• Texas Go Math
  • Big Ideas Math
  • Engageny Math
  • McGraw Hill My Math
  • enVision Math
  • 180 Days of Math
  • Math in Focus Answer Key
  • Math Expressions Answer Key
  • Privacy Policy

CCSS Math Answers

Eureka Math Grade 1 Module 1 Answer Key | Engage NY Math 1st Grade Module 1 Answer Key

Engageny math grade 1 module 1 answer key | eureka math 1st grade module 1 answer key.

Eureka Math Grade 1 Module 1 Sums and Differences to 10

Eureka Math Grade 1 Module 1 Topic A Embedded Numbers and Decompositions

  • Eureka Math Grade 1 Module 1 Lesson 1 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 2 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 3 Answer Key

Eureka Math 1st Grade Module 1 Topic B Counting On from Embedded Numbers

  • Eureka Math Grade 1 Module 1 Lesson 4 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 5 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 6 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 7 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 8 Answer Key

Engage NY Math 1st Grade Module 1 Topic C Addition Word Problems

  • Eureka Math Grade 1 Module 1 Lesson 9 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 10 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 11 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 12 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 13 Answer Key

EngageNY Math Grade 1 Module 1 Topic D Strategies for Counting On

  • Eureka Math Grade 1 Module 1 Lesson 14 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 15 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 16 Answer Key

1st Grade Eureka Math Module 1 Topic E The Commutative Property of Addition and the Equal Sign

  • Eureka Math Grade 1 Module 1 Lesson 17 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 18 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 19 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 20 Answer Key

Engage NY Grade 1 Module 1 Topic F Development of Addition Fluency Within 10

  • Eureka Math Grade 1 Module 1 Lesson 21 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 22 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 23 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 24 Answer Key

Eureka Math Grade 1 Module 1 Mid Module Assessment Answer Key

EngageNY 1st Grade Math Module 1 Topic G Subtraction as an Unknown Addend Problem

  • Eureka Math Grade 1 Module 1 Lesson 25 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 26 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 27 Answer Key

Great Minds Eureka Math Grade 1 Module 1 Topic H Subtraction Word Problems

  • Eureka Math Grade 1 Module 1 Lesson 28 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 29 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 30 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 31 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 32 Answer Key

Eureka Math Grade 1 Module 1 Topic I Decomposition Strategies for Subtraction

  • Eureka Math Grade 1 Module 1 Lesson 33 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 34 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 35 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 36 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 37 Answer Key

Eureka Math 1st Grade Module 1 Topic J Development of Subtraction Fluency Within 10

  • Eureka Math Grade 1 Module 1 Lesson 38 Answer Key
  • Eureka Math Grade 1 Module 1 Lesson 39 Answer Key

Eureka Math Grade 1 Module 1 End of Module Assessment Answer Key

Leave a Comment Cancel Reply

You must be logged in to post a comment.

1.1 Functions and Function Notation

  • ⓑ yes. (Note: If two players had been tied for, say, 4th place, then the name would not have been a function of rank.)

w = f ( d ) w = f ( d )

g ( 5 ) = 1 g ( 5 ) = 1

m = 8 m = 8

y = f ( x ) = x 3 2 y = f ( x ) = x 3 2

g ( 1 ) = 8 g ( 1 ) = 8

x = 0 x = 0 or x = 2 x = 2

  • ⓐ yes, because each bank account has a single balance at any given time
  • ⓑ no, because several bank account numbers may have the same balance
  • ⓒ no, because the same output may correspond to more than one input.
  • ⓐ Yes, letter grade is a function of percent grade;
  • ⓑ No, it is not one-to-one. There are 100 different percent numbers we could get but only about five possible letter grades, so there cannot be only one percent number that corresponds to each letter grade.

No, because it does not pass the horizontal line test.

1.2 Domain and Range

{ − 5 , 0 , 5 , 10 , 15 } { − 5 , 0 , 5 , 10 , 15 }

( − ∞ , ∞ ) ( − ∞ , ∞ )

( − ∞ , 1 2 ) ∪ ( 1 2 , ∞ ) ( − ∞ , 1 2 ) ∪ ( 1 2 , ∞ )

[ − 5 2 , ∞ ) [ − 5 2 , ∞ )

  • ⓐ values that are less than or equal to –2, or values that are greater than or equal to –1 and less than 3;
  • ⓑ { x | x ≤ − 2 or − 1 ≤ x < 3 } { x | x ≤ − 2 or − 1 ≤ x < 3 } ;
  • ⓒ ( − ∞ , − 2 ] ∪ [ − 1 , 3 ) ( − ∞ , − 2 ] ∪ [ − 1 , 3 )

domain =[1950,2002] range = [47,000,000,89,000,000]

domain: ( − ∞ , 2 ] ; ( − ∞ , 2 ] ; range: ( − ∞ , 0 ] ( − ∞ , 0 ]

1.3 Rates of Change and Behavior of Graphs

$ 2.84 − $ 2.31 5  years = $ 0.53 5  years = $ 0.106 $ 2.84 − $ 2.31 5  years = $ 0.53 5  years = $ 0.106 per year.

a + 7 a + 7

The local maximum appears to occur at ( − 1 , 28 ) , ( − 1 , 28 ) , and the local minimum occurs at ( 5 , − 80 ) . ( 5 , − 80 ) . The function is increasing on ( − ∞ , − 1 ) ∪ ( 5 , ∞ ) ( − ∞ , − 1 ) ∪ ( 5 , ∞ ) and decreasing on ( − 1 , 5 ) . ( − 1 , 5 ) .

1.4 Composition of Functions

( f g ) ( x ) = f ( x ) g ( x ) = ( x − 1 ) ( x 2 − 1 ) = x 3 − x 2 − x + 1 ( f − g ) ( x ) = f ( x ) − g ( x ) = ( x − 1 ) − ( x 2 − 1 ) = x − x 2 ( f g ) ( x ) = f ( x ) g ( x ) = ( x − 1 ) ( x 2 − 1 ) = x 3 − x 2 − x + 1 ( f − g ) ( x ) = f ( x ) − g ( x ) = ( x − 1 ) − ( x 2 − 1 ) = x − x 2

No, the functions are not the same.

