FREE K-12 standards-aligned STEM

curriculum for educators everywhere!

Find more at TeachEngineering.org .

  • TeachEngineering
  • Problem Solving

Lesson Problem Solving

Grade Level: 8 (6-8)

(two 40-minute class periods)

Lesson Dependency: The Energy Problem

Subject Areas: Physical Science, Science and Technology

Partial design

  • Print lesson and its associated curriculum

Curriculum in this Unit Units serve as guides to a particular content or subject area. Nested under units are lessons (in purple) and hands-on activities (in blue). Note that not all lessons and activities will exist under a unit, and instead may exist as "standalone" curriculum.

  • Energy Forms and States Demonstrations
  • Energy Conversions
  • Watt Meters to Measure Energy Consumption
  • Household Energy Audit
  • Light vs. Heat Bulbs
  • Efficiency of an Electromechanical System
  • Efficiency of a Water Heating System
  • Solving Energy Problems
  • Energy Projects
Unit Lesson Activity

TE Newsletter

Engineering connection, learning objectives, worksheets and attachments, more curriculum like this, introduction/motivation, associated activities, user comments & tips.

Engineering… because your dreams need doing

Scientists, engineers and ordinary people use problem solving each day to work out solutions to various problems. Using a systematic and iterative procedure to solve a problem is efficient and provides a logical flow of knowledge and progress.

  • Students demonstrate an understanding of the Technological Method of Problem Solving.
  • Students are able to apply the Technological Method of Problem Solving to a real-life problem.

Educational Standards Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards. All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN) , a project of D2L (www.achievementstandards.org). In the ASN, standards are hierarchically structured: first by source; e.g. , by state; within source by type; e.g. , science or mathematics; within type by subtype, then by grade, etc .

Ngss: next generation science standards - science.

View aligned curriculum

Do you agree with this alignment? Thanks for your feedback!

International Technology and Engineering Educators Association - Technology

State standards, national science education standards - science.

Scientists, engineers, and ordinary people use problem solving each day to work out solutions to various problems. Using a systematic and iterative procedure to solve a problem is efficient and provides a logical flow of knowledge and progress.

In this unit, we use what is called "The Technological Method of Problem Solving." This is a seven-step procedure that is highly iterative—you may go back and forth among the listed steps, and may not always follow them in order. Remember that in most engineering projects, more than one good answer exists. The goal is to get to the best solution for a given problem. Following the lesson conduct the associated activities Egg Drop and Solving Energy Problems for students to employ problem solving methods and techniques. 

Lesson Background and Concepts for Teachers

The overall concept that is important in this lesson is: Using a standard method or procedure to solve problems makes the process easier and more effective.

1) Describe the problem, 2) describe the results you want, 3) gather information, 4) think of solutions, 5) choose the best solution, 6) implement the solution, 7) evaluate results and make necessary changes. Reenter the design spiral at any step to revise as necessary.

The specific process of problem solving used in this unit was adapted from an eighth-grade technology textbook written for New York State standard technology curriculum. The process is shown in Figure 1, with details included below. The spiral shape shows that this is an iterative, not linear, process. The process can skip ahead (for example, build a model early in the process to test a proof of concept) and go backwards (learn more about the problem or potential solutions if early ideas do not work well).

This process provides a reference that can be reiterated throughout the unit as students learn new material or ideas that are relevant to the completion of their unit projects.

Brainstorming about what we know about a problem or project and what we need to find out to move forward in a project is often a good starting point when faced with a new problem. This type of questioning provides a basis and relevance that is useful in other energy science and technology units. In this unit, the general problem that is addressed is the fact that Americans use a lot of energy, with the consequences that we have a dwindling supply of fossil fuels, and we are emitting a lot of carbon dioxide and other air pollutants. The specific project that students are assigned to address is an aspect of this problem that requires them to identify an action they can take in their own live to reduce their overall energy (or fossil fuel) consumption.

The Seven Steps of Problem Solving

1.  Identify the problem

Clearly state the problem. (Short, sweet and to the point. This is the "big picture" problem, not the specific project you have been assigned.)

2.  Establish what you want to achieve

  • Completion of a specific project that will help to solve the overall problem.
  • In one sentence answer the following question: How will I know I've completed this project?
  • List criteria and constraints: Criteria are things you want the solution to have. Constraints are limitations, sometimes called specifications, or restrictions that should be part of the solution. They could be the type of materials, the size or weight the solution must meet, the specific tools or machines you have available, time you have to complete the task and cost of construction or materials.

3.  Gather information and research

  • Research is sometimes needed both to better understand the problem itself as well as possible solutions.
  • Don't reinvent the wheel – looking at other solutions can lead to better solutions.
  • Use past experiences.

4.  Brainstorm possible solutions

List and/or sketch (as appropriate) as many solutions as you can think of.

5.  Choose the best solution

Evaluate solution by: 1) Comparing possible solution against constraints and criteria 2) Making trade-offs to identify "best."

6.  Implement the solution

  • Develop plans that include (as required): drawings with measurements, details of construction, construction procedure.
  • Define tasks and resources necessary for implementation.
  • Implement actual plan as appropriate for your particular project.

7.  Test and evaluate the solution

  • Compare the solution against the criteria and constraints.
  • Define how you might modify the solution for different or better results.
  • Egg Drop - Use this demonstration or activity to introduce and use the problem solving method. Encourages creative design.
  • Solving Energy Problems - Unit project is assigned and students begin with problem solving techniques to begin to address project. Mostly they learn that they do not know enough yet to solve the problem.
  • Energy Projects - Students use what they learned about energy systems to create a project related to identifying and carrying out a personal change to reduce energy consumption.

The results of the problem solving activity provide a basis for the entire semester project. Collect and review the worksheets to make sure that students are started on the right track.

problem solving process in science and technology

Learn the basics of the analysis of forces engineers perform at the truss joints to calculate the strength of a truss bridge known as the “method of joints.” Find the tensions and compressions to solve systems of linear equations where the size depends on the number of elements and nodes in the trus...

preview of 'Doing the Math: Analysis of Forces in a Truss Bridge' Lesson

Through role playing and problem solving, this lesson sets the stage for a friendly competition between groups to design and build a shielding device to protect humans traveling in space. The instructor asks students—how might we design radiation shielding for space travel?

preview of 'Shielding from Cosmic Radiation: Space Agency Scenario' Lesson

A process for technical problem solving is introduced and applied to a fun demonstration. Given the success with the demo, the iterative nature of the process can be illustrated.

preview of 'Egg Drop' Activity

The culminating energy project is introduced and the technical problem solving process is applied to get students started on the project. By the end of the class, students should have a good perspective on what they have already learned and what they still need to learn to complete the project.

preview of 'Solving Energy Problems' Activity

Hacker, M, Barden B., Living with Technology , 2nd edition. Albany NY: Delmar Publishers, 1993.

Other Related Information

This lesson was originally published by the Clarkson University K-12 Project Based Learning Partnership Program and may be accessed at http://internal.clarkson.edu/highschool/k12/project/energysystems.html.

Contributors

Supporting program, acknowledgements.

This lesson was developed under National Science Foundation grants no. DUE 0428127 and DGE 0338216. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: August 16, 2023

Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, stem projects that tackle real-world problems.

STEM Projects That Tackle Real-World Problems

STEM learning is largely about designing creative solutions for real-world problems. When students learn within the context of authentic, problem-based STEM design, they can more clearly see the genuine impact of their learning. That kind of authenticity builds engagement, taking students from groans of “When will I ever use this?” to a genuine connection between skills and application.

Using STEM to promote critical thinking and innovation

“Educational outcomes in traditional settings focus on how many answers a student knows. We want students to learn how to develop a critical stance with their work: inquiring, editing, thinking flexibly, and learning from another person’s perspective,” says Arthur L. Costa in his book Learning and Leading with Habits of Mind . “The critical attribute of intelligent human beings is not only having information but also knowing how to act on it.”

Invention and problem-solving aren’t just for laboratory thinkers hunkered down away from the classroom. Students from elementary to high school can wonder, design, and invent a real product that solves real problems. “ Problem-solving involves finding answers to questions and solutions for undesired effects. STEM lessons revolve around the engineering design process (EDP) — an organized, open-ended approach to investigation that promotes creativity, invention, and prototype design, along with testing and analysis,” says Ann Jolly in her book STEM by Design . “These iterative steps will involve your students in asking critical questions about the problem, and guide them through creating and testing actual prototypes to solve that problem.”

