Veterinary Medicine Research Paper Topics

Academic Writing Service

Veterinary medicine research paper topics encompass a wide range of subjects that contribute to the advancement of animal healthcare. This page provides a comprehensive guide for students studying veterinary medicine who are tasked with writing research papers. Explore the intricacies of this field, delve into diverse categories, and discover a multitude of compelling topics to delve into. Whether you’re interested in animal behavior, infectious diseases, pharmacology, or veterinary surgery, this guide will help you navigate the realm of veterinary medicine research paper topics. By offering expert advice on topic selection and providing valuable insights on how to write an impactful research paper, we aim to empower students to make significant contributions to the field of veterinary medicine. Furthermore, iResearchNet’s writing services ensure that students receive top-quality, customized research papers tailored to their unique requirements. Let us help you unleash your academic potential and make a lasting impact in the world of veterinary medicine.

100 Veterinary Medicine Research Paper Topics

Introduction: The field of veterinary medicine encompasses a vast array of disciplines and areas of study, offering a wealth of research opportunities for students. This comprehensive list of veterinary medicine research paper topics is divided into 10 categories, each containing 10 unique topics. By exploring these topics, students can gain a deeper understanding of various aspects of veterinary medicine and contribute to the advancement of animal healthcare.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

Animal Behavior and Psychology:

  • The impact of environmental enrichment on animal behavior and welfare
  • Behavioral interventions for managing aggression in dogs
  • Understanding the role of animal cognition in training and behavior modification
  • The relationship between human-animal interaction and animal behavior
  • Investigating stress and coping mechanisms in companion animals
  • The effects of socialization on the behavior and development of puppies and kittens
  • Exploring the psychological well-being of captive animals in zoos
  • Behavioral indicators and management strategies for pain in animals
  • Understanding the behavior and welfare of farm animals in intensive production systems
  • Investigating the impact of fear and anxiety on animal welfare in veterinary settings

Infectious Diseases:

  • Emerging zoonotic diseases and their impact on public health
  • Antimicrobial resistance in veterinary medicine: challenges and strategies
  • The role of vaccination in preventing infectious diseases in companion animals
  • Epidemiology and control measures for common bacterial infections in livestock
  • Investigating the transmission dynamics of vector-borne diseases in animals
  • Diagnostic methods and advancements in the detection of viral infections in animals
  • One Health approach: addressing the link between animal and human infectious diseases
  • The impact of climate change on the prevalence and distribution of infectious diseases in wildlife
  • Surveillance and control measures for emerging viral diseases in aquaculture
  • Exploring the impact of biosecurity measures in preventing the spread of infectious diseases in veterinary clinics and hospitals

Pharmacology and Therapeutics:

  • Investigating the efficacy and safety of new veterinary drugs and therapies
  • Pharmacokinetics and pharmacodynamics of commonly used drugs in veterinary practice
  • Adverse drug reactions and drug interactions in veterinary medicine
  • Exploring alternative therapies in veterinary medicine: acupuncture, herbal medicine, and more
  • The role of personalized medicine in veterinary practice
  • Drug-resistant parasites and strategies for their control in companion animals
  • Investigating the use of pain management protocols in veterinary surgery
  • The impact of nutraceuticals and dietary supplements on animal health
  • Pharmacogenomics in veterinary medicine: implications for personalized treatment
  • Exploring the challenges and opportunities in veterinary drug development

Veterinary Surgery and Anesthesia:

  • Advancements in minimally invasive surgery in veterinary medicine
  • Anesthetic management and monitoring in exotic animal species
  • Investigating surgical techniques for the treatment of orthopedic conditions in companion animals
  • Complications and management of anesthesia in geriatric patients
  • Exploring the role of regenerative medicine in veterinary surgery
  • Surgical interventions for the management of oncological conditions in animals
  • Investigating novel approaches for pain management in postoperative veterinary patients
  • Surgical techniques and rehabilitation strategies for the treatment of spinal cord injuries in animals
  • Exploring the use of robotic surgery in veterinary medicine
  • Investigating the impact of surgical interventions on the quality of life in animals

Diagnostic Imaging and Radiology:

  • Advancements in imaging techniques for the early detection of cancer in animals
  • Investigating the use of magnetic resonance imaging (MRI) in veterinary neurology
  • The role of ultrasound in diagnosing and managing cardiovascular diseases in animals
  • Radiographic evaluation and interpretation of musculoskeletal disorders in small animals
  • Investigating the use of computed tomography (CT) in veterinary oncology
  • Diagnostic imaging in avian and exotic animal medicine
  • The impact of advanced imaging modalities on the diagnosis of gastrointestinal diseases in animals
  • Exploring the role of nuclear medicine in veterinary diagnostics
  • Radiographic evaluation and interpretation of respiratory disorders in large animals
  • Investigating the use of contrast-enhanced imaging techniques in veterinary medicine

Veterinary Public Health and Epidemiology:

  • One Health approach in the surveillance and control of zoonotic diseases
  • Investigating foodborne pathogens and their impact on animal and human health
  • The role of veterinarians in disaster preparedness and response
  • Veterinary epidemiology: studying disease patterns and risk factors in animal populations
  • Investigating the impact of environmental factors on animal health and well-being
  • Exploring the relationship between animal agriculture and antimicrobial resistance
  • Veterinary public health interventions for the prevention of zoonotic diseases
  • The role of wildlife in the transmission of infectious diseases to domestic animals
  • Investigating the impact of climate change on vector-borne diseases in veterinary medicine
  • Surveillance and control measures for emerging and re-emerging diseases in veterinary public health

Animal Nutrition and Feed Science:

  • Investigating the impact of diet and nutrition on companion animal health
  • The role of nutritional interventions in the management of obesity in animals
  • Exploring the nutritional requirements and feed formulations for exotic animal species
  • Nutritional strategies for the prevention and management of metabolic diseases in livestock
  • Investigating the impact of feed additives on animal performance and health
  • The role of probiotics and prebiotics in promoting gut health in animals
  • Nutritional management of common gastrointestinal disorders in companion animals
  • Exploring sustainable and environmentally friendly feed options for livestock
  • Investigating the impact of nutrition on reproductive performance in animals
  • Nutritional considerations for the optimal growth and development of neonatal animals

Veterinary Education and Professional Development:

  • Evaluating the effectiveness of veterinary education programs in preparing students for practice
  • Investigating the role of simulation-based training in veterinary education
  • Exploring innovative teaching methods in veterinary schools
  • Assessing the impact of continuing education on veterinary professionals’ knowledge and skills
  • Investigating the factors influencing career choices among veterinary students
  • The impact of telemedicine on veterinary practice and client communication
  • Exploring the challenges and opportunities in veterinary entrepreneurship
  • Veterinary leadership and management skills for effective practice management
  • Investigating the role of mentorship in veterinary education and professional development
  • Exploring the ethical considerations in veterinary practice and research

Equine Medicine and Surgery:

  • Investigating advancements in diagnostic imaging techniques for equine lameness
  • Management strategies for musculoskeletal disorders in performance horses
  • The impact of nutrition and exercise on the prevention and management of metabolic diseases in horses
  • Exploring the use of regenerative therapies in equine orthopedics
  • Investigating the impact of respiratory diseases on the performance and welfare of horses
  • Equine dentistry: advancements in dental care and oral health management
  • Exploring novel surgical interventions for the treatment of orthopedic conditions in horses
  • The role of physical therapy and rehabilitation in equine medicine
  • Investigating the impact of exercise physiology on performance enhancement in horses
  • Infectious diseases and vaccination strategies in equine healthcare

Wildlife Medicine and Conservation:

  • Investigating the impact of habitat loss on wildlife health and conservation
  • Wildlife forensic medicine: techniques for investigating wildlife crimes
  • The role of veterinarians in wildlife rehabilitation and release programs
  • Exploring the impact of emerging infectious diseases on wildlife populations
  • Investigating the use of contraception in wildlife population management
  • Wildlife anesthesia and immobilization techniques for veterinary interventions
  • Exploring the role of veterinary medicine in endangered species conservation
  • Investigating the impact of pollution and environmental contaminants on wildlife health
  • Wildlife diseases and their potential for spillover to domestic animal populations
  • Conservation genetics: utilizing molecular techniques in wildlife management

This comprehensive list of veterinary medicine research paper topics provides students with a wide range of subjects to explore within the field. Whether you are interested in animal behavior, infectious diseases, pharmacology, surgery, or any other aspect of veterinary medicine, there are countless opportunities for research and innovation. By selecting a topic that aligns with your interests and career goals, and following the expert advice on how to choose and write a research paper, you can contribute to the advancement of veterinary medicine and make a lasting impact on animal health and welfare.