A gravitational force is still a force, so a ( G ( r ) ) a ( G ( r ) ) makes sense as the acceleration of a planet at a distance r from the Sun (due to gravity), but G ( a ( F ) ) G ( a ( F ) ) does not make sense.

f ( g ( 1 ) ) = f ( 3 ) = 3 f ( g ( 1 ) ) = f ( 3 ) = 3 and g ( f ( 4 ) ) = g ( 1 ) = 3 g ( f ( 4 ) ) = g ( 1 ) = 3

g ( f ( 2 ) ) = g ( 5 ) = 3 g ( f ( 2 ) ) = g ( 5 ) = 3

[ − 4 , 0 ) ∪ ( 0 , ∞ ) [ − 4 , 0 ) ∪ ( 0 , ∞ )

Possible answer:

g ( x ) = 4 + x 2 g ( x ) = 4 + x 2 h ( x ) = 4 3 − x h ( x ) = 4 3 − x f = h ∘ g f = h ∘ g

1.5 Transformation of Functions

The graphs of f ( x ) f ( x ) and g ( x ) g ( x ) are shown below. The transformation is a horizontal shift. The function is shifted to the left by 2 units.

g ( x ) = 1 x - 1 + 1 g ( x ) = 1 x - 1 + 1

g ( x ) = − f ( x ) g ( x ) = − f ( x )

-2 0 2 4

h ( x ) = f ( − x ) h ( x ) = f ( − x )

-2 0 2 4
15 10 5 unknown

Notice: g ( x ) = f ( − x ) g ( x ) = f ( − x ) looks the same as f ( x ) f ( x ) .

2 4 6 8
9 12 15 0

g ( x ) = 3 x - 2 g ( x ) = 3 x - 2

g ( x ) = f ( 1 3 x ) g ( x ) = f ( 1 3 x ) so using the square root function we get g ( x ) = 1 3 x g ( x ) = 1 3 x

1.6 Absolute Value Functions

| x − 2 | ≤ 3 | x − 2 | ≤ 3

using the variable p p for passing, | p − 80 | ≤ 20 | p − 80 | ≤ 20

f ( x ) = − | x + 2 | + 3 f ( x ) = − | x + 2 | + 3

x = − 1 x = − 1 or x = 2 x = 2

f ( 0 ) = 1 , f ( 0 ) = 1 , so the graph intersects the vertical axis at ( 0 , 1 ) . ( 0 , 1 ) . f ( x ) = 0 f ( x ) = 0 when x = − 5 x = − 5 and x = 1 x = 1 so the graph intersects the horizontal axis at ( − 5 , 0 ) ( − 5 , 0 ) and ( 1 , 0 ) . ( 1 , 0 ) .

- 8 ≤ x ≤ 4 - 8 ≤ x ≤ 4

k ≤ 1 k ≤ 1 or k ≥ 7 ; k ≥ 7 ; in interval notation, this would be ( − ∞ , 1 ] ∪ [ 7 , ∞ ) ( − ∞ , 1 ] ∪ [ 7 , ∞ )

1.7 Inverse Functions

h ( 2 ) = 6 h ( 2 ) = 6

The domain of function f − 1 f − 1 is ( − ∞ , − 2 ) ( − ∞ , − 2 ) and the range of function f − 1 f − 1 is ( 1 , ∞ ) . ( 1 , ∞ ) .

  • f ( 60 ) = 50. f ( 60 ) = 50. In 60 minutes, 50 miles are traveled.
  • f − 1 ( 60 ) = 70. f − 1 ( 60 ) = 70. To travel 60 miles, it will take 70 minutes.

a. 3; b. 5.6

x = 3 y + 5 x = 3 y + 5

f − 1 ( x ) = ( 2 − x ) 2 ; domain of f : [ 0 , ∞ ) ; domain of f − 1 : ( − ∞ , 2 ] f − 1 ( x ) = ( 2 − x ) 2 ; domain of f : [ 0 , ∞ ) ; domain of f − 1 : ( − ∞ , 2 ]

1.1 Section Exercises

A relation is a set of ordered pairs. A function is a special kind of relation in which no two ordered pairs have the same first coordinate.

When a vertical line intersects the graph of a relation more than once, that indicates that for that input there is more than one output. At any particular input value, there can be only one output if the relation is to be a function.

When a horizontal line intersects the graph of a function more than once, that indicates that for that output there is more than one input. A function is one-to-one if each output corresponds to only one input.

not a function

f ( − 3 ) = − 11 ; f ( − 3 ) = − 11 ; f ( 2 ) = − 1 ; f ( 2 ) = − 1 ; f ( − a ) = − 2 a − 5 ; f ( − a ) = − 2 a − 5 ; − f ( a ) = − 2 a + 5 ; − f ( a ) = − 2 a + 5 ; f ( a + h ) = 2 a + 2 h − 5 f ( a + h ) = 2 a + 2 h − 5

f ( − 3 ) = 5 + 5 ; f ( − 3 ) = 5 + 5 ; f ( 2 ) = 5 ; f ( 2 ) = 5 ; f ( − a ) = 2 + a + 5 ; f ( − a ) = 2 + a + 5 ; − f ( a ) = − 2 − a − 5 ; − f ( a ) = − 2 − a − 5 ; f ( a + h ) = 2 − a − h + 5 f ( a + h ) = 2 − a − h + 5

f ( − 3 ) = 2 ; f ( − 3 ) = 2 ; f ( 2 ) = 1 − 3 = − 2 ; f ( 2 ) = 1 − 3 = − 2 ; f ( − a ) = | − a − 1 | − | − a + 1 | ; f ( − a ) = | − a − 1 | − | − a + 1 | ; − f ( a ) = − | a − 1 | + | a + 1 | ; − f ( a ) = − | a − 1 | + | a + 1 | ; f ( a + h ) = | a + h − 1 | − | a + h + 1 | f ( a + h ) = | a + h − 1 | − | a + h + 1 |

g ( x ) − g ( a ) x − a = x + a + 2 , x ≠ a g ( x ) − g ( a ) x − a = x + a + 2 , x ≠ a

  • ⓐ f ( − 2 ) = 14 ; f ( − 2 ) = 14 ;
  • ⓑ x = 3 x = 3
  • ⓐ f ( 5 ) = 10 ; f ( 5 ) = 10 ;
  • ⓑ x = − 1 x = − 1 or x = 4 x = 4
  • ⓐ f ( t ) = 6 − 2 3 t ; f ( t ) = 6 − 2 3 t ;
  • ⓑ f ( − 3 ) = 8 ; f ( − 3 ) = 8 ;
  • ⓒ t = 6 t = 6
  • ⓐ f ( 0 ) = 1 ; f ( 0 ) = 1 ;
  • ⓑ f ( x ) = − 3 , x = − 2 f ( x ) = − 3 , x = − 2 or x = 2 x = 2

not a function so it is also not a one-to-one function

one-to-one function

function, but not one-to-one

f ( x ) = 1 , x = 2 f ( x ) = 1 , x = 2

f ( − 2 ) = 14 ; f ( − 1 ) = 11 ; f ( 0 ) = 8 ; f ( 1 ) = 5 ; f ( 2 ) = 2 f ( − 2 ) = 14 ; f ( − 1 ) = 11 ; f ( 0 ) = 8 ; f ( 1 ) = 5 ; f ( 2 ) = 2

f ( − 2 ) = 4 ;    f ( − 1 ) = 4.414 ; f ( 0 ) = 4.732 ; f ( 1 ) = 5 ; f ( 2 ) = 5.236 f ( − 2 ) = 4 ;    f ( − 1 ) = 4.414 ; f ( 0 ) = 4.732 ; f ( 1 ) = 5 ; f ( 2 ) = 5.236

f ( − 2 ) = 1 9 ; f ( − 1 ) = 1 3 ; f ( 0 ) = 1 ; f ( 1 ) = 3 ; f ( 2 ) = 9 f ( − 2 ) = 1 9 ; f ( − 1 ) = 1 3 ; f ( 0 ) = 1 ; f ( 1 ) = 3 ; f ( 2 ) = 9