STEM projects that use real-world problems

Here are some engaging projects that get your students thinking about how to solve real-world problems.

Preventing soil erosion

In this project, meant for sixth – 12th grade, students learn to build a seawall to protest a coastline from erosion, calculating wave energy to determine the best materials for the job.  See the project.

Growing food during a flood

A natural disaster that often devastates communities, floods can make it difficult to grow food. In this project, students explore “a problem faced by farmers in Bangladesh and how to grow food even when the land floods.”  See the project .

Solving a city’s design needs

Get your middle or high school students involved in some urban planning. Students can identify a city’s issues, relating to things like transportation, the environment, or overcrowding — and design solutions. See the project here or this Lego version for younger learners.

Creating clean water

Too many areas of the world — including cities in our own country — do not have access to clean water. In this STEM project, teens will learn how to build and test their own water filtration systems.  See the project here .

Improving the lives of those with disabilities

How can someone with crutches or a wheelchair carry what they need? Through some crafty designs! This project encourages middle school students to think creatively  and  to participate in civic engagement.   See the project here .

Cleaning up an oil spill

We’ve all seen images of beaches and wildlife covered in oil after a disastrous spill. This project gets elementary to middle school students designing and testing oil spill clean-up kits. See the project here .

Building earthquake-resistant structures

With the ever-increasing amount of devastating earthquakes around the world, this project solves some major problems. Elementary students can learn to create earthquake resistant structures in their classroom. See the project here .

Constructing solar ovens

In remote places or impoverished areas, it’s possible to make solar ovens to safely cook food. In this project, elementary students construct solar ovens to learn all about how they work and their environmental and societal impact.  See the project here .

Stopping apple oxidization

Stop those apples from turning brown with this oxidation-based project. Perfect for younger learners, students can predict, label, count, and experiment! See the project here .

Advancing as a STEAM educator

The push for STEM has evolved into the STEAM movement, adding the arts for further enrichment and engagement. There are so many ways to embed STEM or STEAM lessons in your curriculum, but doing it well requires foundational knowledge and professional development. Imagine what type of impact you could have on your students and your community if you were supported by a theoretical framework, a variety of strategies, and a wealth of ideas and resources.

You may also like to read

  • Teaching STEM: Challenging Students to Think Through Tough Problems
  • Professional Development Resources for STEM Teachers
  • What is the Washington State STEM Lighthouse Program?
  • Characteristics of a Great STEAM Program
  • Building a Partnership Between Your School and a STEAM Organization
  • The Art of Inquiry in STEAM Education

Explore careers and degrees on Noodle.com - Find your next career

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Art ,  Educational Technology ,  Engaging Activities ,  Math and Science ,  Science ,  STEAM

  • Online & Campus Master's in Elementary Educat...
  • 2020 Civics Engagement & Resilience: Tools fo...
  • Online & Campus Master's in Curriculum Develo...

loading

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Problem solving in science technology and society learning improving junior high school students' scientific attitudes and process skills

  • January 2023
  • Cypriot Journal of Educational Sciences 18(1):16-30
  • 18(1):16-30
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Abstract and Figures

Normality Analysis

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Agus Suyatna

Undang Rosidin

  • Muhammad Rafliyanto
  • Fahrudin Mukhlis

Yusep Ikrawan

  • Baharuddin Baharuddin

Andi Agustang

  • Liliana Valladares

Vidi Sukmayadi

  • Azizul Halim Yahya

Gokhan Guven

  • Yusuf Sulun
  • Emine Guven

Anik Twin Twiningsih

  • Muhammad Dicky Darmawan

Nikki Heherson A Dagamac

  • Educ Chem Eng

Eric Burkholder

  • NURS EDUC TODAY

Marie-France Deschênes

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

What is problem solving, definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

JavaScript disabled

You have to enable JavaScript in your browser's settings in order to use the eReader.

Or try downloading the content offline

Did you know?

Reader environment loaded

Loading publication (1.7 MB)

Large documents might take a while

Playing technology games and making science fun helps young kids solve visual problems and grasp ideas better

problem solving process in science and technology

Lecturer, North-West University

Disclosure statement

Dr Moleboheng Ramulumo is affiliated with the North West University, School of Mathematics, Science and Technology Education

View all partners

A woman and two young children, all wearing protective goggles, doing a science experiment in a laboratory

As I watched my sons, Wavhudi and Rivhavhudi, play games on my phone before bedtime, I was captivated by their enthusiasm and how deeply they were engaged – especially when the games involved maths or science. Both boys experienced speech delays and I hoped the games would help them develop their language skills. It worked.

What I saw at home has been repeatedly underscored by research: early engagement with science, technology, engineering and mathematics (STEM) concepts through interactive tools can profoundly enhance children’s visual literacy (reading, writing and creating images) and conceptual understanding (grasping ideas).

For my Master’s degree, I’d examined how molecular biology students’ lack of visual literacy made it harder for them to grasp complex scientific concepts. This academic foundation, combined with the newfound spark in my boys, inspired my PhD research : investigating the effects of early STEM education on young children’s visual literacy and ability to grasp scientific concepts.

In a recent, related study , I explored how different types of preschool education influence children’s understanding of science and their ability to interpret visual information. The study involved children aged 4 or 5 years who were in Grade R (the year of schooling before Grade 1) from various private schools in Bloemfontein, South Africa. I observed that those exposed to STEM education were better at spatial visualisation than their peers. These children excelled in tasks that required them to recall and manipulate visual details, such as accurately reproducing elements from images, while their non-STEM counterparts often struggled.

Some people may question why all children should be exposed to STEM concepts, given that not everyone will go on to further study or careers in science, technology, engineering or mathematics fields.

But teaching these skills at a young age is not just about preparing children for specific fields. My findings underscore the profound effects of early STEM education on cognitive development, such as fostering critical thinking, problem-solving skills, creativity, innovation, logical reasoning and adaptability. These qualities are beneficial in many facets of our lives, no matter our career paths.

Testing children’s skills

In South Africa, private schools often have more flexibility than government-run (public) schools to incorporate specialised STEM curricula and innovative teaching methods tailored to early childhood education. This might include hands-on experiments like mixing colours or observing plant growth, problem-solving tasks and interactive learning through, for example, counting games and shape recognition.

Public schools, meanwhile, follow a national curriculum set by the Department of Basic Education. While this includes foundational STEM concepts, not all schools have the necessary resources, so the extent and depth of STEM instruction can vary significantly from school to school.

Though they were private institutions, the non-STEM schools in my study followed the national Curriculum and Assessment Policy Statement set by the Department of Basic Education for Grade R. This does not explicitly emphasise STEM subjects. The STEM schools involved in this study, which were also private institutions, had developed their own curricula that emphasised scientific and related learning.

Drawing from study methods used elsewhere in the world , I created a special test with two main parts to measure my participants’ skills.

One tested their content knowledge. This part assessed how well the children understood basic science concepts, such as distinguishing between living and non-living things. The second evaluated the children’s ability to interpret visual information, including understanding spatial relationships and solving visual problems.

The differences between those who were STEM-educated and those who weren’t were immediately clear.

For example, I showed the children a picture of some blocks and asked them how many blocks they saw. One STEM-educated child said there were nine blocks “because some are hiding behind the others in the picture”. A non-STEM child saw “six blocks because I counted them.”

An illustration of blocks in various colours beneath the question

The child with STEM knowledge used advanced thinking skills to imagine where the hidden blocks might be, while their peer only counted the blocks they could see directly.

In another exercise I showed the children a picture with a dog, ball, tree, desk, boy, school bag, book and chicken and asked them to identify which ones were living things.

Illustrations of a dog, a beach ball, a tree, a chair and desk, a child, a schoolbag, a book and a chicken

STEM child: “The boy, the dog and the chicken are living because they can breathe and need water to grow.” The child understood what makes something alive, using ideas like breathing and needing water.

Non-STEM child: “Only the boy is living because the dog and chicken can’t talk.”

This is a more basic, less accurate concept of what constitutes a living thing.

Game-changing learning

Based on my findings, I encourage educators to integrate STEM activities into early childhood curricula to cultivate spatial thinking, visual literacy and scientific understanding. Digital educational games and interactive learning experiences can be incorporated into lessons.

