • Advances in HIV treatment and prevention
  • Efficacy of antiviral therapies for hepatitis C
  • Impact of global travel on infectious disease transmission
  • Role of the microbiome in infection prevention
  • Emerging zoonotic diseases
  • Efficacy of new tuberculosis treatments
  • Strategies for preventing hospital-acquired infections
  • Advances in the treatment of depression
  • Impact of social media on mental health
  • Role of genetics in psychiatric disorders
  • Efficacy of cognitive-behavioral therapy for anxiety
  • Long-term effects of antipsychotic medications
  • Role of Lifestyle changes in managing bipolar disorder
  • Impact of trauma on mental health
  • Emerging treatments for PTSD
  • Role of neurobiology in addiction
  • Efficacy of mindfulness-based therapies
  • Insomnia effect on patients with mental health conditions

Public Health

  • Impact of public health policies on smoking rates
  • Role of community programs in obesity prevention
  • Strategies for reducing health disparities
  • Impact of urbanization on public health
  • Efficacy of health education programs
  • Role of public health in disaster preparedness
  • Advances in global health initiatives
  • Impact of socioeconomic status on health outcomes
  • Role of vaccination in public health
  • Efficacy of public health interventions for substance abuse
  • Impact of public health regulations on social behavior and health outcomes amid COVID-19

Dermatology

  • Advances in the treatment of psoriasis
  • Role of diet in managing acne
  • Efficacy of new therapies for eczema
  • Impact of environmental factors on skin health
  • Role of genetics in skin disorders
  • Advances in melanoma detection
  • Impact of skincare products on skin health
  • Role of microbiome in skin diseases
  • Efficacy of laser treatments for skin conditions
  • Strategies for preventing skin cancer

Gastroenterology

  • Impact of diet on gut health
  • Advances in the treatment of inflammatory bowel disease
  • Role of probiotics in digestive health
  • Efficacy of new therapies for irritable bowel syndrome
  • Effect of gut microbiome on overall health
  • Role of genetics in gastrointestinal disorders
  • Advances in colorectal cancer screening
  • Efficacy of dietary interventions for celiac disease
  • Impact of chronic stress on digestive health
  • Strategies for managing liver diseases
  • Impact of electronic health records on gastroenterology research

Pulmonology

  • Advances in asthma management
  • Role of genetics in lung diseases
  • Impact of air pollution on respiratory health
  • Efficacy of new treatments for COPD
  • Role of Lifestyle changes in managing Sleep Apnea
  • Advances in lung cancer treatment
  • Effect of Smoking Cessation Programs
  • Efficacy of pulmonary rehabilitation
  • Role of diet in respiratory health
  • Strategies for managing chronic bronchitis
  • Advances in kidney transplant techniques
  • Role of diet in managing kidney disease
  • Impact of hypertension on kidney health
  • Efficacy of new treatments for chronic kidney disease
  • Role of genetics in nephrological disorders
  • Advances in dialysis technology
  • Impact of diabetes on kidney health
  • Efficacy of lifestyle interventions for kidney stones
  • Role of hydration in preventing kidney diseases
  • Strategies for early detection of kidney disorders

Orthopedics

  • Advances in joint replacement surgery
  • Role of physical therapy in managing osteoarthritis
  • Efficacy of new treatments for osteoporosis
  • Impact of sports on musculoskeletal health
  • Role of genetics in orthopedic disorders
  • Advances in minimally invasive orthopedic surgery
  • Efficacy of regenerative therapies for bone injuries
  • Role of nutrition in bone health
  • Strategies for preventing sports injuries
  • Impact of aging on musculoskeletal health

Ophthalmology

  • Advances in cataract surgery techniques
  • Role of genetics in eye diseases
  • Impact of screen time on vision health
  • Efficacy of new treatments for glaucoma
  • Role of diet in maintaining eye health
  • Advances in retinal disease management
  • Efficacy of laser eye surgery
  • Strategies for preventing macular degeneration
  • Role of lifestyle changes in managing dry eye syndrome
  • Impact of environmental factors on eye health