[ 0 ,  100 ] [ 0 ,  100 ]

[ − 0.001 ,  0 .001 ] [ − 0.001 ,  0 .001 ]

[ − 1 , 000 , 000 ,  1,000,000 ] [ − 1 , 000 , 000 ,  1,000,000 ]

[ 0 ,  10 ] [ 0 ,  10 ]

[ −0.1 , 0.1 ] [ −0.1 , 0.1 ]

[ − 100 ,  100 ] [ − 100 ,  100 ]

  • ⓐ g ( 5000 ) = 50 ; g ( 5000 ) = 50 ;
  • ⓑ The number of cubic yards of dirt required for a garden of 100 square feet is 1.
  • ⓐ The height of a rocket above ground after 1 second is 200 ft.
  • ⓑ the height of a rocket above ground after 2 seconds is 350 ft.

1.2 Section Exercises

The domain of a function depends upon what values of the independent variable make the function undefined or imaginary.

There is no restriction on x x for f ( x ) = x 3 f ( x ) = x 3 because you can take the cube root of any real number. So the domain is all real numbers, ( − ∞ , ∞ ) . ( − ∞ , ∞ ) . When dealing with the set of real numbers, you cannot take the square root of negative numbers. So x x -values are restricted for f ( x ) = x f ( x ) = x to nonnegative numbers and the domain is [ 0 , ∞ ) . [ 0 , ∞ ) .

Graph each formula of the piecewise function over its corresponding domain. Use the same scale for the x x -axis and y y -axis for each graph. Indicate inclusive endpoints with a solid circle and exclusive endpoints with an open circle. Use an arrow to indicate − ∞ − ∞ or ∞ . ∞ . Combine the graphs to find the graph of the piecewise function.

( − ∞ , 3 ] ( − ∞ , 3 ]

( − ∞ , − 1 2 ) ∪ ( − 1 2 , ∞ ) ( − ∞ , − 1 2 ) ∪ ( − 1 2 , ∞ )

( − ∞ , − 11 ) ∪ ( − 11 , 2 ) ∪ ( 2 , ∞ ) ( − ∞ , − 11 ) ∪ ( − 11 , 2 ) ∪ ( 2 , ∞ )

( − ∞ , − 3 ) ∪ ( − 3 , 5 ) ∪ ( 5 , ∞ ) ( − ∞ , − 3 ) ∪ ( − 3 , 5 ) ∪ ( 5 , ∞ )

( − ∞ , 5 ) ( − ∞ , 5 )

[ 6 , ∞ ) [ 6 , ∞ )

( − ∞ , − 9 ) ∪ ( − 9 , 9 ) ∪ ( 9 , ∞ ) ( − ∞ , − 9 ) ∪ ( − 9 , 9 ) ∪ ( 9 , ∞ )

domain: ( 2 , 8 ] , ( 2 , 8 ] , range [ 6 , 8 ) [ 6 , 8 )

domain: [ − 4 ,  4], [ − 4 ,  4], range: [ 0 ,  2] [ 0 ,  2]

domain: [ − 5 , 3 ) , [ − 5 , 3 ) , range: [ 0 , 2 ] [ 0 , 2 ]

domain: ( − ∞ , 1 ] , ( − ∞ , 1 ] , range: [ 0 , ∞ ) [ 0 , ∞ )

domain: [ − 6 , − 1 6 ] ∪ [ 1 6 , 6 ] ; [ − 6 , − 1 6 ] ∪ [ 1 6 , 6 ] ; range: [ − 6 , − 1 6 ] ∪ [ 1 6 , 6 ] [ − 6 , − 1 6 ] ∪ [ 1 6 , 6 ]

domain: [ − 3 , ∞ ) ; [ − 3 , ∞ ) ; range: [ 0 , ∞ ) [ 0 , ∞ )

domain: ( − ∞ , ∞ ) ( − ∞ , ∞ )

f ( − 3 ) = 1 ; f ( − 2 ) = 0 ; f ( − 1 ) = 0 ; f ( 0 ) = 0 f ( − 3 ) = 1 ; f ( − 2 ) = 0 ; f ( − 1 ) = 0 ; f ( 0 ) = 0

f ( − 1 ) = − 4 ; f ( 0 ) = 6 ; f ( 2 ) = 20 ; f ( 4 ) = 34 f ( − 1 ) = − 4 ; f ( 0 ) = 6 ; f ( 2 ) = 20 ; f ( 4 ) = 34

f ( − 1 ) = − 5 ; f ( 0 ) = 3 ; f ( 2 ) = 3 ; f ( 4 ) = 16 f ( − 1 ) = − 5 ; f ( 0 ) = 3 ; f ( 2 ) = 3 ; f ( 4 ) = 16

domain: ( − ∞ , 1 ) ∪ ( 1 , ∞ ) ( − ∞ , 1 ) ∪ ( 1 , ∞ )

window: [ − 0.5 , − 0.1 ] ; [ − 0.5 , − 0.1 ] ; range: [ 4 , 100 ] [ 4 , 100 ]

window: [ 0.1 , 0.5 ] ; [ 0.1 , 0.5 ] ; range: [ 4 , 100 ] [ 4 , 100 ]

[ 0 , 8 ] [ 0 , 8 ]

Many answers. One function is f ( x ) = 1 x − 2 . f ( x ) = 1 x − 2 .

1.3 Section Exercises

Yes, the average rate of change of all linear functions is constant.

The absolute maximum and minimum relate to the entire graph, whereas the local extrema relate only to a specific region around an open interval.