Veterinary Medicine: Exploring the Range of Research Paper Topics

Veterinary medicine plays a vital role in the health and well-being of animals, from beloved pets to livestock and wildlife. As a student studying veterinary medicine, you have the opportunity to delve into various research areas and contribute to advancements in animal healthcare. This article will explore the diverse range of research paper topics available within the field of veterinary medicine, offering you insights into the exciting and impactful areas of study.

  • Animal Nutrition and Feed Science : Proper nutrition is fundamental to the health and well-being of animals. Research topics in this area could include investigating the impact of diet and nutrition on companion animal health, exploring nutritional interventions for managing metabolic diseases in livestock, and examining sustainable and environmentally friendly feed options for animals.
  • Infectious Diseases : Infectious diseases pose significant challenges to animal health and public health. Research paper topics in this category could encompass emerging zoonotic diseases and their impact on human health, antimicrobial resistance in veterinary medicine, vaccination strategies for preventing infectious diseases in animals, and exploring the transmission dynamics of vector-borne diseases.
  • Animal Behavior and Psychology : Understanding animal behavior and psychology is essential for providing optimal care. Research topics in this field may involve studying the impact of environmental enrichment on animal behavior and welfare, behavioral interventions for managing aggression in dogs, investigating the cognitive abilities of animals, and exploring the role of human-animal interaction in animal behavior.
  • Pharmacology and Therapeutics : Pharmacology plays a critical role in treating and preventing diseases in animals. Research paper topics in this area could include investigating the efficacy and safety of new veterinary drugs and therapies, exploring alternative therapies such as acupuncture and herbal medicine, and studying the pharmacokinetics and pharmacodynamics of commonly used drugs in veterinary practice.
  • Veterinary Surgery and Anesthesia : Surgical interventions are often necessary for diagnosing and treating various conditions in animals. Research topics in this category could focus on advancements in minimally invasive surgery, investigating anesthesia management and monitoring in different animal species, exploring regenerative medicine in veterinary surgery, and studying the impact of surgical interventions on the quality of life in animals.
  • Diagnostic Imaging and Radiology : Diagnostic imaging techniques play a crucial role in diagnosing and monitoring diseases in animals. Research paper topics in this field may include advancements in imaging techniques for detecting cancer in animals, exploring the use of magnetic resonance imaging (MRI) and computed tomography (CT) in veterinary diagnostics, and investigating the application of radiography and ultrasound in diagnosing specific conditions.
  • Veterinary Public Health and Epidemiology : Veterinary medicine intersects with public health in various ways. Research topics in this area could involve the One Health approach in the surveillance and control of zoonotic diseases, studying the impact of environmental factors on animal and human health, and investigating the link between animal agriculture and antimicrobial resistance.
  • Equine Medicine and Surgery : Horses require specialized veterinary care due to their unique physiology and performance demands. Research paper topics in this category may include investigating advancements in diagnostic imaging techniques for equine lameness, studying the management strategies for musculoskeletal disorders in performance horses, and exploring the impact of respiratory diseases on horse performance and welfare.
  • Wildlife Medicine and Conservation : The health and conservation of wildlife are essential for maintaining biodiversity. Research topics in this field could include studying the impact of habitat loss on wildlife health, investigating wildlife rehabilitation and release programs, exploring the role of veterinarians in wildlife conservation, and understanding the diseases that affect wildlife populations.
  • Veterinary Education and Professional Development : Ensuring the competency and continuous development of veterinary professionals is crucial. Research paper topics in this area may involve evaluating veterinary education programs, exploring innovative teaching methods, studying the impact of continuing education on veterinary professionals’ knowledge and skills, and investigating the factors influencing career choices among veterinary students.

The field of veterinary medicine offers a wide range of research opportunities, spanning various disciplines and species. Whether you are interested in animal nutrition, infectious diseases, surgery, diagnostic imaging, public health, or any other aspect of veterinary medicine, there are numerous fascinating topics to explore. By selecting a research paper topic that aligns with your interests and goals, you can contribute to the advancement of veterinary medicine, improve animal health and welfare, and make a meaningful impact in the field.