Policymakers should prioritise early STEM education, recognising its long-term benefits in preparing children for academic and professional success. This involves investing in resources, training educators, and developing curricula that embed STEM principles from the start of formal education.

My PhD research was born out of my personal experience with my sons. This journey of love, learning and relentless determination reflects my deepest aspiration: to ignite the same passion and curiosity in others that I have witnessed in my own children.

  • Mathematics
  • Engineering
  • STEM education
  • Critical thinking
  • Problem solving
  • Digital games

problem solving process in science and technology

Manager, Regional Training Hub

problem solving process in science and technology

Head of Evidence to Action

problem solving process in science and technology

Supply Chain - Assistant/Associate Professor (Tenure-Track)

problem solving process in science and technology

OzGrav Postdoctoral Research Fellow

problem solving process in science and technology

Casual Facilitator: GERRIC Student Programs - Arts, Design and Architecture

  • DOI: 10.52902/kjsc.2024.28.121
  • Corpus ID: 269039411

Correlation between Communication Competence, Problem-Solving Skills, Clinical Competence, and Critical Thinking Competence on Person-Centered Care Competence of Nursing Students in who Experienced Clinical Practice

  • Mi Young Moon
  • Published in Forum of Public Safety and… 30 March 2024
  • Education, Medicine

Related Papers

Showing 1 through 3 of 0 Related Papers

arXiv's Accessibility Forum starts next month!

Help | Advanced Search

Computer Science > Machine Learning

Title: knowledge graph modeling-driven large language model operating system (llm os) for task automation in process engineering problem-solving.

Abstract: We present the Process Engineering Operations Assistant (PEOA), an AI-driven framework designed to solve complex problems in the chemical and process industries. The framework employs a modular architecture orchestrated by a meta-agent, which serves as the central coordinator, managing an action generator and instruction-tuned small-scale language models (expert models). The action generator decomposes complex problems into sub-tasks and identifies suitable expert models to execute each, delivering precise solutions for multi-step problem-solving. Key techniques include advanced knowledge modeling using property graphs for improved information retrieval, facilitating more accurate and contextually relevant solutions. Additionally, the framework utilizes a teacher-student transfer-learning approach with GPT-4 (Omni) to fine-tune the action generator and expert models for domain adaptation, alongside an iterative problem-solving mechanism with sophisticated error handling. Custom datasets were developed to evaluate the framework against leading proprietary language models on various engineering tasks. The results demonstrate the framework effectiveness in automating calculations, accelerating prototyping, and providing AI-augmented decision support for industrial processes, marking a significant advancement in process engineering capabilities.
Comments: Accepted for Publication by Association for the Advancement of Artificial Intelligence, Fall Symposium Series
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI)
Cite as: [cs.LG]
  (or [cs.LG] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Designing a Context-Driven Problem-Solving Method with Metacognitive Scaffolding Experience Intervention for Biology Instruction

  • Open access
  • Published: 27 August 2024

Cite this article

You have full access to this open access article

problem solving process in science and technology

  • Merga Dinssa Eticha   ORCID: orcid.org/0009-0008-9263-3273 1 , 2 ,
  • Adula Bekele Hunde 3 &
  • Tsige Ketema 1  

Learner-centered instructional practices, such as the metacognitive strategies scaffolding the problem-solving method for Biology instruction, have been shown to promote students’ autonomy and self-direction, significantly enhancing their understanding of scientific concepts. Thus, this study aimed to elucidate the importance and procedures of context analysis in the development of a context-driven problem-solving method with a metacognitive scaffolding instructional approach, which enhances students’ learning effectiveness in Biology. Therefore, the study was conducted in the Biology departments of secondary schools in Shambu Town, Oromia Region, Ethiopia. The study employed mixed-methods research to collect and analyze data, involving 12 teachers and 80 students. The data collection tools used were interviews, observations, and a questionnaire. The study revealed that conducting a context analysis that involves teachers, students, and learning contexts is essential in designing a context-driven problem-solving method with metacognitive scaffolding for Biology instruction, which provides authentic examples, instructional content, and engaging scenarios for teachers and students. As a result, the findings of this study provide a practical instructional strategy that can be applied to studies aimed at designing a context-driven problem-solving method with metacognitive scaffolding with the potential to influence instructional practices.

Explore related subjects

  • Artificial Intelligence
  • Digital Education and Educational Technology

Avoid common mistakes on your manuscript.

Introduction

Biology is a vital subject in the Natural Sciences and enables learners to understand the mechanisms of living organisms and their practical applications for humans (Agaba, 2013 ). Therefore, Biology instruction requires interactive, learner-centered instructional methods like the problem-solving method with metacognitive scaffolding (PSMMS), which foster students to develop critical thinking, problem-solving, metacognitive, and scientific process skills (Al Azmy & Alebous, 2020 ; Inel & Balim, 2010 ) and help them make informed decisions regarding health and the environment, thereby advancing scientific knowledge (Aurah et al., 2011 ).

Although the focus is on students acquiring scientific knowledge and higher-order thinking skills (Senyigit, 2021 ), research revealed gaps in implementing the PSMMS in Biology, mainly due to the teachers’ limited experience in learner-centered methods (Agena, 2010 ; Beyessa, 2014 ), poor enhancement practices (MoE, 2019 ), tendency to use conventional problem-solving approaches (Aurah et al., 2011 ), and limited understanding of the roles of metacognition in instructional processes (Cimer, 2012 ). On the other hand, there is limited study on the importance of metacognitive instruction in scaffolding the problem-solving method in Biology, although it has a significant impact on students’ performance in mathematics and logical reasoning (Guner & Erbay, 2021 ).

In addition, metacognitive instructional strategies in primary school sciences and the contributions of metacognitive instructional intervention in developing countries are other areas where limited research has been done (Sbhatu, 2006). These challenges offer a study ground for investigating the intervention of metacognitive instructional methods in secondary schools, focusing on the problem-solving method in Biology. This study, therefore, aims to answer the research question, “How can context analysis be used to design a context-driven PSMMS and suggest PSMMS instructional guidelines to enhance students’ effective Biology learning?”

Theoretical Background

The problem-solving method.

The problem-solving method is a learner-centered approach that focuses on identifying, investigating, and solving problems (Ahmady & Nakhostin-Ruhi, 2014 ). The problem-solving method in Biology promotes advanced and critical thinking skills, enhancing students’ attitudes, academic performance, and subject understanding (Albay, 2019 ; Khaparde, 2019 ). Research has shown that students who learn using the problem-solving method outperform those who are taught conventionally (Nnorom, 2019 ). Studies have discussed that the problem-solving method encourages experimentation or learning through trial-and-error and also facilitates a constructivist learning environment by encouraging brainstorming and inquiry (e.g., Ishaku, 2015).

Metacognition

Metacognition, introduced by John Flavell in 1976, refers to an individual’s awareness, critical thinking, reflective judgment, and control of cognitive processes and strategies (Tachie, 2019 ). It consists of two main components, namely metacognitive knowledge and metacognitive regulation (Lai, 2011 ). Metacognitive knowledge involves understanding one’s own thinking, influencing performance, and effective use of methods through declarative, procedural, and conditional knowledge (Schraw et al., 2006 ; Sperling et al., 2004 ), while metacognitive regulation is about controlling thought processes and monitoring cognition, which involves planning, implementing, monitoring, and evaluating strategies (Aaltonen & Ikavalko, 2002 ; Zumbrunn et al., 2011 ).

Metacognitive instructional strategies are used to enhance learners’ effectiveness and support their learning process during the stages of forethought, performance, and self-reflection (Okoro & Chukwudi, 2011 ; Zimmerman, 2008 ). Therefore, metacognitive scaffolding, as described by Zimmerman ( 2008 ), is important in classroom interventions because it promotes problem-solving processes and supports metacognitive activities. According to Sbhatu (2006), understanding metacognitive processes and methods is fundamental for complex problem-solving tasks. Metacognitive functions are categorized based on the phases of the problem-solving method, including problem recognition, presentation, planning, execution, and evaluation (Kapa, 2001 ).