4 ( b + 1 ) 4 ( b + 1 )

4 x + 2 h 4 x + 2 h

− 1 13 ( 13 + h ) − 1 13 ( 13 + h )

3 h 2 + 9 h + 9 3 h 2 + 9 h + 9

4 x + 2 h − 3 4 x + 2 h − 3

increasing on ( − ∞ , − 2.5 ) ∪ ( 1 , ∞ ) , ( − ∞ , − 2.5 ) ∪ ( 1 , ∞ ) , decreasing on ( − 2.5 , 1 ) ( − 2.5 , 1 )

increasing on ( − ∞ , 1 ) ∪ ( 3 , 4 ) , ( − ∞ , 1 ) ∪ ( 3 , 4 ) , decreasing on ( 1 , 3 ) ∪ ( 4 , ∞ ) ( 1 , 3 ) ∪ ( 4 , ∞ )

local maximum: ( − 3 , 50 ) , ( − 3 , 50 ) , local minimum: ( 3 , − 50 ) ( 3 , − 50 )

absolute maximum at approximately ( 7 , 150 ) , ( 7 , 150 ) , absolute minimum at approximately ( −7.5 , −220 ) ( −7.5 , −220 )

a. –3000; b. –1250

Local minimum at ( 3 , − 22 ) , ( 3 , − 22 ) , decreasing on ( − ∞ , 3 ) , ( − ∞ , 3 ) , increasing on ( 3 , ∞ ) ( 3 , ∞ )

Local minimum at ( − 2 , − 2 ) , ( − 2 , − 2 ) , decreasing on ( − 3 , − 2 ) , ( − 3 , − 2 ) , increasing on ( − 2 , ∞ ) ( − 2 , ∞ )

Local maximum at ( − 0.5 , 6 ) , ( − 0.5 , 6 ) , local minima at ( − 3.25 , − 47 ) ( − 3.25 , − 47 ) and ( 2.1 , − 32 ) , ( 2.1 , − 32 ) , decreasing on ( − ∞ , − 3.25 ) ( − ∞ , − 3.25 ) and ( − 0.5 , 2.1 ) , ( − 0.5 , 2.1 ) , increasing on ( − 3.25 , − 0.5 ) ( − 3.25 , − 0.5 ) and ( 2.1 , ∞ ) ( 2.1 , ∞ )

b = 5 b = 5

2.7 gallons per minute

approximately –0.6 milligrams per day

1.4 Section Exercises

Find the numbers that make the function in the denominator g g equal to zero, and check for any other domain restrictions on f f and g , g , such as an even-indexed root or zeros in the denominator.

Yes. Sample answer: Let f ( x ) = x + 1  and  g ( x ) = x − 1. f ( x ) = x + 1  and  g ( x ) = x − 1. Then f ( g ( x ) ) = f ( x − 1 ) = ( x − 1 ) + 1 = x f ( g ( x ) ) = f ( x − 1 ) = ( x − 1 ) + 1 = x and g ( f ( x ) ) = g ( x + 1 ) = ( x + 1 ) − 1 = x . g ( f ( x ) ) = g ( x + 1 ) = ( x + 1 ) − 1 = x . So f ∘ g = g ∘ f . f ∘ g = g ∘ f .

( f + g ) ( x ) = 2 x + 6 , ( f + g ) ( x ) = 2 x + 6 , domain: ( − ∞ , ∞ ) ( − ∞ , ∞ )

( f − g ) ( x ) = 2 x 2 + 2 x − 6 , ( f − g ) ( x ) = 2 x 2 + 2 x − 6 , domain: ( − ∞ , ∞ ) ( − ∞ , ∞ )

( f g ) ( x ) = − x 4 − 2 x 3 + 6 x 2 + 12 x , ( f g ) ( x ) = − x 4 − 2 x 3 + 6 x 2 + 12 x , domain: ( − ∞ , ∞ ) ( − ∞ , ∞ )

( f g ) ( x ) = x 2 + 2 x 6 − x 2 , ( f g ) ( x ) = x 2 + 2 x 6 − x 2 , domain: ( − ∞ , − 6 ) ∪ ( − 6 , 6 ) ∪ ( 6 , ∞ ) ( − ∞ , − 6 ) ∪ ( − 6 , 6 ) ∪ ( 6 , ∞ )

( f + g ) ( x ) = 4 x 3 + 8 x 2 + 1 2 x , ( f + g ) ( x ) = 4 x 3 + 8 x 2 + 1 2 x , domain: ( − ∞ , 0 ) ∪ ( 0 , ∞ ) ( − ∞ , 0 ) ∪ ( 0 , ∞ )

( f − g ) ( x ) = 4 x 3 + 8 x 2 − 1 2 x , ( f − g ) ( x ) = 4 x 3 + 8 x 2 − 1 2 x , domain: ( − ∞ , 0 ) ∪ ( 0 , ∞ ) ( − ∞ , 0 ) ∪ ( 0 , ∞ )

( f g ) ( x ) = x + 2 , ( f g ) ( x ) = x + 2 , domain: ( − ∞ , 0 ) ∪ ( 0 , ∞ ) ( − ∞ , 0 ) ∪ ( 0 , ∞ )

( f g ) ( x ) = 4 x 3 + 8 x 2 , ( f g ) ( x ) = 4 x 3 + 8 x 2 , domain: ( − ∞ , 0 ) ∪ ( 0 , ∞ ) ( − ∞ , 0 ) ∪ ( 0 , ∞ )

( f + g ) ( x ) = 3 x 2 + x − 5 , ( f + g ) ( x ) = 3 x 2 + x − 5 , domain: [ 5 , ∞ ) [ 5 , ∞ )

( f − g ) ( x ) = 3 x 2 − x − 5 , ( f − g ) ( x ) = 3 x 2 − x − 5 , domain: [ 5 , ∞ ) [ 5 , ∞ )

( f g ) ( x ) = 3 x 2 x − 5 , ( f g ) ( x ) = 3 x 2 x − 5 , domain: [ 5 , ∞ ) [ 5 , ∞ )

( f g ) ( x ) = 3 x 2 x − 5 , ( f g ) ( x ) = 3 x 2 x − 5 , domain: ( 5 , ∞ ) ( 5 , ∞ )

  • ⓑ f ( g ( x ) ) = 2 ( 3 x − 5 ) 2 + 1 ; f ( g ( x ) ) = 2 ( 3 x − 5 ) 2 + 1 ;
  • ⓒ g ( f ) ( x ) ) = 6 x 2 − 2 ; g ( f ) ( x ) ) = 6 x 2 − 2 ;
  • ⓓ ( g ∘ g ) ( x ) = 3 ( 3 x − 5 ) − 5 = 9 x − 20 ; ( g ∘ g ) ( x ) = 3 ( 3 x − 5 ) − 5 = 9 x − 20 ;
  • ⓔ ( f ∘ f ) ( − 2 ) = 163 ( f ∘ f ) ( − 2 ) = 163

f ( g ( x ) ) = x 2 + 3 + 2 , g ( f ( x ) ) = x + 4 x + 7 f ( g ( x ) ) = x 2 + 3 + 2 , g ( f ( x ) ) = x + 4 x + 7

f ( g ( x ) ) = x + 1 x 3 3 = x + 1 3 x , g ( f ( x ) ) = x 3 + 1 x f ( g ( x ) ) = x + 1 x 3 3 = x + 1 3 x , g ( f ( x ) ) = x 3 + 1 x