Choosing Veterinary Medicine Research Paper Topics

Selecting the right research paper topic is crucial for your success as a student of veterinary medicine. It allows you to delve into an area of interest, contribute to existing knowledge, and explore the latest advancements in the field. In this section, we will provide you with expert advice on how to choose veterinary medicine research paper topics that align with your interests and academic goals.

  • Identify Your Interests : Start by reflecting on your personal interests within the field of veterinary medicine. Consider the areas that fascinate you the most, such as animal behavior, infectious diseases, surgery, diagnostic imaging, wildlife medicine, or public health. Identifying your passions will make the research process more enjoyable and rewarding.
  • Consult Your Professors and Mentors : Seek guidance from your professors and mentors who have expertise in different veterinary medicine disciplines. They can provide valuable insights into current research trends, emerging topics, and areas that need further exploration. Discuss your interests with them, and they can help you narrow down potential research paper topics based on their knowledge and experience.
  • Stay Updated with Current Literature : Stay abreast of the latest research publications, scientific journals, and conference proceedings in the field of veterinary medicine. Regularly reading scientific literature will expose you to new research findings, innovative techniques, and emerging topics. This will help you identify gaps in the existing knowledge that you can address through your research paper.
  • Consider Relevance and Impact : When selecting a research topic, consider its relevance and potential impact on veterinary medicine. Look for topics that address current challenges, emerging issues, or areas where advancements are needed. Research that can contribute to animal health, welfare, conservation, or public health will not only be academically fulfilling but also have real-world implications.
  • Analyze Feasibility : Assess the feasibility of your chosen research topic in terms of available resources, time constraints, and access to data. Consider the availability of research materials, laboratory facilities, animal populations, or specialized equipment required for your study. Ensure that your chosen topic is practical and achievable within the given timeframe and available resources.
  • Collaborate with Peers : Consider collaborating with your peers or fellow researchers who share similar research interests. Collaborative research projects can broaden your perspective, enhance the quality of your research, and facilitate knowledge sharing. Engaging in interdisciplinary collaborations can also help you explore topics that combine veterinary medicine with other fields, such as biology, ecology, or public health.
  • Seek Inspiration from Case Studies and Clinical Experience : Drawing inspiration from case studies, clinical experiences, or real-world scenarios can lead to intriguing research topics. Reflect on challenging cases you have encountered during clinical rotations, unique observations, or clinical questions that have piqued your interest. These experiences can spark ideas for research that address practical veterinary medicine issues.
  • Consider Ethical Considerations : When choosing a research topic, consider ethical considerations related to animal welfare and human subjects. Ensure that your research adheres to ethical guidelines and regulations. If your research involves animal subjects, be mindful of the ethical treatment and use of animals, and obtain necessary approvals from relevant ethics committees.
  • Explore Emerging Technologies and Techniques : Advancements in technology and techniques have a significant impact on veterinary medicine. Consider topics that explore the application of emerging technologies such as genomics, telemedicine, artificial intelligence, or novel diagnostic tools in veterinary practice. Research in these areas can contribute to the evolution of veterinary medicine and improve animal healthcare outcomes.
  • Seek Practical Relevance and Application : Choose research topics that have practical relevance and application in the veterinary field. Look for topics that address challenges faced by veterinarians, animal owners, or the industry. Research that can provide evidence-based solutions, improve clinical practices, or enhance disease prevention and management will have a direct impact on veterinary medicine.

Selecting a suitable research paper topic is a crucial step in your journey as a veterinary medicine student. By identifying your interests, seeking guidance, staying updated with current literature, considering relevance and impact, and analyzing feasibility, you can choose a research topic that is both intellectually stimulating and practically valuable. Remember to consider ethical considerations, collaborate with peers, and explore emerging technologies. By following these expert tips, you will be well-equipped to embark on a research project that contributes to the advancement of veterinary medicine and makes a positive impact on animal health and welfare.

How to Write a Veterinary Medicine Research Paper

Writing a research paper in veterinary medicine allows you to contribute to the field, explore new knowledge, and develop critical thinking and scientific communication skills. In this section, we will guide you through the process of writing a veterinary medicine research paper, from selecting a topic to crafting a compelling paper that effectively communicates your findings.