PSMMS in the Face of Globalization and Twenty-First Century Advancements

In the twenty-first century, societies rely on scientific and technological advances, and promoting scientific literacy is crucial for their integration into interactive learning environments (Chu et al., 2017 ). Studies suggest that science, technology, engineering, and mathematics (STEM) education promotes critical thinking, creativity, and problem-solving skills (Widya et al., 2019 ). Therefore, teachers should adopt a learning science and learner-centered approach and focus on higher-order thinking skills and problem-based tasks (Darling-Hammond et al., 2020 ; Nariman, 2014).

The implementation of metacognitive strategies as a scaffold system for the problem-solving method, which simultaneously fosters the development of higher-order skills in their Biology learning, helps students advance in the age of globalization and the twenty-first century. According to Chu et al. ( 2017 ), twenty-first century skills are classified into four categories, such as ways of thinking, ways of working, tools for working, and ways of living in an advanced world. Therefore, studies suggest that teachers can help students develop twenty-first century skills and influence learning through metacognition, thereby promoting self-directed learning (Stehle & Peters-Burton, 2019 ; Tosun & Senocak, 2013 ).

The Problem-Solving Method and Metacognition in Biology Instruction in Ethiopia

The National Education and Training Policy emphasizes the importance of education, particularly in science and technology, in improving problem-solving skills, cultural development, and environmental conservation for holistic development (ETP, 1994 ). Similarly, the 2009 Ethiopian Education Curriculum Framework Document highlights higher-order skills as key competencies and promotes the application, analysis, synthesis, evaluation, and innovation of knowledge for the twenty-first century (MoE, 2009 ). Whereas, a third revision of the curriculum is needed to promote science and technology studies with an emphasis on advanced cognitive skills and a shift from teacher-centered to learner-centered instructional methods (MoE, 2020 ).

The 2009 curriculum framework also places a strong emphasis on Biology as a life science, promoting understanding of self and living things while encouraging critical thinking and problem-solving. Biology lessons that integrate the problem-solving method can enhance students’ academic performance and understanding of the subject (Agaba, 2013 ). However, the Ethiopian education system faces challenges due to limited instructional resources, poor instructional methods, and a lack of experience in practical (hands-on) activities (Eshete, 2001; ETP, 1994 ; MoE, 2005 ; Negash, 2006 ). On the other hand, teachers’ inability to demonstrate effective instructional practices may contribute to low academic performance (Ganyaupfu, 2013 ; Umar, 2011 ).

Challenges in Implementing the PSMMS in Biology Instruction

Metacognitive processes are crucial for guiding learners in problem-solving activities (Sbhatu, 2006), but assessing them can be challenging due to their covert nature (Georghiades, 2000 ). Just like other areas of study, implementing metacognitive scaffolding of the problem-solving method in Biology instruction faces challenges such as complex learning, outdated skills, self-study, overloaded curricula, and limited resources, as shown in Table  1 .

Context Analysis in the Design of the PSMMS for Biology Instruction

Biology lessons are designed for different contexts and consider factors such as the learning environment, prior knowledge, background information, and cultural orientation (Reich et al., 2006 ). For this study, the three domains of context analysis (learners, learning, and learning task contexts) of Smith and Ragan’s (2005) instructional design model (as cited in Getenet, 2020 ) are adapted to design a context-based PSMMS method to generate authentic examples, strong scenarios, and instructional content, as shown in Table  2 .

Research Design

The study analyzed the learning context, including the available instructional resources and facilities in selected schools in Shambu Town, considering teachers’ and students’ perspectives using a mixed-methods research design (Creswell, 2009 ; Creswell & Creswell, 2018 ).

Study Participants

The study was conducted in public secondary schools in Shambu Town. Two schools, namely Shambu Secondary and Preparatory School (ShSPS) and Shambu Secondary School (ShSS), were selected using purposive sampling. Additionally, two Natural Sciences grade 11 sections, one from each school, were selected for instructional intervention based on feedback from context analysis to design an instructional approach, specifically the PSMMS in this study. Thus, all 12 Biology teachers and 80 eleventh-grade students participated in this study (see Table  4 ).

Data Collection Instruments and Procedure

To analyze the contexts to design a context-driven PSMMS for Biology instruction, data were collected using interviews, observations, and a questionnaire. Interviews were conducted to get insights from teachers, while observations were used to assess classroom instructions and instructional resources. Likewise, a questionnaire was administered to students to collect quantitative data on their opinions about the use of PSMMS in Biology instruction. The questionnaire, which was adapted from existing literature (Kallio et al., 2017 ; Rahmawati et al., 2018 ), was initially produced in English and subsequently translated into local language (Afan Oromo) with the help of both software (English to Oromo translator software) and experts. The questionnaire was pilot-tested on a sample of 40 students (22 males and 18 females) to identify any deficiencies in the measuring instrument, and responses were rated on a five-point Likert scale ranging from strongly agree ( N  = 5) to strongly disagree ( N  = 1). The reliability score of the questionnaire was determined to be 0.895, which is at a good level of acceptability.

In this design-based research (DBR) to design an instructional approach for context-driven PSMMS, the data collection process follows a context analysis procedure. Subsequently, the quantitative data collection method is based on the qualitative approach. Accordingly, assessing the context and literature was the first step in the research process. The qualitative approach used interviews and observations for data collection and was also used to identify instructional deficiencies and formulate questions for quantitative data collection.

Data Analysis

This context-based study used both qualitative and quantitative methods to analyze the data collected. In this context-based study, data analysis was conducted on the complex networks of contextual components (Wang & Hannafin, 2005 ). According to Table  2 , the domains of context analysis and key themes that emerged and were applied in this study are listed in Table  3 .

Qualitative data included interviews and notes recorded on the observation checklist. These were analyzed through thematic categorization. Each record was first transcribed, imported into Excel for filtering, and then sent back to Microsoft Word for highlighting. The transcripts were read several times to get a feel for the whole thing. The observation checklist was assessed by watching video recordings and taking notes. However, SPSS software version 24.0 was used to analyze quantitative data using descriptive and inferential statistics, including frequency, percentage, mean, standard deviation, and one-sample t-test.

Results and Discussions

In the study, a total of 12 Biology teachers participated, with 11 males and one female. As displayed in Table  4 , 41.67% of the teacher participants were from ShSPS, while 58.33% were from ShSS. The majority of these teachers had master’s degrees and had over ten years of teaching experience. As for the students involved, 52.5% were from ShSS and 47.5% were from ShSPS. The sex ratio among the students was 51.25% males and 48.75% females (Table  4 ).

Teachers’ Context Analysis

Beliefs about the practices of using the psmms in biology instruction.

The study analyzed teachers’ beliefs about the importance of the PSMMS in Biology instruction. Accordingly, most teachers interviewed (10 out of 12) stated that PSMMS improves students’ learning by enhancing their thinking skills, subject understanding, self-directed learning techniques, and behavior change, suggesting that it has a significant impact on students’ learning. About this, the study participant gave the following illustrative response:

In my opinion, using PSMMS in Biology classes improves students’ higher-order thinking skills by allowing them to understand and articulate problems in their context, stimulate reflection, and promote practical application knowledge (Teacher 4, ShSPS).

Concerning supportive learning, most of the teachers (nine out of 12) believed that it could enhance students’ engagement despite challenges in understanding and learning. About this, research participants said the following:

The PSMMS provides an engaging approach to Biology learning that promotes students’ active engagement and strengthens their awareness and understanding of the objectives and concepts they are expected to understand (Teacher 1, ShSS). Despite the challenge, I believe that using metacognitive scaffolding in the problem-solving method will help students develop their critical thinking skills. In addition, both teachers and students enjoy participating in the teaching-learning process in a classroom environment that is conducive to learning (Teacher 4, ShSPS).

The majority of teachers (eight out of 12) interviewed about PSMMS in Biology instruction argued that it is not commonly used in classrooms and instead relies on established methods like group discussions, pre-learning questions, projects, and quizzes. Some sample responses from teachers are:

The problem-solving method augmented by metacognition is crucial to learning Biology, although students and teachers have limited experience. However, motivated students using this strategy can make the Biology learning experience attractive (Teacher 2, ShSPS). Most students find learning Biology through the PSMMS a tiresome activity and believe that it is too challenging to achieve their learning goals (Teacher 1, ShSPS). The inability to implement the PSMMS in Biology learning experiences is attributed to inadequate laboratory equipment, teaching aids, and school facilities (Teacher 7, ShSS). On some occasions, I provide students with classwork, plans for implementing teaching strategies, arrange group discussions, and assist them in practicing subject-related skills. I then provide background information, promote class engagement, guide responses to questions, assess students’ existing knowledge and goals, provide relevant comments, and guide their thinking (Teacher 4, ShSPS).