( f ∘ g ) ( x ) = 1 2 x + 4 − 4 = x 2 , ( g ∘ f ) ( x ) = 2 x − 4 ( f ∘ g ) ( x ) = 1 2 x + 4 − 4 = x 2 , ( g ∘ f ) ( x ) = 2 x − 4

f ( g ( h ( x ) ) ) = ( 1 x + 3 ) 2 + 1 f ( g ( h ( x ) ) ) = ( 1 x + 3 ) 2 + 1

  • ⓐ Text ( g ∘ f ) ( x ) = − 3 2 − 4 x ; ( g ∘ f ) ( x ) = − 3 2 − 4 x ;
  • ⓑ ( − ∞ , 1 2 ) ( − ∞ , 1 2 )
  • ⓐ ( 0 , 2 ) ∪ ( 2 , ∞ ) ; ( 0 , 2 ) ∪ ( 2 , ∞ ) ;
  • ⓑ ( − ∞ , − 2 ) ∪ ( 2 , ∞ ) ; ( − ∞ , − 2 ) ∪ ( 2 , ∞ ) ; c. ( 0 , ∞ ) ( 0 , ∞ )

( 1 , ∞ ) ( 1 , ∞ )

sample: f ( x ) = x 3 g ( x ) = x − 5 f ( x ) = x 3 g ( x ) = x − 5

sample: f ( x ) = 4 x g ( x ) = ( x + 2 ) 2 f ( x ) = 4 x g ( x ) = ( x + 2 ) 2

sample: f ( x ) = x 3 g ( x ) = 1 2 x − 3 f ( x ) = x 3 g ( x ) = 1 2 x − 3

sample: f ( x ) = x 4 g ( x ) = 3 x − 2 x + 5 f ( x ) = x 4 g ( x ) = 3 x − 2 x + 5

sample: f ( x ) = x f ( x ) = x g ( x ) = 2 x + 6 g ( x ) = 2 x + 6

sample: f ( x ) = x 3 f ( x ) = x 3 g ( x ) = ( x − 1 ) g ( x ) = ( x − 1 )

sample: f ( x ) = x 3 f ( x ) = x 3 g ( x ) = 1 x − 2 g ( x ) = 1 x − 2

sample: f ( x ) = x f ( x ) = x g ( x ) = 2 x − 1 3 x + 4 g ( x ) = 2 x − 1 3 x + 4

f ( g ( 0 ) ) = 27 , g ( f ( 0 ) ) = − 94 f ( g ( 0 ) ) = 27 , g ( f ( 0 ) ) = − 94

f ( g ( 0 ) ) = 1 5 , g ( f ( 0 ) ) = 5 f ( g ( 0 ) ) = 1 5 , g ( f ( 0 ) ) = 5

18 x 2 + 60 x + 51 18 x 2 + 60 x + 51

g ∘ g ( x ) = 9 x + 20 g ∘ g ( x ) = 9 x + 20

( f ∘ g ) ( 6 ) = 6 ( f ∘ g ) ( 6 ) = 6 ; ( g ∘ f ) ( 6 ) = 6 ( g ∘ f ) ( 6 ) = 6

( f ∘ g ) ( 11 ) = 11 , ( g ∘ f ) ( 11 ) = 11 ( f ∘ g ) ( 11 ) = 11 , ( g ∘ f ) ( 11 ) = 11

A ( t ) = π ( 25 t + 2 ) 2 A ( t ) = π ( 25 t + 2 ) 2 and A ( 2 ) = π ( 25 4 ) 2 = 2500 π A ( 2 ) = π ( 25 4 ) 2 = 2500 π square inches

A ( 5 ) = π ( 2 ( 5 ) + 1 ) 2 = 121 π A ( 5 ) = π ( 2 ( 5 ) + 1 ) 2 = 121 π square units

  • ⓐ N ( T ( t ) ) = 23 ( 5 t + 1.5 ) 2 − 56 ( 5 t + 1.5 ) + 1 ; N ( T ( t ) ) = 23 ( 5 t + 1.5 ) 2 − 56 ( 5 t + 1.5 ) + 1 ;
  • ⓑ 3.38 hours

1.5 Section Exercises

A horizontal shift results when a constant is added to or subtracted from the input. A vertical shifts results when a constant is added to or subtracted from the output.

A horizontal compression results when a constant greater than 1 is multiplied by the input. A vertical compression results when a constant between 0 and 1 is multiplied by the output.

For a function f , f , substitute ( − x ) ( − x ) for ( x ) ( x ) in f ( x ) . f ( x ) . Simplify. If the resulting function is the same as the original function, f ( − x ) = f ( x ) , f ( − x ) = f ( x ) , then the function is even. If the resulting function is the opposite of the original function, f ( − x ) = − f ( x ) , f ( − x ) = − f ( x ) , then the original function is odd. If the function is not the same or the opposite, then the function is neither odd nor even.

g ( x ) = | x - 1 | − 3 g ( x ) = | x - 1 | − 3

g ( x ) = 1 ( x + 4 ) 2 + 2 g ( x ) = 1 ( x + 4 ) 2 + 2

The graph of f ( x + 43 ) f ( x + 43 ) is a horizontal shift to the left 43 units of the graph of f . f .

The graph of f ( x - 4 ) f ( x - 4 ) is a horizontal shift to the right 4 units of the graph of f . f .

The graph of f ( x ) + 8 f ( x ) + 8 is a vertical shift up 8 units of the graph of f . f .

The graph of f ( x ) − 7 f ( x ) − 7 is a vertical shift down 7 units of the graph of f . f .

The graph of f ( x + 4 ) − 1 f ( x + 4 ) − 1 is a horizontal shift to the left 4 units and a vertical shift down 1 unit of the graph of f . f .

decreasing on ( − ∞ , − 3 ) ( − ∞ , − 3 ) and increasing on ( − 3 , ∞ ) ( − 3 , ∞ )

decreasing on [ 0 , ∞ ) [ 0 , ∞ )

g ( x ) = f ( x - 1 ) , h ( x ) = f ( x ) + 1 g ( x ) = f ( x - 1 ) , h ( x ) = f ( x ) + 1

f ( x ) = | x - 3 | − 2 f ( x ) = | x - 3 | − 2

f ( x ) = x + 3 − 1 f ( x ) = x + 3 − 1

f ( x ) = ( x - 2 ) 2 f ( x ) = ( x - 2 ) 2

f ( x ) = | x + 3 | − 2 f ( x ) = | x + 3 | − 2

f ( x ) = − x f ( x ) = − x

f ( x ) = − ( x + 1 ) 2 + 2 f ( x ) = − ( x + 1 ) 2 + 2

f ( x ) = − x + 1 f ( x ) = − x + 1

The graph of g g is a vertical reflection (across the x x -axis) of the graph of f . f .