Rheumatology

  • Advances in the treatment of rheumatoid arthritis
  • Role of genetics in autoimmune disorders
  • Efficacy of new therapies for lupus
  • Impact of diet on inflammatory conditions
  • Role of physical activity in managing arthritis
  • Advances in understanding fibromyalgia
  • Efficacy of biologic drugs in rheumatology
  • Impact of chronic inflammation on overall health
  • Strategies for managing gout
  • Role of complementary therapies in rheumatic diseases

Selecting a Medical Research Paper Topic

Choosing a good medical research paper topic is a critical first step in the research process, influencing the direction and impact of the study. A well-chosen topic should address a significant and current issue within the medical field, ensuring relevance and the potential to contribute valuable insights to ongoing medical discussions and advancements. By focusing research projects on areas of primary care that need further exploration, researchers can make meaningful contributions to the body of medical knowledge.

A specific and well-defined topic allows for a focused investigation, leading to detailed and actionable findings for future medical students and others. Narrowing the scope helps researchers delve deeper into the subject matter, enhancing the quality and precision of the research. This approach benefits the study and ensures that the results are practical and applicable in real-world medical scenarios. Additionally, the feasibility of the topic, considering available resources and ethical considerations, is crucial for completing the research.

Innovative research topics that push the boundaries of current understanding are essential for driving progress in medicine. Researchers can significantly impact the field by exploring new perspectives, challenging existing assumptions, and investigating novel treatments or interventions for chronic diseases. Such groundbreaking research has the potential to revolutionize patient care and improve health outcomes on a broader scale.

If you're embarking on your medical research journey, start by identifying a topic that not only fascinates you but also meets the criteria of significance, specificity, feasibility, and innovation. Dive into current literature, consult with experts, and consider the practical implications of your research. By choosing a compelling topic, you'll set the stage for a successful and impactful study that can contribute to advancing medical science and improving patient care. Don't hesitate to seek guidance and support from your peers and mentors throughout this process, as collaboration and feedback are invaluable in refining your research focus.

Was this helpful?

Thanks for your feedback.

Article author picture

Written by David Kidwell

David is one of those experienced content creators from the United Kingdom who has a high interest in social issues, culture, and entrepreneurship. He always says that reading, blogging, and staying aware of what happens in the world is what makes a person responsible. He likes to learn and share what he knows by making things inspiring and creative enough even for those students who dislike reading.

Related Blog Posts

100 qualitative research topics to impress your teacher.

Qualitative research is a method of inquiry employed in various academic disciplines, traditionally in the social sciences, but also in market rese...

Join our 150K of happy users

  • Get original papers written according to your instructions
  • Save time for what matters most

Research Scholar

[100+] Biotechnology Research Topics With Free [Thesis Pdf] 2023

Are You Searching Research Topics For Biotechnology ,   Topics For Biotechnology Research Paper, Biotechnology Research Topics For Students, Research Topics Ideas For Biotechnology, Biotechnology Research Topics For PhD, Biotechnology PhD Topics. So You are in right place. 

In this article, we provide you latest research topics for Biotechnology with a full Phd thesis. By these research topics for Biotechnology you can get idea for your research work. On this website, you can get lots of Biotechnology Research Topics for College Students,  PhD, Mphil, Dissertations, Thesis, Project, Presentation, Seminar or Workshop. Check the suggestions below that can help you choose the right research topics for Biotechnology: You can also Free Download Biotechnology Research PhD Thesis in Pdf by the given link.

Now Check 100+ Biotechnology Research Topics List

Table of Contents

Research Topic For Biotechnology 2023

1
2
3
4
5

Biotechnology Research Topics For Dissertation

Research topics ideas for biotechnology, biotechnology research topics ideas for college students, topics for biotechnology research paper, biotechnology research topics for thesis, biotechnology research topics for students, biotechnology research topics for undergraduate students, biotechnology research topics for university students, biotechnology research topics for phd, research topics for phd in biotechnology, research topics for mphil biotechnology, biotechnology phd topics, research paper topics for biotechnology, biotechnology research paper topics, phd thesis topic for biotechnology, research topics for biotechnology subject, biotechnology research topics for fisheries, research topics for biotechnology, biotechnology research topics examples.