Based on the results of the data analysis, it was found that teachers’ perceptions of the importance of the PSMMS to students’ Biology learning contributed significantly to the analysis of the learning context. Accordingly, the contribution of the PSMMS was to enhance students’ Biology learning by improving their critical thinking and learning experiences. Consistent with these findings, teachers’ positive beliefs about classroom problem-solving processes influence their approach to effective Biology teaching (Ishaku, 2015), and integrating metacognitive classroom interventions improves student learning, as evidenced by changes in conceptual learning and problem-solving skills (Guterman, 2002 ; Howard et al., 2001 ).

Observation of Teachers’ Classroom Instruction

The classroom instructional situation was observed to examine the effectiveness of PSMMS for Biology instruction. Consequently, teachers’ use of the PSMMS in Biology lessons was observed. According to the observation checklist, a total of 12 lessons, each lasting 40 minutes, were audited. The first step was to examine teachers’ daily lesson plans. Objectives were found to center predominantly on cognitive domains, neglecting higher-order problem-solving and metacognitive skills. This was evident from the use of terms such as “understand,” “know,” “write,” “explain,” and “describe” in the lesson plan objectives, which hold little significance for teaching Biology using the PSMMS. This finding is consistent with previous research (Chandio et al., 2016 ; Hyder & Bhamani, 2016 ) showing that the objectives of classroom lesson plans often focus on the lower cognitive domain, indicating lower-level knowledge acquisition.

Observing how teachers deliver lessons in the classroom revealed that they often require students to participate in group discussions, which they believe is a learner-centered approach. However, student engagement was limited, and the details of the tasks that students were expected to discuss were not outlined. Additionally, in the lessons observed, teachers failed to engage students, connect theory with practical applications, or support activity-based learning. On the other hand, teachers still have limited opportunities to assess understanding through targeted questions and encourage the use of critical thinking skills. Only oral questions, tests, or quizzes are used as an assessment method. These results were contradictory to the findings of other researchers’ studies, such as Ahmady and Nakhostin-Ruhi ( 2014 ) and Ishaku (2015), where teachers’ classroom lesson delivery is based on students’ constructivist and learner-centered environment acquiring advanced and critical thinking skills from Biology lessons.

The observation raised further questions regarding multimodal lesson delivery, revealing the use of visual representations of figures and diagrams in addition to the usual lecture style (auditory), raising additional concerns about multimodal instructional delivery. Therefore, there was no way to verify whether students had acquired the required higher-order skills, such as problem-solving and metacognitive skills, during their Biology learning. This finding contradicts the findings of Syofyan and Siwi’s ( 2018 ) research, which claims that students’ learning approaches are influenced by their sensory experiences. Consequently, students employ all their senses to capture information when teachers employ visual, auditory, and kinesthetic learning styles.

Students’ Context Analysis

The section presents the results of students’ responses collected using survey questions. Using a questionnaire with a five-point Likert scale ranging from strongly agree to strongly disagree (5 = strongly agree, 4 = agree, 3 = neutral, 2 = disagree, and 1 = strongly disagree), the impact of using PSMMS in Biology learning practices on students’ problem-solving and metacognitive skills was examined. The questionnaire had a response rate of 80 out of 98 (81.63%), indicating satisfactory status and acceptable use of the instrument. Therefore, in students’ responses to the survey questions on Biology learning practices using the PSMMS, there is significant ( p  < 0.05) variation across all dimensions of the items (M = 4.32, SD = 1.30), with mean scores above 4 indicating general students’ agreement with most items listed in Table  5 .

Regarding the problem-solving skills (Items 1–5) that students would acquire in their Biology learning practices using the PSMMS in Biology lessons, the strongest agreement was to investigate and identify the most effective problem-solving strategies (Item 4, M = 4.25, SD = 1.11), followed by creating the framework and design of the problem-solving activities (Item 2, M = 4.05, SD = 1.16), appropriately evaluating the results and providing alternative solutions to the problems (Item 5, M = 3.91, SD = 1.21), and identifying the problem in the problem sketch and interpreting the final result (Item 1, M = 3.90, SD = 1.28). On the other hand, students typically expressed less positive views about the PSMMS’s use of Biology instruction to enhance laboratory knowledge and problem-solving skills (Item 3, M = 3.25, SD = 1.57), despite significant differences in response patterns (Table  5 ).

Concerning students’ responses to the questionnaire items on metacognitive skills (Items 6–15) acquired in their Biology learning practices using the PSMMS, Table  5 shows that the most positive item states that the use of the PSMMS helps set clear learning objectives (Item 7, M = 4.36, SD = 1.09) and evaluates success by asking how well they did (Item 15, M = 4.29, SD = 1.10). Students tended to be less positive about learning Biology using the PSMMS, which is used to create examples and diagrams to make information more meaningful (Item 9, M = 3.83, SD = 1.21), despite the wide range of response patterns (Table  5 ). As a result, using PSMMS in Biology instruction helps students learn essential planning (Items 6–8), implementing (Items 9 and 10), monitoring (Items 11 and 12), and evaluating (Items 13–15) strategies for practice and to learn real-world applications of Biology (Table  5 ).

After data analysis of students’ responses to the survey questions, it was found that the PSMMS instructional approach is effective in helping students acquire problem-solving and metacognitive skills in their Biology learning practices. However, teachers’ responses, classroom observations, and resource availability indicated that the PSMMS approach was not effectively used to improve students’ problem-solving skills and strategies in Biology learning. The study highlights the disadvantages of shortages of laboratory facilities and large class sizes when implementing learner-centered practices in schools. These issues are supported by Kawishe’s (2016) study. Additionally, the PSMMS was not effectively applied in Biology instruction, resulting in students’ inability to develop metacognitive strategies and skills. Therefore, as studies have shown, students face challenges in acquiring metacognitive knowledge and regulation, which are crucial for the development of higher-order thinking skills in Biology learning (Aaltonen & Ikavalko, 2002 ; Lai, 2011 ).

Learning Context Analysis

This section presents the learning context analysis of PSMMS-based Biology instruction for two aspects, namely the availability of instructional resources in laboratories and pedagogical centers and the challenges in implementing the PSMMS in Biology instruction at Shambu Secondary and Preparatory School (ShSPS) and Shambu Secondary School (ShSS). Each is described below.

Availability of Instructional Resources in the Laboratories and Pedagogical Centers

In this section, a physical observation was conducted to assess the availability of instructional resources in Biology laboratories and pedagogical centers. The observation checklists were used to examine the impacts of their availability on Biology instruction using PSMMS.

Concerning the observations of the laboratory resources, it was noted that the two schools have independent Biology laboratories, but their functioning is hindered by poor organization, display tables, and a lack of water supply and waste disposal systems, as shown in Table  6 . Some basic laboratory equipment and chemicals, including dissecting kits, centrifuges, measuring cylinders, protein foods, sodium hydroxide solution, 1% copper (II) sulfate solution, gas syringes, and hydrogen peroxide, are missing. One school, ShSS, has only seven resources out of 20 identified for observation, making it difficult to conduct laboratory activities (Table  6 ).

Regarding the observations of instructional or teaching resources in the pedagogical centers, the results are shown in Table  7 . The results showed that there were no independent or autonomous pedagogical centers in the two schools; instead, they used the Biology department offices as a pedagogical center and kept some teaching and learning aids there. On the other hand, only DNA and RNA models were accessible in ShSPS, while models of DNA and RNA as well as illustrations depicting the organization of animal cell structures were available in ShSS (Table  7 ).

Challenges of Using the PSMMS in Biology Instruction

In this case, the results of interviews with teachers and survey results from students about the challenges they encountered when using the PSMMS in Biology instruction were used. The results of teachers’ and students’ responses are described below.