  • Define Your Research Objectives : Clearly define the objectives of your research paper. Determine what you aim to accomplish and the specific research questions you want to answer. This will provide a clear focus and direction for your study.
  • Conduct a Thorough Literature Review : Begin by conducting a comprehensive literature review to gather existing knowledge and identify gaps in the research. Analyze and critically evaluate relevant studies, articles, and scientific literature to establish the context for your research.
  • Refine Your Research Question : Based on your literature review, refine your research question or hypothesis. Ensure that your question is specific, measurable, achievable, relevant, and time-bound (SMART). This will guide your research and help you stay focused.
  • Design Your Study : Select an appropriate research design and methodology that aligns with your research question and objectives. Determine the sample size, data collection methods, and statistical analyses required. Ensure that your study design is rigorous and ethically sound.
  • Gather and Analyze Data : Collect relevant data using appropriate research methods, whether it involves conducting experiments, surveys, interviews, or analyzing existing datasets. Ensure that your data collection is thorough, reliable, and accurately recorded. Use appropriate statistical tools to analyze your data and draw meaningful conclusions.
  • Organize Your Paper : Structure your research paper in a logical and organized manner. Include sections such as the introduction, literature review, methods, results, discussion, and conclusion. Follow a clear and coherent flow of information that guides the reader through your research process.
  • Write an Engaging Introduction : Start your paper with an engaging introduction that provides background information on the topic, states the research problem, and highlights the significance of your study. Clearly articulate your research objectives and hypotheses to set the stage for the rest of the paper.
  • Present a Comprehensive Literature Review : Incorporate a thorough literature review in the body of your paper. Summarize and critically analyze relevant studies, theories, and findings that inform your research. Identify gaps in the literature and highlight the unique contribution of your study.
  • Describe Your Methods and Results : Clearly explain the methods you employed to conduct your research and gather data. Provide sufficient detail for others to replicate your study. Present your results objectively, using appropriate tables, graphs, or figures to support your findings. Interpret the results and discuss their implications.
  • Engage in a Thoughtful Discussion : In the discussion section, interpret your findings in the context of existing knowledge and theories. Discuss the implications of your results, their limitations, and any future directions for research. Address any unanswered questions and propose areas for further investigation.
  • Write a Strong Conclusion : Summarize your main findings and their significance in a concise and impactful conclusion. Restate your research objectives and hypotheses, and emphasize how your study contributes to the field of veterinary medicine. Avoid introducing new information in the conclusion.
  • Cite Sources Accurately : Ensure that you cite all the sources used in your research paper accurately. Follow the appropriate citation style, such as APA, MLA, or Chicago, and adhere to the specific guidelines for referencing scientific literature and other relevant sources.
  • Revise and Proofread : After completing the initial draft, revise your paper for clarity, coherence, and logical flow. Check for grammatical and spelling errors, and ensure that your writing is concise and precise. Seek feedback from peers, mentors, or professors to improve the quality of your paper.

Writing a veterinary medicine research paper requires careful planning, attention to detail, and effective communication skills. By defining your research objectives, conducting a thorough literature review, designing a rigorous study, and organizing your paper coherently, you can produce a high-quality research paper. Remember to write an engaging introduction, present a comprehensive literature review, describe your methods and results accurately, engage in thoughtful discussion, and provide a strong conclusion. Cite your sources properly and revise your paper meticulously. Through this process, you will contribute to the field of veterinary medicine and advance knowledge in the domain.

iResearchNet’s Writing Services

At iResearchNet, we understand the challenges that students face when it comes to writing research papers in veterinary medicine. We are here to provide you with professional writing services that cater to your specific needs. Our team of expert writers and researchers are well-versed in the field of veterinary medicine and can assist you in producing high-quality research papers. In this section, we will outline the range of services we offer and the benefits of choosing iResearchNet for your veterinary medicine research paper needs.