The graph of g g is a vertical stretch by a factor of 4 of the graph of f . f .

The graph of g g is a horizontal compression by a factor of 1 5 1 5 of the graph of f . f .

The graph of g g is a horizontal stretch by a factor of 3 of the graph of f . f .

The graph of g g is a horizontal reflection across the y y -axis and a vertical stretch by a factor of 3 of the graph of f . f .

g ( x ) = | − 4 x | g ( x ) = | − 4 x |

g ( x ) = 1 3 ( x + 2 ) 2 − 3 g ( x ) = 1 3 ( x + 2 ) 2 − 3

g ( x ) = 1 2 ( x - 5 ) 2 + 1 g ( x ) = 1 2 ( x - 5 ) 2 + 1

The graph of the function f ( x ) = x 2 f ( x ) = x 2 is shifted to the left 1 unit, stretched vertically by a factor of 4, and shifted down 5 units.

The graph of f ( x ) = | x | f ( x ) = | x | is stretched vertically by a factor of 2, shifted horizontally 4 units to the right, reflected across the horizontal axis, and then shifted vertically 3 units up.

The graph of the function f ( x ) = x 3 f ( x ) = x 3 is compressed vertically by a factor of 1 2 . 1 2 .

The graph of the function is stretched horizontally by a factor of 3 and then shifted vertically downward by 3 units.

The graph of f ( x ) = x f ( x ) = x is shifted right 4 units and then reflected across the vertical line x = 4. x = 4.

1.6 Section Exercises

Isolate the absolute value term so that the equation is of the form | A | = B . | A | = B . Form one equation by setting the expression inside the absolute value symbol, A , A , equal to the expression on the other side of the equation, B . B . Form a second equation by setting A A equal to the opposite of the expression on the other side of the equation, − B . − B . Solve each equation for the variable.

The graph of the absolute value function does not cross the x x -axis, so the graph is either completely above or completely below the x x -axis.

First determine the boundary points by finding the solution(s) of the equation. Use the boundary points to form possible solution intervals. Choose a test value in each interval to determine which values satisfy the inequality.

| x + 4 | = 1 2 | x + 4 | = 1 2

| f ( x ) − 8 | < 0.03 | f ( x ) − 8 | < 0.03

{ 1 , 11 } { 1 , 11 }

{ - 9 4 , 13 4 } { - 9 4 , 13 4 }

{ 10 3 , 20 3 } { 10 3 , 20 3 }

{ 11 5 , 29 5 } { 11 5 , 29 5 }

{ 5 2 , 7 2 } { 5 2 , 7 2 }

No solution

{ − 57 , 27 } { − 57 , 27 }

( 0 , − 8 ) ; ( − 6 , 0 ) , ( 4 , 0 ) ( 0 , − 8 ) ; ( − 6 , 0 ) , ( 4 , 0 )

( 0 , − 7 ) ; ( 0 , − 7 ) ; no x x -intercepts

( − ∞ , − 8 ) ∪ ( 12 , ∞ ) ( − ∞ , − 8 ) ∪ ( 12 , ∞ )

− 4 3 ≤ x ≤ 4 − 4 3 ≤ x ≤ 4

( − ∞ , − 8 3 ] ∪ [ 6 , ∞ ) ( − ∞ , − 8 3 ] ∪ [ 6 , ∞ )

( − ∞ , − 8 3 ] ∪ [ 16 , ∞ ) ( − ∞ , − 8 3 ] ∪ [ 16 , ∞ )

range: [ 0 , 20 ] [ 0 , 20 ]

x - x - intercepts:

There is no solution for a a that will keep the function from having a y y -intercept. The absolute value function always crosses the y y -intercept when x = 0. x = 0.

| p − 0.08 | ≤ 0.015 | p − 0.08 | ≤ 0.015

| x − 5.0 | ≤ 0.01 | x − 5.0 | ≤ 0.01

1.7 Section Exercises

Each output of a function must have exactly one output for the function to be one-to-one. If any horizontal line crosses the graph of a function more than once, that means that y y -values repeat and the function is not one-to-one. If no horizontal line crosses the graph of the function more than once, then no y y -values repeat and the function is one-to-one.

Yes. For example, f ( x ) = 1 x f ( x ) = 1 x is its own inverse.

Given a function y = f ( x ) , y = f ( x ) , solve for x x in terms of y . y . Interchange the x x and y . y . Solve the new equation for y . y . The expression for y y is the inverse, y = f − 1 ( x ) . y = f − 1 ( x ) .

f − 1 ( x ) = x − 3 f − 1 ( x ) = x − 3

f − 1 ( x ) = 2 − x f − 1 ( x ) = 2 − x

f − 1 ( x ) = − 2 x x − 1 f − 1 ( x ) = − 2 x x − 1

domain of f ( x ) : [ − 7 , ∞ ) ; f − 1 ( x ) = x − 7 f ( x ) : [ − 7 , ∞ ) ; f − 1 ( x ) = x − 7

domain of f ( x ) : [ 0 , ∞ ) ; f − 1 ( x ) = x + 5 f ( x ) : [ 0 , ∞ ) ; f − 1 ( x ) = x + 5

  • ⓐ f ( g ( x ) ) = x f ( g ( x ) ) = x and g ( f ( x ) ) = x . g ( f ( x ) ) = x .
  • ⓑ This tells us that f f and g g are inverse functions

f ( g ( x ) ) = x , g ( f ( x ) ) = x f ( g ( x ) ) = x , g ( f ( x ) ) = x

not one-to-one

[ 2 , 10 ] [ 2 , 10 ]

1 4 7 12 16
3 6 9 13 14

f − 1 ( x ) = ( 1 + x ) 1 / 3 f − 1 ( x ) = ( 1 + x ) 1 / 3

f − 1 ( x ) = 5 9 ( x − 32 ) . f − 1 ( x ) = 5 9 ( x − 32 ) . Given the Fahrenheit temperature, x , x , this formula allows you to calculate the Celsius temperature.

t ( d ) = d 50 , t ( d ) = d 50 , t ( 180 ) = 180 50 . t ( 180 ) = 180 50 . The time for the car to travel 180 miles is 3.6 hours.