Teachers’ interview responses regarding the challenges they encountered in implementing the PSMMS in Biology instruction served as the basis for teachers’ perspectives . With the exception of two teachers who gave insignificant responses, the other teachers’ responses were categorized thematically. Therefore, Table  8 contains the response categories by themes, the number of respondents (N), and examples of responses. According to most teachers ( N  = 10), there is a lack of the required up-to-date knowledge, skills, and experience, and for other teachers ( N  = 7), there are shortages of equipment and chemicals (in Biology laboratories) as well as instructional aids (in pedagogical centers), which are challenges of using the PSMMS in Biology instruction. They also mentioned that challenging factors, such as the high student-teacher ratio and time constraints ( N  = 4), students’ deficiency of knowledge and attitudes towards learning ( N  = 3), and problems with school administrative functions ( N  = 1), have an impact on how well students learn Biology while using the PSMMS instructional approach (Table  8 ).

Students’ perspectives , however, were based on their responses to survey questions concerning the challenges of using the PSMMS in Biology lessons, as shown in Table  9 below. The study found statistically significant ( p  < 0.05) differences across the five-item dimensions, with an average mean of 3.62 and a standard deviation of 1.36. Consequently, mean scores above 3 indicated that students agreed with the challenges of implementing the PSMMS in Biology instruction (Table  9 ).

As shown in Table  9 , the majority of students identified two key challenges to successfully implementing the PSMMS in their learning. These are shortages of instructional resources (Item 2, M = 3.56, SD = 1.39) and student difficulty in connecting their prior knowledge with Biological concepts (Item 1, M = 3.44, SD = 1.42). On the other hand, students responded that their teachers had the knowledge and awareness to conduct instructional processes using the PSMMS (Item 4, M = 3.95, SD = 1.22) and had the skills and competence to conduct instructional processes using the PSMMS (Item 5, M = 3.98, SD = 1.35). Table  9 also shows that, despite significant differences in response patterns, students generally had a negative opinion about the dominance of some students in collaborative work (Item 3, M = 3.16, SD = 1.43).

According to the analyzed data, one of the challenging factors was that teachers often lack the required knowledge and skills to facilitate learning, scaffold it, and successfully implement PSMMS in Biology instruction. In contrast, Belland et al. ( 2013 ) suggested that instructional scaffolds increase students’ autonomy, competence, and intimacy, which improves their motivation and enables them to identify appropriate challenges. The other challenging factor that influenced the use of the PSMMS in Biology instruction was the shortage of instructional resources and facilities. Consistent with the studies of Daganaso et al. ( 2020 ) and Kawishe (2016), the use of the PSMMS for Biology instruction faces challenges due to inadequate instructional resources, time constraints, and large class sizes. However, as Eshete (2001) describes, students lack the importance of instructional resources, as instructional resources are necessary for students to learn Biology effectively as they are essential for a deeper understanding of science.

Generally, the important findings from the analyses of the teachers, learners, and learning contexts and their implications for design principles are summarized in Table  10 .

Conclusions

In this study, contexts (teachers, students, and learning) were analyzed with the aim of designing a context-driven problem-solving method with metacognitive scaffolding (PSMMS) for Biology instruction. Despite the potential benefits of the PSMMS, the findings of the current study indicate that the use of the PSMMS instructional approach faces challenges. These challenges include teachers’ lack of the required up-to-date knowledge and skills, students’ lack of awareness and positive attitude towards learning, an overloaded curriculum, scarcity of resources, large class sizes, and problems with school administrative functions. The study emphasizes the significance of context analysis in the design of an effective PSMMS instructional method for enhancing students’ learning in Biology. This analysis provides useful information for providing pertinent examples, practical content, and context-driven instruction.

The context-driven instructional design approach, using the PSMMS, addresses problems in teachers’ effectiveness, students’ effective learning, and the establishment of supportive teaching and learning environments. This approach considers the performance of both teachers and students, as well as the learning environment, including the availability of instructional resources. Consequently, this study concludes that understanding the needs of teachers in relation to the PSMMS can help both teachers and educational policymakers design a system that is well-suited to their specific requirements. Additionally, it can help students use their practical skills as well as establish connections between their prior knowledge and the Biology concepts they are learning. This process has the potential to generate innovative systems for applying the PSMMS instructional approach, with teachers serving as facilitators and students actively engaging and taking responsibility for their own learning progress.

The study investigated the importance of incorporating target groups into the design of the PSMMS for Biology instruction. The study’s empirical findings support the notion that the PSMMS should provide regular learning opportunities and foster the active engagement of teachers. The study also emphasizes the need to consider learning contexts while designing the PSMMS for Biology instruction that is deeply rooted in its particular context, as effective principles applied in one context could not yield the same results in another context. The study suggests that this strategy is particularly useful in developing countries like Ethiopia, where there is limited experience with metacognitive strategies to scaffold the problem-solving method in Biology instruction. As a result, the authors recommend expanding the target audience, considering the national context, and incorporating metacognitive knowledge and regulation strategies in designing context-driven PSMMS for secondary school Biology instruction.

Data Availability

The authors confirm that the results of this study are available in the article and its supplementary material, and raw data can be obtained from the corresponding author upon reasonable request.

Aaltonen, P., & Ikavalko, H. (2002). Implementing strategies successfully. Integrated Manufacturing Systems , 13 (6), 415–418.

Article   Google Scholar  

Agaba, K. C. (2013). Effect of Concept Mapping Instructional Strategy on Students Retention in Biology. African Education Indices , 5 (1), 1–8.

Google Scholar  

Agena, D. (2010). Case Study: Ethiopia UNICEF .

Ahmady, G., & Nakhostin-Ruhi, N. (2014). The effect of problem-solving method on improving primary students’ mathematics achievement and creativity. Mathematics Education , 68 , 22708–22710.

Al Azmy, K. A., & Alebous, T. M. (2020). The degree of using metacognitive thinking strategies skills for problem-solving by a sample of biology female teachers at the secondary stage in the state of Kuwait. Educational Research and Reviews , 15 (12), 764–774. https://doi.org/10.5897/ERR2020.4094 .

Albay, E. M. (2019). Analyzing the effects of the problem-solving approach to the performance and attitude of first-year university students. Social Sciences & Humanities Open , 1 (1), 1–7. https://doi.org/10.1016/j.ssaho.2019.100006 .

Aurah, C. M., Koloi-Keaikitse, S., Isaacs, C., & Finch, H. (2011). The role of metacognition in everyday problem-solving among primary students in Kenya. Problems of Education in the 21st Century , 30 (2011), 9–21.

Belland, B. R., Kim, C., & Hannafin, M. J. (2013). A framework for designing scaffolds that improve motivation and cognition. Educational Psychologist , 48 (4), 243–270. https://doi.org/10.1080/00461520.2013.838920 .

Beyessa, F. (2014). Major factors that affect grade 10 students’ academic achievement in science education at Ilu Ababora general secondary of Oromia regional state, Ethiopia. International Letters of Social and Humanistic Sciences , 32 (21), 118–134. https://doi.org/10.18052/www.scipress.com/ILSHS.32.118 .

Chandio, M. T., Pandhiani, S. M., & Iqbal, R. (2016). Bloom’s Taxonomy: Improving Assessment and Teaching-Learning Process. Journal of Education and Educational Development , 3 (2), 203–221.

Chu, S. K. W., Reynolds, R. B., Tavares, N. J., Notari, M., & Lee, C. W. Y. (2017). 21st century skills development through inquiry-based learning from theory to practice . Springer International Publishing.

Cimer, A. (2012). What makes biology learning difficult and effective: Students’ views. Educational Research and Reviews , 7 (3), 61–71. https://doi.org/10.5897/ERR11.205 .

Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). SAGE Publications. Inc.

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications, Inc.

Daganaso, R. O., Macasadogs, D. V. C., Tan, M. L. G., Pilande, C. J. A., Calipayan, N. J., & Santos, A. G. D. L (2020). Overcoming challenges in the use of teaching strategies: The case of grade eight biology teachers. Journal of International Academic Research for Multidisciplinary , 8 (1), 25–36.

Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020). Implications for Educational Practice of the Science of Learning and Development. Applied Developmental Science , 24 (2), 97–140. https://doi.org/10.1080/10888691.2018.1537791 .

Dawal, B. S., & Mangut, M. (2021). Overloaded curriculum content: Factor responsible for students’ under achievement in basic science and technology in junior secondary schools in Plateau state, Nigeria. KIU Journal of Social Sciences , 7 (2), 123–128.

ETP. (1994). The Federal Democratic Republic of Ethiopia Education and Training Policy . St. George Printing.

Ganyaupfu, E. M. (2013). Teaching methods and students’ academic performance. International Journal of Humanities and Social Science Invention , 2 (9), 29–35.