  • Expert Degree-Holding Writers : Our team consists of expert writers with advanced degrees in veterinary medicine and related fields. They have a deep understanding of the subject matter and can deliver well-researched and meticulously written research papers.
  • Custom Written Works : We provide custom written works that are tailored to your specific requirements. Whether you need a research paper from scratch or assistance with specific sections, our writers can create unique and original content that meets your academic standards.
  • In-Depth Research : Our writers conduct extensive research to gather the most relevant and up-to-date information for your research paper. They have access to reputable sources and scientific databases to ensure the accuracy and validity of the information presented in your paper.
  • Custom Formatting : We understand the importance of adhering to specific formatting styles required by academic institutions. Our writers are well-versed in various citation styles, including APA, MLA, Chicago/Turabian, and Harvard. They will format your paper according to the specific guidelines provided.
  • Top Quality : Quality is our utmost priority. We strive to deliver research papers that meet the highest standards of academic excellence. Our writers pay attention to every detail, ensuring that your paper is well-structured, coherent, and free from grammatical errors.
  • Customized Solutions : We recognize that each research paper is unique. Our writers work closely with you to understand your specific research objectives, requirements, and preferences. They can customize their approach to meet your specific needs and deliver a paper that aligns with your expectations.
  • Flexible Pricing : We offer flexible pricing options to accommodate the budgetary constraints of students. Our pricing is competitive and transparent, ensuring that you receive the best value for your investment. We offer affordable rates without compromising on the quality of our services.
  • Short Deadlines : We understand that students often face tight deadlines. Our team is equipped to handle urgent requests and can deliver high-quality research papers within short timeframes, even as tight as 3 hours. You can rely on us to meet your deadlines without compromising on quality.
  • Timely Delivery : We prioritize timely delivery to ensure that you have sufficient time to review and submit your research paper. Our writers work diligently to complete your paper within the agreed-upon timeframe, allowing you ample time for any revisions or modifications you may require.
  • 24/7 Support : We provide round-the-clock support to address any queries or concerns you may have. Our customer support team is available 24/7 to assist you with any questions regarding our services, order placement, or ongoing projects. Feel free to reach out to us at any time.
  • Absolute Privacy : We understand the importance of confidentiality. Your personal information and the details of your research paper are treated with the utmost privacy and confidentiality. We adhere to strict data protection protocols to ensure the security of your information.
  • Easy Order Tracking : Our user-friendly platform allows you to easily track the progress of your research paper. You can communicate with your assigned writer, provide additional instructions or clarifications, and monitor the status of your order throughout the writing process.
  • Money Back Guarantee : We are committed to customer satisfaction. In the unlikely event that you are not satisfied with the quality of the research paper or the services provided, we offer a money-back guarantee. Your investment is protected, and we strive to ensure your complete satisfaction.

Choosing iResearchNet for your veterinary medicine research paper needs ensures that you receive professional, reliable, and customized writing services. Our team of expert writers, in-depth research capabilities, adherence to formatting guidelines, and commitment to quality will ensure that your research paper meets the highest academic standards. With flexible pricing options, timely delivery, 24/7 support, absolute privacy, and easy order tracking, we strive to make your experience with iResearchNet seamless and rewarding. Place your trust in us and let our expertise guide you towards academic success.

Achieve Excellence with iResearchNet!

Are you struggling with your veterinary medicine research papers? Do you find it challenging to choose the right topics, conduct in-depth research, and meet the high academic standards of your institution? Look no further! iResearchNet is here to provide you with the professional support you need to excel in your veterinary medicine studies. Our team of expert writers and researchers is ready to assist you in crafting top-quality research papers that will impress your professors and elevate your academic performance.

By choosing iResearchNet, you gain access to a range of benefits that will make your research paper writing experience smooth, efficient, and stress-free. Our team consists of highly qualified writers with expertise in veterinary medicine and related fields. They are equipped with the necessary knowledge and skills to tackle even the most complex research topics. Whether you need assistance in selecting research paper topics, conducting thorough research, or structuring your paper, our experts are here to guide you every step of the way.

iResearchNet is your trusted partner in veterinary medicine research paper writing. With our experienced team, commitment to quality, customer-oriented approach, and range of services, we are dedicated to helping you succeed in your academic journey. Place your trust in us and experience the difference that professional assistance can make. Take the first step towards veterinary medicine research paper excellence and unlock your full potential with iResearchNet.