Note: All Research Work Idea on this website is inspired by Shodhganga: a reservoir of Indian Theses. We provide you mostly research work under Creative Commons Licence. Credit goes to https://shodhganga.inflibnet.ac.in/

If you find any copyright content on this website and you have any objection than plz immediately connect us on [email protected]. We Will remove that content as soon as.

This Post is also helpful for: Biotechnology Thesis Pdf, Biotechnology Thesis Topics, Biotechnology Dissertation Topics, Biotechnology Thesis, Catchy Title For Biotechnology, Phd Thesis Topic for Biotechnology, Biotechnology Research Paper Topics, Biotechnology Phd Topics, Biotechnology Research Topics, Research Topics For Biotechnology Students in India, Biotechnology Research Topics For College Students.

11 thoughts on “[100+] Biotechnology Research Topics With Free [Thesis Pdf] 2023”

  • Pingback: Home - Research Scholar
  • Pingback: Home Page 3 - Research Scholar
  • Pingback: How To Write Master Thesis Pdf: Step By Step Example and Quickly Tips - Research Scholar
  • Pingback: How To Do Research in Philosophy 2023 - Research Scholar
  • Pingback: How To Do Research in History 2023 - Research Scholar
  • Pingback: How To Do Research in Life Science 2023 - Research Scholar
  • Pingback: How To Do Research in Education 2023 - Research Scholar
  • Pingback: How To Do Research in Management 2023 - Research Scholar
  • Pingback: How To Do Research in Commerce 2023 - Research Scholar
  • Pingback: How To Do Research in Botany 2023 - Research Scholar
  • Pingback: How To Do Research in Microbiology 2023 - Research Scholar

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Environmental biotechnology articles from across Nature Portfolio

Environmental biotechnology is the branch of biotechnology that addresses environmental problems, such as the removal of pollution, renewable energy generation or biomass production, by exploiting biological processes.

Latest Research and Reviews

biotech research paper topics

MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters

Anaerobic digesters play an important role in biodegradation. In the MiDAS 5 project, the authors use global 16S rRNA sequencing to expand the microbial reference database, improving taxonomic classification and revealing how environmental factors and geography shape microbial communities in anaerobic digesters.

  • Morten Kam Dahl Dueholm
  • Kasper Skytte Andersen
  • Per Halkjær Nielsen

Nutritional upgrade of olive mill stone waste, walnut shell and their mixtures by applying solid state fermentation initiated by Pleurotus ostreatus

  • Dimitrios Arapoglou
  • Christos Eliopoulos
  • Serkos A. Haroutounian

biotech research paper topics

Photocatalytic, antimicrobial and antibiofilm activities of MgFe 2 O 4 magnetic nanoparticles

  • Ahmed M. El-Khawaga
  • Mohamed Ayman
  • Rasha E. Shalaby

biotech research paper topics

Bottlenecks in biobased approaches to plastic degradation

The way we generate and treat plastic waste is a key consideration in the transition from a take-make-waste model to a truly circular economy. Here, authors discuss their views on how biotechnology could contribute to solving the plastic problem, and the barriers we need to overcome to make such approaches a reality.

  • Amelia R. Bergeson
  • Ashli J. Silvera
  • Hal S. Alper

biotech research paper topics

Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling

Engineering natural microbiomes for biotechnological applications remains challenging. Here, the authors present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes.

biotech research paper topics

The link between ancient microbial fluoride resistance mechanisms and bioengineering organofluorine degradation or synthesis

Microbial degradation and biosynthesis of fluorinated compounds is a field of increasing importance, but is hampered by the significant toxicity of fluoride. Here authors discuss emerging ideas on microbial defluorination/fluorination and fluoride resistance mechanisms, providing guidance on how this knowledge can guide future bioengineering approaches.

  • Randy B. Stockbridge
  • Lawrence P. Wackett

Advertisement

News and Comment

biotech research paper topics

The impact of a graduate training and career outlook program on diversity in the biotechnology sector

An intensive summer training program increased enrollment in a Master of Science in Biotechnology degree program, increasing awareness and opportunities among under-represented and underserved groups as a first step to transforming the biotech industry.