Review Exercises

f ( − 3 ) = − 27 ; f ( − 3 ) = − 27 ; f ( 2 ) = − 2 ; f ( 2 ) = − 2 ; f ( − a ) = − 2 a 2 − 3 a ; f ( − a ) = − 2 a 2 − 3 a ; − f ( a ) = 2 a 2 − 3 a ; − f ( a ) = 2 a 2 − 3 a ; f ( a + h ) = − 2 a 2 + 3 a − 4 a h + 3 h − 2 h 2 f ( a + h ) = − 2 a 2 + 3 a − 4 a h + 3 h − 2 h 2

x = − 1.8 x = − 1.8 or  or  x = 1.8  or  x = 1.8

− 64 + 80 a − 16 a 2 − 1 + a = − 16 a + 64 − 64 + 80 a − 16 a 2 − 1 + a = − 16 a + 64

( − ∞ , − 2 ) ∪ ( − 2 , 6 ) ∪ ( 6 , ∞ ) ( − ∞ , − 2 ) ∪ ( − 2 , 6 ) ∪ ( 6 , ∞ )

increasing ( 2 , ∞ ) ; ( 2 , ∞ ) ; decreasing ( − ∞ , 2 ) ( − ∞ , 2 )

increasing ( − 3 , 1 ) ; ( − 3 , 1 ) ; constant ( − ∞ , − 3 ) ∪ ( 1 , ∞ ) ( − ∞ , − 3 ) ∪ ( 1 , ∞ )

local minimum ( − 2 , − 3 ) ; ( − 2 , − 3 ) ; local maximum ( 1 , 3 ) ( 1 , 3 )

Absolute Maximum: 10

( f ∘ g ) ( x ) = 17 − 18 x ; ( g ∘ f ) ( x ) = − 7 − 18 x ( f ∘ g ) ( x ) = 17 − 18 x ; ( g ∘ f ) ( x ) = − 7 − 18 x

( f ∘ g ) ( x ) = 1 x + 2 ; ( f ∘ g ) ( x ) = 1 x + 2 ; ( g ∘ f ) ( x ) = 1 x + 2 ( g ∘ f ) ( x ) = 1 x + 2

( f ∘ g ) ( x ) = 1 + x 1 + 4 x , x ≠ 0 , x ≠ − 1 4 ( f ∘ g ) ( x ) = 1 + x 1 + 4 x , x ≠ 0 , x ≠ − 1 4

( f ∘ g ) ( x ) = 1 x , x > 0 ( f ∘ g ) ( x ) = 1 x , x > 0

sample: g ( x ) = 2 x − 1 3 x + 4 ; f ( x ) = x g ( x ) = 2 x − 1 3 x + 4 ; f ( x ) = x

f ( x ) = | x − 3 | f ( x ) = | x − 3 |

f ( x ) = 1 2 | x + 2 | + 1 f ( x ) = 1 2 | x + 2 | + 1

f ( x ) = − 3 | x − 3 | + 3 f ( x ) = − 3 | x − 3 | + 3

x = − 22 , x = 14 x = − 22 , x = 14

( − 5 3 , 3 ) ( − 5 3 , 3 )

f − 1 ( x ) = x - 1 f − 1 ( x ) = x - 1

The function is one-to-one.

The function is not one-to-one.

Practice Test

The relation is a function.

The graph is a parabola and the graph fails the horizontal line test.

2 a 2 − a 2 a 2 − a

− 2 ( a + b ) + 1 − 2 ( a + b ) + 1

x = − 7 x = − 7 and x = 10 x = 10

f − 1 ( x ) = x + 5 3 f − 1 ( x ) = x + 5 3

( − ∞ , − 1.1 )  and  ( 1.1 , ∞ ) ( − ∞ , − 1.1 )  and  ( 1.1 , ∞ )

( 1.1 , − 0.9 ) ( 1.1 , − 0.9 )

f ( 2 ) = 2 f ( 2 ) = 2

f ( x ) = { | x | if x ≤ 2 3 if x > 2 f ( x ) = { | x | if x ≤ 2 3 if x > 2

x = 2 x = 2

f − 1 ( x ) = − x − 11 2 f − 1 ( x ) = − x − 11 2

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/precalculus/pages/1-introduction-to-functions
  • Authors: Jay Abramson
  • Publisher/website: OpenStax
  • Book title: Precalculus
  • Publication date: Oct 23, 2014
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/precalculus/pages/1-introduction-to-functions
  • Section URL: https://openstax.org/books/precalculus/pages/chapter-1

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Mathleaks

  • Big Ideas Math Algebra 1, 2015
  • Big Ideas Math Algebra 1, 2013
  • Big Ideas Math Algebra 1 Virginia
  • Big Ideas Math Algebra 1 Texas
  • Big Ideas Math Algebra 1 A Bridge to Success
  • Core Connections Algebra 1, 2013
  • Houghton Mifflin Harcourt Algebra 1, 2015
  • Holt McDougal Algebra 1, 2011
  • McDougal Littell Algebra 1, 1999
  • McGraw Hill Glencoe Algebra 1, 2012
  • McGraw Hill Glencoe Algebra 1, 2017
  • McGraw Hill Glencoe Algebra 1 Texas, 2016
  • Pearson Algebra 1 Common Core, 2011
  • Pearson Algebra 1 Common Core, 2015

CPM Homework Banner

Home > CCA > Chapter 1 > Lesson 1.1.1

Lesson 1.1.1, lesson 1.1.2, lesson 1.1.3, lesson 1.2.1, lesson 1.2.2, lesson 1.2.3, lesson 1.2.4, lesson 1.2.5.

© 2022 CPM Educational Program. All rights reserved.

IMAGES

  1. The Ultimate Guide to Lesson 15 Homework Answers

    lesson 15 homework 1.1 answer key

  2. Module 1 Lesson 15 Homework Help!

    lesson 15 homework 1.1 answer key

  3. Lesson 15

    lesson 15 homework 1.1 answer key

  4. Eureka Math Grade 5 Lesson 2 Homework 5.1 Answer Key

    lesson 15 homework 1.1 answer key

  5. The Ultimate Guide to Lesson 15 Homework Answers

    lesson 15 homework 1.1 answer key

  6. Eureka math grade 5 module 1 lesson 15 homework

    lesson 15 homework 1.1 answer key

VIDEO

  1. For Day 15 Homework!

  2. 39 Class 2 English My School Lesson 15 Homework

  3. Thomas Calculus 15.3 (Q1-12)

  4. Unit 4 Lesson 15 Homework Help

  5. Lesson 15 Homework 3.3 module 3

  6. EE English students workbook answers 5th STD page no 1-7

COMMENTS

  1. Eureka Math Grade 1 Module 1 Lesson 15 Answer Key

    Eureka Math Grade 1 Module 1 Lesson 14 Exit Ticket Answer Key. Use the picture to add. Show the shortcut you used to add. There are _____ eggs total. Answer: 9 There are 9 eggs total. Eureka Math Grade 1 Module 1 Lesson 15 Homework Answer Key. Use your 5-group cards or your fingers to count on to solve. Question 1. Answer: 8. Question 2. Answer ...