ORDER HIGH QUALITY CUSTOM PAPER

animal health research paper topics

162 Best Animal Research Topics To Nail Your Paper In 2023

blog image

The world is filled with living things. There are some animals that we know about, some that we will discover, and there are many that we might never know about. All our knowledge about animals is mostly dependant on researchers. Well, we are rooting for you to be the next great researcher. Be it zoology, veterinary, or live wild stock, your study needs a research topic. If you’re looking for the best animal research topics to nail this year, we’re here with your help.

Table of Contents

Best Animal Research Topics

We have 162 Animal Research Topics that will help you get the best grades this year.

Physiology of Animals Research Topics

physiology of animals research topics

  • Description of the knowledge required to work in animal physiology
  • Study of animal species with different specialties in the sciences of nature and life
  • Life sciences and socioeconomic impacts
  • Neurulation appendages birds
  • Exercises on gastrulation and neurulation
  • Gastrulation amphibians birds
  • Fertilization segmentation in the sea species
  • Gametogenesis: A Detailed Introduction
  • Study of Delimitation: bird appendages
  • Particularities of the developmental biology of certain species
  • Technical-commercial animal physiology
  • Terrestrial and marine ecosystems
  • Animal biology and forensic science: Is there a connection?
  • Animal Biology Biotechnology and molecules of interest regarding food and industry
  • The interest in biology in the diagnosis of animal and plant diseases
  • Toxicology and environmental health concerns in animal physiology
  • Animal and plant production
  • Fundamentals of animal physiology research and analysis
  • Behavior and evolution Genetics of behavior in animals
  • Adaptation and evolution of behavior
  • Comparative studies of general ecology, zoology, and animal physiology
  • Study of animals about the conditions prevailing in their immediate environment
  • Endocrine and neuroendocrine systems in animals
  • Studying the nervous systems in birds
  • Genitals and reproductive physiology of birds
  • Understanding of the anatomical and functional particularities of invertebrates
  • Biology and physiology of invertebrates
  • Reconstruction of phylogenetic trees
  • Morpho-anatomical arguments and the importance of fossils
  • Argued classification of animals
  • Study of the evolution of living organisms by making updates on recent advances in Animalia
  • Phylogeny and animal evolution
  • Principles of echolocation in the bats
  • Possible evolution of the increase in complexity of the primitive nervous system
  • The nervous system of the insect
  • Circulation in animal physiology
  • Animals without a differentiated circulatory system
  • Water and mineral balance in animals
  • Thermoregulation in animals
  • Musculoskeletal system in animals
  • Study of animal blood
  • Biological rhythms of animals
  • Skin and teguments of mammals
  • Animal nutrition and metabolism
  • Hormones and endocrine system of animals
  • Emerging organic pollutants
  • Mechanisms of toxicity in animals
  • Animal physiology in animals from temperate regions
  • Genetic correlations between animal species
  • Animal communities, forest ecology, and forest birds
  • Wildlife-habitat modeling

Looking for research topics in general? Read 402  General Research Paper Topics

Animal Research Topics For Student

animal research topics for student

  • Impact of the agricultural raw materials crisis on the marketing of livestock feed
  • Analysis of the competitiveness of poultry produced in the USA
  • Animal cruelty in USA and European countries
  • Seroprevalence of neosporosis in cattle herds
  • The peri-urban dairy sector
  • Effect of the liberalization of the veterinary profession on the vaccination coverage of livestock
  • Why do people kill animals? The psyche behind animal cruelty
  • Evaluation of the growth performance of three sheep breeds
  • Study on the protection of terrestrial ecosystems
  • Ecology of African dung beetles
  • Effects of road infrastructure on wildlife in developing countries
  • Analysis of the consequences of climate change related to pastoral livestock
  • Strategies for management in the animal feed sector
  • The feeding behavior of mosquitoes
  • Bee learning and memory
  • Immediate response to the animal cruelty
  • Study of mass migration of land birds over the ocean
  • A study of crocodile evolution
  • The cockroach escape system
  • The resistance of cockroaches against radiation: Myth or fact?
  • Temperature regulation in the honey bee swarm
  • Irresponsible dog breeding can often lead to an excess of stray dogs and animal cruelty
  • Reliable communication signals in birds

Also see:  How to Write an 8 Page Research Paper ?