  • Angelita P. Howard
  • Liane S. Slaughter
  • Rebecca McPherson

biotech research paper topics

Designer catalytic nanopores meet PET nanoparticles

The search for novel biocatalysts for plastic degradation has recently become a hot topic. Now, multiple catalytic triads of well-known serine esterases were introduced into non-catalytic protein nanopores to enable the hydrolysis of PET nanoparticles.

  • Uwe T. Bornscheuer

Bottlenecks and opportunities for synthetic biology biosafety standards

The lack of innovative standards for biosafety in synthetic biology is an unresolved policy gap that limits many potential applications in synthetic biology. We argue that a massive support for standardization in biosafety is required for synthetic biology to flourish.

  • Michele Garfinkel
  • Markus Schmidt

biotech research paper topics

Constructive principles for gene editing oversight

  • L. Val Giddings
  • Richard J. Roberts

biotech research paper topics

Responsible governance of gene editing in agriculture and the environment

  • Doria R. Gordon
  • Gregory Jaffe
  • Melissa D. Ho

biotech research paper topics

CO 2 fixation gets a second chance

Synthetic metabolic pathways that circumvent photorespiration can improve crop growth. Now, an efficient photorespiration bypass with a new-to-nature carboxylation step has been engineered and demonstrated in vitro.

  • Markus Janasch
  • Elton P. Hudson

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

biotech research paper topics

  • Research & Faculty
  • Offices & Services
  • Information for:
  • Faculty & Staff
  • News & Events
  • Contact & Visit
  • Student Resources
  • Curriculum Overview
  • Course Schedules
  • Minors and Certificates
  • Nanobiotechnology
  • Course Listings
  • Student Research Overview
  • Research Areas
  • Biomaterials
  • Cancer Biotechnology
  • Cardiovascular Biology & Transplantation Biology
  • Cell & Molecular Biology
  • Developmental Biology & Neurobiology
  • Diagnostics & Medical Devices
  • Drug Discovery & Delivery
  • Microbial & Environmental Biotechnology
  • Stem Cell Biology
  • Sustainability & Global Health Biotechnology
  • Synthetic & Systems Biology
  • Research Papers
  • Admissions Overview
  • Information Sessions
  • Core Faculty and Staff
  • Adjunct Faculty and Staff
  • Research Advisors
  • Current Students
  • Association of Biotechnology Students
  • Industrial Advisory Board
  • Program Benefactors
  • Class of 2021
  • Class of 2020
  • Class of 2019
  • Class of 2018
  • Class of 2017
  • Class of 2016
  • Class of 2015
  • Class of 2014
  • Class of 2013
  • Class of 2012
  • Class of 2011
  • Class of 2010
  • Class of 2009
  • Class of 2008
  • Class of 2007
  • Class of 2006
  • Class of 2005
  • Class of 2004
  • Career Development
  • Co-op / Internship
  • Where to Work in Biotech
  • Philadelphia
  • Research Triangle
  • San Francisco
  • Washington D.C.
  • Stories Archive
  • Seminars & Events
  • Upcoming Events
  • Biotech Nexus
  • Site Visits
  • Northwestern Engineering

Student Research Student Research Areas

The research projects listed on our alumni webpages are meant to illustrate the diversity and number of research possibilities that the MBP has to offer. Research projects naturally evolve over time: some continue, while others get terminated based on research advisors' interests and funding opportunities. However, the MBP ensures that each of the 12 areas of research listed on our website continue to be adequately represented by research projects.

  • Cardiovascular Biology and Transplantation Biology
  • Cell and Molecular Biology
  • Developmental Biology and Neurobiology
  • Diagnostics and Medical Devices
  • Drug Discovery and Delivery
  • Microbial and Environmental Biotechnology
  • Sustainability and Global Health Biotechnology
  • Synthetic and Systems Biology

More in this section

  • Engineering Home
  • MBP Program
  • Student Research

How To Apply

Contact info.