  2. Eureka Math Grade 1 Module 1 Answer Key

    Eureka Math Grade 1 Module 1 Lesson 15 Answer Key; Eureka Math Grade 1 Module 1 Lesson 16 Answer Key; 1st Grade Eureka Math Module 1 Topic E The Commutative Property of Addition and the Equal Sign. Eureka Math Grade 1 Module 1 Lesson 17 Answer Key; Eureka Math Grade 1 Module 1 Lesson 18 Answer Key;

  3. PDF Answer Key Eureka Math® Grade 1 Module 3

    Homework 1. a. 13 b. 5 c. 15 d. 8 e. 10 2. Fire truck, airplane, rowboat 3. a. Rowboat or car ... A STORY OF UNITS TEKS EDITION Lesson 9 Answer Key 1 • 3 210 Module 3: Ordering and Comparing Length Measurements as Numbers ... Homework 1. 1 2. 7 cm; 8 cm 3. 1 4. Model drawn; 11 + 4 = 15 or 15 − 11 = 4; 4 cm

  4. Algebra 1, Volume 1

    Now, with expert-verified solutions from Algebra 1, Volume 1 1st Edition, you'll learn how to solve your toughest homework problems. Our resource for Algebra 1, Volume 1 includes answers to chapter exercises, as well as detailed information to walk you through the process step by step. With Expert Solutions for thousands of practice problems ...

  5. Answer Key Chapter 1

    Learn college algebra with this free OpenStax textbook that covers chapter 1 topics such as equations, inequalities, functions, and graphs.

  6. CPM Educational Program

    CPM Educational Program. With Mathleaks, you'll have instant access to expert solutions and answers to all of the CPM math questions you may have from the CPM Educational Program publications such as Pre-Algebra, Algebra 1, Algebra 2, and Geometry. Mathleaks offers the ultimate homework help and much of the content is free to use.

  7. Answer Key Chapter 1

    1.1 Section Exercises. 1. A relation is a set of ordered pairs. A function is a special kind of relation in which no two ordered pairs have the same first coordinate. 3. When a vertical line intersects the graph of a relation more than once, that indicates that for that input there is more than one output.

  8. PDF Chapter 9 Homework Solutions

    Chapter 9 Homework Solutions - McLean County Unit 5 / Homepage

  9. Algebra 1 Answers and Solutions

    Use Mathleaks to get learning-focused solutions and answers to Algebra 1 math, either 8th grade Algebra 1 or 9th grade Algebra 1, for the most commonly used textbooks from publishers such as Houghton Mifflin Harcourt, Big Ideas Learning, CPM, McGraw Hill, and Pearson. Getting helpful and educational math answers and solutions to high school ...

  10. PDF Lesson 1.1 worksheets and homework

    In the space below, describe the routine. STAYING SHARP 1.1 1. Solve the shape equation puzzle: If the large square represents one whole, what 3. fraction is represented by the shaded area? Answer with supporting work: Estimate, to the nearest dollar, the total cost: 5. $23.45 + $3.98 + $16.66 + $12.08 Answer with supporting work: 2.

  11. PDF 1-1 Understanding Points, Lines, and Planes

    LESSON 1-1 Term Meaning Model collinear points that lie on the ... Answer Key LESSON 1-1 Practice A 1. point A and point C 2. point B 3. point A, point B, and point C 4. line 5. line 6. plane 7. plane 8. point T and point U 9. one 10. point U ... 2/15/2010 10:21:01 PM ...

  12. PDF Go Math! Practice Book (TE), G5

    (Lesson 1.2) 0 100 times as much as 0 1,000 times as much as 10,000 times as much as 100,000 times as much as 5. At the bank, Brent exchanges $50 in bills for 50 one-dollar coins. The total mass of the coins is 405 grams. Estimate the mass of 1 one-dollar coin. (Lesson 2.5) @ 1 gram 8 grams 50 grams 100 grams

  13. CPM Homework Help : CCA Lesson 1.1.1

    CPM Education Program proudly works to offer more and better math education to more students.

  14. Algebra 1 Common Core

    Find step-by-step solutions and answers to Algebra 1 Common Core - 9780133185485, as well as thousands of textbooks so you can move forward with confidence. ... Section 1-1: Variables and Expressions. Section 1-2: Order of Operations and Evaluating Expressions. ... Exercise 15. Exercise 16. Exercise 17. Exercise 18. Exercise 19. Exercise 20 ...

  15. Algebra 1: Homework Practice Workbook

    Our resource for Algebra 1: Homework Practice Workbook includes answers to chapter exercises, as well as detailed information to walk you through the process step by step. With Expert Solutions for thousands of practice problems, you can take the guesswork out of studying and move forward with confidence. Find step-by-step solutions and answers ...

  16. CPM Chapter 1 Homework Answer Key

    CPM 1.1.5. 1-45. 12345 · 9 + 6 = 111111, 123456 · 9 + 7 = 1111111, 1234567 · 9 + 8 = 11111111, 12345678 · 9 + 9 = 111111111, 123456789 · 9 + 10 = 1111111111. Patterns include: added number increases by 1, first factor in the multiplication adds another digit, the next consecutive number, answers constantly add a digit of one as they increase.

  17. College Algebra

    Exercise 91. Exercise 92. Exercise 93a. Exercise 93b. Exercise 93c. Exercise 94. Exercise 95. Exercise 96. Find step-by-step solutions and answers to College Algebra - 9780321729682, as well as thousands of textbooks so you can move forward with confidence.

  18. Homework Lesson 1.1 Answer Key...

    View Lesson 1.1 answer key word from PHIL 1030 at Bowling Green State University. Homework Lesson 1.1 Answer Key Note that listing different heuristics than those in the key is fine if they are. ... Nov 15, Doc 2.pdf. Astronomy research (2).docx.

  19. Week 01 Written Homework 1-1 to 1-3 1 .pdf

    View Week 01 Written Homework 1-1 to 1-3(1).pdf from ALGEBRA 1304 at Austin Community College District. Name: Week 01 Written Homework Section 1.1- 1.3 & Syllabus No software output is required for ... Written-Homework1_Answer_Key(1).docx. Solutions Available. Austin Community College District. EDUC 1300. ... Page 12 of 15 TRL3709 December 2021 ...