Georghiades, P. (2000). Beyond conceptual change learning in science education: Focusing on transfer, durability, and Metacognition. Educational Research , 42 (2), 119–139.

Getenet, S. T. (2020). Designing a professional development program for mathematics teachers for effective use of technology in teaching. Education and Information Technologies , 25 (3), 1855–1873. https://doi.org/10.1007/s10639-019-10056-8 .

Guner, P., & Erbay, H. N. (2021). Metacognitive skills and problem-solving. International Journal of Research in Education and Science (IJRES) , 7 (3), 715–734. https://doi.org/10.46328/ijres.1594 .

Guterman, E. (2002). Toward Dynamic Assessment of Reading: Applying Metacognitive Awareness Guidance to Reading Assessment Tasks. Journal of Research in Reading , 25 (3), 283–298.

Howard, B. C., McGee, S., Shia, R., & Hong, N. S. (2001). The Influence of Metacognitive Self-Regulation and Ability Levels on Problem-Solving .

Hyder, I., & Bhamani, S. (2016). Bloom’s taxonomy (cognitive domain) in higher education settings: Reflection brief. Journal of Education and Educational Development , 3 (2), 288–300.

Inel, D., & Balim, A. G. (2010). The effects of using problem-based learning in science and technology teaching upon students’ academic achievement and levels of structuring concepts. Asia-Pacific Forum on Science Learning and Teaching , 11 (2), 1–23.

Kallio, H., Virta, K., Kallio, M., Virta, A., Hjardemaal, F. R., & Sandven, J. (2017). The utility of the metacognitive awareness inventory for teachers among in-service teachers. Journal of Education and Learning , 6 (4), 78–91. https://doi.org/10.5539/jel.v6n4p78 .

Kapa, E. (2001). A metacognitive support during the process of problem-solving in a computerized environment. Educational Studies in Mathematics , 47 (3), 317–336.

Khaparde, R. (2019). Experimental problem-solving: A plausible approach for conventional laboratory courses. Journal of Physics: Conference Series , 1286 (1), 1–7. https://doi.org/10.1088/1742-6596/1286/1/012031 .

Kim, N. J., Belland, B. R., & Axelrod, D. (2019). Scaffolding for optimal challenge in K–12 problem-based learning. Interdisciplinary Journal of Problem-Based Learning , 13 (1), 3–26. https://doi.org/10.7771/1541-5015.1712 .

Lai, E. R. (2011). Metacognition: A literature review. Pearson Research Report , 24 , 1–40. http://www.pearsonassessments.com/research .

MoE (2020). Ministry of Education Concept Note for Education Sector COVID 19-Preparedness and Response Plan .

MoE (2019). Federal Democratic Republic of Ethiopia Ministry of Education Curriculum for Doctor of Education in Biology .

MoE (2009). The Federal Democratic Republic of Ethiopia, Ministry of Education, Curriculum Framework for Ethiopian Education (KG – Grade 12) .

MoE (2005). The Federal Democratic Republic of Ethiopia: Education Sector Development Program III (ESDP-III) 2005/2006–2010/2011 (1998 EFY – 2002 EFY) Program Action Plan (PAP) .

Negash, T. (2006). Education in Ethiopia from Crisis to the Brink of Collapse . Nordiska Afrikainstitutet.

Nnorom, N. R. (2019). Effect of problem-based solving technique on secondary school students achievement in biology. International Journal of Scientific & Engineering Research , 10 (3), 1025–1029.

Okoro, C. O., & Chukwudi, E. K. (2011). Metacognitive strategies: A viable tool for self-directed learning. Journal of Educational and Social Research , 1 (4), 71–76.

Peterson, C. (2003). Bringing ADDIE to life: Instructional design at its best. Journal of Educational Multimedia and Hypermedia , 12 (3), 227–241.

Rahmawati, D., Sajidan, S., & Ashadi, A. (2018). Analysis of Problem-Solving Skill in Learning Biology at Senior High School of Surakarta. International Conference on Science Education (ICoSEd) , 1006 , 1–5. https://doi.org/10.1088/1742-6596/1006/1/012014 .

Reich, Y., Kolberg, E., & Levin, I. (2006). Designing contexts for learning design. International Journal of Engineering Education , 22 (3), 489–495.

Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education , 36 , 111–139. https://doi.org/10.1007/s11165-005-3917-8 .

Senyigit, C. (2021). The effect of problem-based learning on pre-service primary school teachers’ conceptual understanding and misconceptions. International Online Journal of Primary Education (IOJPE) , 10 (1), 50–72.

Sperling, R. A., Howard, B. C., Staley, R., & DuBois, N. (2004). Metacognition and self-regulated learning constructs. Educational Research and Evaluation: An International Journal on Theory and Practice , 10 (2), 117–139. https://doi.org/10.1076/edre.10.2.117.27905 .

Stehle, S. M., & Peters-Burton, E. E. (2019). Developing student 21st century skills in selected exemplary inclusive STEM high schools. International Journal of STEM Education , 6 (1), 1–15. https://doi.org/10.1186/s40594-019-0192-1 .

Syofyan, R., & Siwi, M. K. (2018). The impact of visual, auditory, and kinesthetic learning styles on economics education teaching. Advances in Economics, Business, and Management Research , 57 , 642–649.

Tachie, S. A. (2019). Metacognitive skills and strategies application: How this helps learners in mathematics problem-solving. EURASIA Journal of Mathematics Science and Technology Education , 15 (5), 1–12. https://doi.org/10.29333/ejmste/105364 .

Tosun, C., & Senocak, E. (2013). The effects of problem-based learning on metacognitive awareness and attitudes toward chemistry of prospective teachers with different academic backgrounds. Australian Journal of Teacher Education , 38 (3), 61–73.

Umar, A. A. (2011). Effects of biology practical activities on students’ process skill acquisition in Minna, Nigeria state. Journal of Science Technology Mathematics and Education (JOSTMED) , 7 (2), 120–128.

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development , 53 (4), 5–23.

Widya, Rifandi, R., & Rahmi, Y. L. (2019). STEM education to fulfill the 21st century demand: A literature review. Journal of Physics: Conference Series , 1317 , 1–7. https://doi.org/10.1088/1742-6596/1317/1/012208 .

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American Educational Research Journal , 45 (1), 166–183. https://doi.org/10.3102/0002831207312909 .

Zumbrunn, S., Tadlock, J., & Roberts, E. D. (2011). Encouraging self-regulated learning in the classroom: A review of the literature. Metropolitan Educational Research Consortium (MERC) , 1–28.

Download references

Acknowledgements

The authors would like to thank the teachers and students of Shambu Secondary Schools, Jimma University, and Shambu College of Teachers Education for their invaluable contributions in terms of information, resources, and financial support.

This editorial has not received financial support from any funding organizations.

Author information

Authors and affiliations.

College of Natural Sciences, Department of Biology, Jimma University, Jimma, Ethiopia

Merga Dinssa Eticha & Tsige Ketema

Department of Biology, Shambu College of Teachers Education, Shambu, Ethiopia

Merga Dinssa Eticha

Department of Curriculum and Instructional Sciences, Kotebe University of Education, Addis Ababa, Ethiopia

Adula Bekele Hunde

You can also search for this author in PubMed   Google Scholar

Contributions

Merga Dinssa Eticha : Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing-original draft, Writing-review and editing.

Adula Bekele Hunde : Conceptualization, Methodology, Validation, Investigation, Supervision, Writing-review and editing.

Tsige Ketema : Conceptualization, Methodology, Validation, Investigation, Supervision, Writing-review and editing.

Corresponding author

Correspondence to Merga Dinssa Eticha .

Ethics declarations

Ethical approval.

All procedures performed in studies involving human participants followed the ethical standards of institutional and national research committees. Therefore, approval to conduct the research was accepted by the university’s institutional review board, and ethical guidelines were followed in conducting this study.

Competing Interests

The authors declare no conflicting and competing interests.

Informed Consent

All individual participants involved in the study provided informed consent.

Statement Regarding Research Involving Human Participants and/or Animals

This study entailed the involvement of human subjects and was conducted in accordance with ethical standards, which encompassed the principles of informed consent and approval from an ethics committee.