Master of Biotechnology Program Northwestern University Tech Institute, A334 2145 Sheridan Road Evanston, Illinois 60208 Phone: 847-467-3365 Email the program

Request Info

Request your program & application guide.

Electronic Brochure Cover

IMAGES

  1. Biotech Essay

    biotech research paper topics

  2. 3 Biotech Template

    biotech research paper topics

  3. Topics for research paper in biotechnology: 100+ Interesting Biology

    biotech research paper topics

  4. Top 50 Research Topics in Biotechnology

    biotech research paper topics

  5. 🎉 Latest research topics in biotechnology. Biotechnology. 2019-01-12

    biotech research paper topics

  6. (PDF) Biotechnology research

    biotech research paper topics

VIDEO

  1. Biotech in Space

  2. Research Paper Topics 😮😮😯 Best for Beginners 👍

  3. Bsc Biotechnology 2024 Plant biotech sem6 question paper #plantbiotechnology #bscbiotechnology

  4. A Follow-Up Visit with the Doctor

  5. The Future of Biotech Labs: Enhancing Research with ELN and Advanced Technologies

  6. [Webinar] Unveiling Scibot: An AI Agent for Your Biotech Lab

COMMENTS

  1. 200+ Biotechnology Research Topics: Let's Shape the Future

    Biotechnology, at its core, involves the application of biological systems, organisms, or derivatives to develop technologies and products for the benefit of humanity. The scope of biotechnology research is broad, covering areas such as genetic engineering, biomedical engineering, environmental biotechnology, and industrial biotechnology.

  2. Biotechnology Research Paper Topics

    Biotechnology Research Paper Topics. This collection of biotechnology research paper topics provides the list of 10 potential topics for research papers and overviews the history of biotechnology. The term biotechnology came into popular use around 1980 and was understood to mean the industrial use of microorganisms to make goods and services ...

  3. Browse Articles

    Browse the archive of articles on Nature Biotechnology. ... Research Article (441) Research Paper (510) Review Article (284) This Month in Biotechnology (328) Year. All. All; 2024 (249)

  4. Research articles

    Nature Biotechnology ( Nat Biotechnol) ISSN 1546-1696 (online) ISSN 1087-0156 (print) Read the latest Research articles from Nature Biotechnology.

  5. Biotechnology

    Biotechnology is a broad discipline in which biological processes, organisms, cells or cellular components are exploited to develop new technologies. New tools and products developed by ...

  6. Current research in biotechnology: Exploring the biotech forefront

    The following search string was used: TOPIC = ("biotech*"). This search strategy yielded publications that mentioned the words biotech, biotechnology or their derivatives in the title, abstract, or keywords. In order to focus on contemporary biotechnology research trends, only articles published between 2017 and 2019 were included. 2.2.

  7. Articles

    0.880 - SNIP (Source Normalized Impact per Paper) 0.654 - SJR (SCImago Journal Rank) 2023 Speed 10 days submission to first editorial decision for all manuscripts (Median) 155 days submission to accept (Median) 2023 Usage 1,134,875 downloads 518 Altmetric mentions

  8. Biotech & Genetic Engineering Research Topics (+ Free Webinar

    If you're just starting out exploring biotechnology-related topics for your dissertation, thesis or research project, you've come to the right place. In this post, we'll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas, including examples from recent studies.. PS - This is just the start…

  9. Current Research in Biotechnology

    Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier.CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon ...

  10. Top 50 Research Topics in Biotechnology

    Look at some of the top trends in biotech research and recent Biotechnology Topics that are bringing massive changes in this vast world of science, resulting in some innovation in life sciences and biotechnology ideas. Development of vaccine: Development of mRNA has been done since 1989 but has accelerated to combat the pandemic. As per many ...

  11. Frontiers in Bioengineering and Biotechnology

    Advancing Multidisciplinary Approaches for Combating Multidrug-Resistant Infections. A multidisciplinary journal that accelerates the development of biological therapies, devices, processes and technologies to improve our lives by bridging the gap between discoveries and their appl...

  12. Biomedical Research Paper Topics

    Biomedical research is a vibrant field, with an extensive range of topics drawn from various sub-disciplines. It encompasses the study of biological processes, clinical medicine, and even technology and engineering applied to the domain of healthcare. Given the sheer breadth of this field, choosing a specific topic can sometimes be overwhelming.

  13. 150 Research Proposal Topics In Biotechnology

    Not just in terms of prospects, but also in terms of wage packages for biotechnology experts. Top 150 Research Proposal Topics and more about Biotechnology for 2022 from the best academic expert dissertation writers of AHECounselling. Plant, Pharmacogenetics, Forensic DNA, Food, Proteomics Biotechnology.

  14. Top 100 Biotechnology Dissertation Topics for the Year 2021

    Check this list of top 100 biotechnology dissertation topics trending in 2021 recommended by experts at Thoughtful Minds. ... For instance, all our topic selection requirements related to case study help, essay help, research paper writing help or thesis help can also be met with the topics in the above-mentioned list.

  15. Review Articles

    Research articles Reviews & Analysis News & Comment ... Nature Biotechnology (Nat Biotechnol) ISSN 1546-1696 (online) ISSN 1087-0156 (print) nature.com sitemap ...

  16. Current research in biotechnology: Exploring the biotech forefront

    Biotechnology is an evolving research field that covers a broad range of topics. Here we aimed to evaluate the latest research literature, to identify prominent research themes, major contributors in terms of institutions, countries/re-gions, and ... (2018 journal impact factor of 2.03; publishing original full-length research papers, reviews ...

  17. New articles: Trends in Biotechnology

    Elena Borzova. First published: June 15, 2024. The coronavirus disease 2019 (COVID-19) pandemic created the demand and the permissive conditions for innovative solutions, superior business models, digital technologies, funding, and licensing in biotechnology, fostering a phenomenon that might be called 'leapfrogging.'.

  18. 100+ Biotechnology Research Topics

    Green Biotechnology Research Paper Topics: Detection of endosulfan residues using biotechnology in agricultural products. Development of ELISA technique for the detection of crops' viruses. Use of Green Fluorescent Protein (GFP) as a cytoplasmic folding reporter. E.coli as an all-rounder in biotechnological studies.

  19. Animals

    Topics. Information. ... Conservation Strategies and New Biotechnology Methods of Upgrading Animal Genetic Resources. ... This paper has emerged as a result of research conducted within the framework of the "Agreement on the Implementation and Financing of Scientific Research in 2024 between the Ministry of Science, Technological Development ...

  20. Top 50 Emerging Research Topics in Biotechnology

    Biotechnology is a dynamic field that continuously shapes our world, enabling innovation, breakthroughs, and solutions to various challenges. As we move into the future, numerous emerging research areas promise to revolutionize healthcare, agriculture, environmental sustainability, and more. The top 50 emerging research topics in biotechnology are presented in this article.

  21. Animal biotechnology

    Animal biotechnology is a branch of biotechnology in which molecular biology techniques are used to genetically engineer (i.e. modify the genome of) animals in order to improve their suitability ...

  22. 150+ Medical research paper topics to impress

    Selecting a Medical Research Paper Topic Choosing a good medical research paper topic is a critical first step in the research process, influencing the direction and impact of the study. A well-chosen topic should address a significant and current issue within the medical field, ensuring relevance and the potential to contribute valuable ...

  23. [100+] Biotechnology Research Topics With Free [Thesis Pdf] 2023

    Research Topic For Biotechnology 2023. Sr. No. Research Topic. Check Thesis. 1. Identification of genetic locus associated with resistance to brown planthopper. Download. 2. Identifying genes expressed during water stress in rice cv Nootripathu roots.

  24. Environmental biotechnology

    Environmental biotechnology is the branch of biotechnology that addresses environmental problems, such as the removal of pollution, renewable energy generation or biomass production, by exploiting ...

  25. Research Areas

    However, the MBP ensures that each of the 12 areas of research listed on our website continue to be adequately represented by research projects. Biomaterials. Cancer Biotechnology. Cardiovascular Biology and Transplantation Biology. Cell and Molecular Biology. Developmental Biology and Neurobiology. Diagnostics and Medical Devices.