Consent to Participate

Consent was obtained from all individual participants involved in the study after ensuring that they were fully informed. To protect their privacy, participants’ names will not be linked to any publication or presentation that uses the data and research collected. Instead, the authors used codes to identify participants. Disclosure of identifiable information will only occur if required by law or with the written consent of the participant. Participants participated in the study voluntarily and had the option to withdraw at any time.

Consent to Publish

The authors hereby affirm that the participants in the human research have given their consent for the publication of the details in the journal and article.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Eticha, M.D., Hunde, A.B. & Ketema, T. Designing a Context-Driven Problem-Solving Method with Metacognitive Scaffolding Experience Intervention for Biology Instruction. J Sci Educ Technol (2024). https://doi.org/10.1007/s10956-024-10107-x

Download citation

Accepted : 27 February 2024

Published : 27 August 2024

DOI : https://doi.org/10.1007/s10956-024-10107-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Biology learning
  • Context analysis
  • Metacognitive scaffolding
  • Problem-solving method
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Draw A Map Showing The Problem Solving Process

    problem solving process in science and technology

  2. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    problem solving process in science and technology

  3. computer algorithm science problem solving process with programming

    problem solving process in science and technology

  4. 6 steps of the problem solving process

    problem solving process in science and technology

  5. Title Page

    problem solving process in science and technology

  6. The problem solving cycle

    problem solving process in science and technology

COMMENTS

  1. Problem-Solving in Science and Technology Education

    Problem-solving skills are a process, including usage of previously gained knowledge, skills and understanding, to satisfy the demands of an unknown situation. The procedure begins with the initial confrontation and ends once a response has been acquired and taken into account in light of the initial circumstances.

  2. A Detailed Characterization of the Expert Problem-Solving Process in

    A primary goal of science and engineering (S&E) education is to produce good problem solvers, but how to best teach and measure the quality of problem solving remains unclear. The process is complex, multifaceted, and not fully characterized. Here, we present a detailed characterization of the S&E problem-solving process as a set of specific interlinked decisions. This framework of decisions ...

  3. Problem solving in science and technology education

    Both science and technology education have a commitment to teaching process; investigations or scientific method in science, design in technology, and problem solving in both areas. The separate debates in science and technology education reveal different curricular emphases in processes and content, reflecting different goals, and pedagogic and educational research traditions. This paper ...

  4. Technological problem solving: an investigation of differences

    Research into technological problem solving has shown it to exist in a range of forms and draw upon different processes and knowledge types. This paper adds to this understanding by identifying procedural and epistemic differences in relation to task performance for pupils solving a well-defined technological problem. The study is theoretically grounded in a transformative epistemology of ...

  5. The application of educational technology to develop problem-solving

    Multiple problem-solving process frameworks have been formulated to enhance these skills by directing students through the stages of problem-solving (e.g., ... (Science, Technology, Engineering, and Mathematics) disciplines receiving most attention (See Table 2). Some of these strategies were considered as intervention variables in quasi ...

  6. Problem-Solving in Science and Technology Education

    Both science and technology education have a commitment to teaching process; investigations or scientific method in science, design in technology, and problem solving in both areas.

  7. Full article: A framework to foster problem-solving in STEM and

    ABSTRACT. Background: Recent developments in STEM and computer science education put a strong emphasis on twenty-first-century skills, such as solving authentic problems. These skills typically transcend single disciplines. Thus, problem-solving must be seen as a multidisciplinary challenge, and the corresponding practices and processes need to be described using an integrated framework.

  8. Problem choice and decision trees in science and engineering

    A typical project for an incoming graduate student might involve 1-2 weeks of planning and 2-5 years of execution (Figure 1A).Once you choose a project, you are confined to a relatively narrow band of impact (Figure 1B); barring an unexpected surprise, the solution to a mediocre problem will have incremental impact, whereas solving an important problem will have greater impact.

  9. Problem Solving

    The specific process of problem solving used in this unit was adapted from an eighth-grade technology textbook written for New York State standard technology curriculum. The process is shown in Figure 1, with details included below. ... This type of questioning provides a basis and relevance that is useful in other energy science and technology ...

  10. Teaching Creativity and Inventive Problem Solving in Science

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known ...

  11. Identification of Problem-Solving Techniques in Computational Thinking

    The problem-solving process and developing their computational thinking as they design a feasible solution. A22: The sub-construct of problem solving loaded onto coding rather than computational thinking. A26: ... Science and Technology Education. A35: Tikva, C., & Tambouris, E. (2021a). A systematic mapping study on teaching and learning ...

  12. Problem Solving in Science Learning

    The traditional teaching of science problem solving involves a considerable amount of drill and practice. Research suggests that these practices do not lead to the development of expert-like problem-solving strategies and that there is little correlation between the number of problems solved (exceeding 1,000 problems in one specific study) and the development of a conceptual understanding.

  13. STEM Projects That Tackle Real-World Problems

    " Problem-solving involves finding answers to questions and solutions for undesired effects. STEM lessons revolve around the engineering design process (EDP) — an organized, open-ended approach to investigation that promotes creativity, invention, and prototype design, along with testing and analysis," says Ann Jolly in her book STEM by ...

  14. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  15. Using the Scientific Method to Solve Problems

    The scientific method can be used to address any situation or problem where a theory can be developed. Although more often associated with natural sciences, it can also be used to develop theories in social sciences (such as psychology, sociology and linguistics), using both. information is information that can be measured, and tends to focus ...

  16. Solving Complex Problems

    Regardless of topic, the students in a section of Solving Complex Problems all work together in the first few class sessions to predict what challenges will arise and to parse the overall problem into a series of 5 to 10 themes. For example, themes might include the environmental context of the problem, engineering challenges, public relations ...

  17. A Study of Problem-solving Ability in Science and Technology Innovation

    Science and technology innovation education is an important aspect of youth quality education. Promoting students' problem-solving and innovation abilities through science and technology innovation activities has become an important issue that educators need to face nowadays. Based on the input-process-outcome (IPO) framework, this paper constructed a hypothetical model of the influence ...

  18. STEM Problem Solving: Inquiry, Concepts, and Reasoning

    Balancing disciplinary knowledge and practical reasoning in problem solving is needed for meaningful learning. In STEM problem solving, science subject matter with associated practices often appears distant to learners due to its abstract nature. Consequently, learners experience difficulties making meaningful connections between science and their daily experiences. Applying Dewey's idea of ...

  19. (PDF) Problem solving in science technology and society learning

    Problem solving research applied in the Science Technology and Society Learning aimed to improve students' science process skills and scientific attitudes.

  20. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  21. A Detailed Characterization of the Expert Problem-Solving Process in

    Priemer et al. (2020) synthesizes literature on problem solving and scientific reasoning to create a "STEM [science, technology, engineering, and mathematics] and computer science frame-work for problem solving" that lays out steps that could be involved in a students' problem-solving efforts across STEM fields.

  22. Playing technology games and making science fun helps young kids solve

    This might include hands-on experiments like mixing colours or observing plant growth, problem-solving tasks and interactive learning through, for example, counting games and shape recognition.

  23. PDF Problem solving in science and technology education

    Problem Solving inScience andTechnology Education. Patricia Murphy and Robert McCormick. TheOpen University. Abstract. Both science a td chnology education have acommitment to teaching process; investigations or scientific method in science, design n technology, and problem solving in both areas. The separate debates in science a td chnology ...

  24. Correlation between Communication Competence, Problem-Solving Skills

    It is necessary to induce nursing students to use a lot of volunteer programs in order to increase their person-centered care competence, and it is necessary to develop and actively guide convergence extracurricular activities linked to subjects. Purpose: This study is a descriptive research study conducted to identify the relationship and influencing factors between communication competence ...

  25. [2408.14494] Knowledge Graph Modeling-Driven Large Language Model

    We present the Process Engineering Operations Assistant (PEOA), an AI-driven framework designed to solve complex problems in the chemical and process industries. The framework employs a modular architecture orchestrated by a meta-agent, which serves as the central coordinator, managing an action generator and instruction-tuned small-scale language models (expert models). The action generator ...

  26. Designing a Context-Driven Problem-Solving Method with ...

    Studies suggest that science, technology, engineering, and mathematics (STEM) education promotes critical thinking, creativity, and problem-solving skills (Widya et al., 2019). Therefore, teachers should adopt a learning science and learner-centered approach and focus on higher-order thinking skills and problem-based tasks (Darling-Hammond et ...