Animal Research Topics For University

anima research topics for university

  • Color patterns of moths and moths
  • Mimicry in the sexual signals of fireflies
  • Ecophysiology of the garter snake
  • Memory, dreams regarding cat neurology
  • Spatiotemporal variation in the composition of animal communities
  • Detection of prey in the sand scorpion
  • Internal rhythms in bird migration
  • Genealogy: Giant Panda
  • Animal dissection: Severe type of animal cruelty and a huge blow to animal rights
  • Cuckoo coevolution and patterns
  • Use of plant extracts from Amazonian plants for the design of integrated pest management
  • Research on flying field bug
  • The usefulness of mosquitoes in biological control serves to isolate viruses
  • Habitat use by the Mediterranean Ant
  • Genetic structure of the  African golden wolf  based on its habitat
  • Birds body odor on their interaction with mosquitoes and parasites
  • The role of ecology in the evolution of coloration in owls
  • The invasion of the red swamp crayfish
  • Molecular taxonomy and biogeography of caprellids
  • Bats of Mexico and United States
  • What can animal rights NGOs do in case of animal cruelty during animal testing initiatives?

Or you can try 297 High School Research Paper Topics to Top The Class

Controversial Animal Research Topics

controversial animal research topics

  • Is it okay to adopt an animal for experimentation?
  • The authorization procedures on animals for scientific experiments
  • The objective of total elimination of animal testing
  • Are there concrete examples of successful scientific advances resulting from animal experimentation?
  • Animal rights for exotic animals: Protection of forests and wildlife
  • How can animal rights help the endangered animals
  • Animal experimentations are a type of animal cruelty: A detailed analysis
  • Animal testing: encouraging the use of alternative methods
  • Use of animals for the evaluation of chemical substances
  • Holding seminars on the protection of animals
  • Measures to take against animal cruelty
  • Scientific research on marine life
  • Scientific experiments on animals for medical research
  • Experimentation on great apes
  • Toxicological tests and other safety studies on chemical substances
  • Why isn’t research done directly on humans rather than animals?
  • Are animals necessary to approve new drugs and new medical technologies?
  • Are the results of animal experiments transferable to humans?
  • Humans are not animals, which is why animal research is not effective
  • What medical advances have been made possible by animal testing?
  • Animals never leave laboratories alive
  • Scientific interest does not motivate the use of animal research
  • Animal research is torture 
  • How can a layperson work against the animal testing?

Every crime is a controversy too, right? Here are some juicy  Criminal Justice Research Paper Topics  as well.

Animal Research Topics: Animal Rights

animal research topics animal rights

  • Growing awareness of the animal suffering generated by these experiments
  • What are the alternatives to animal testing?
  • Who takes care of animal welfare?
  • Major global organizations working for animal rights
  • Animal rights in developing countries
  • International animal rights standards to work against animal cruelty
  • Animal cruelty in developing countries
  • What can a layperson do when seeing animal cruelty
  • Role of society in the prevention of animal cruelty
  • Animal welfare and animal rights: measures taken against animal cruelty in developing countries
  • Animal cruelty in the name of science
  • How can we raise a better, empathetic and warm-hearted children to put a stop to animal cruelty
  • Ethical animal testing methods with safety
  • Are efforts being made to reduce the number of animals used?
  • The welfare of donkeys and their socioeconomic roles in the subcontinent
  • Animal cruelty and superstitious conceptions of dogs, cats, and donkeys in subcontinent
  • Efforts made by international organizations against the tragedy of animal cruelty
  • International organizations working for animal welfare
  • Animal abuse: What are the immediate measures to take when we see animal cruelty
  • Efforts to stop animal abuse in South Asian Countries
  • Animal abuse in the name of biomedical research

Talking about social causes, let’s have a look at social work topics too: 206  Social Work Research Topics

Interesting Animal Research Topics

interesting animal research topics

  • The urbanization process and its effect on the dispersal of birds:
  • Patterns of diversification in Neotropical amphibians
  • Interactions between non-native parrot species
  • Impact of landscape anthropization dynamics and wild birds’ health
  • Habitat-driven diversification in small mammals
  • Seasonal fluctuations and life cycles of amphipods
  • Animal cruelty in African countries
  • Evolution of the environmental niche of amphibians
  • Biological studies on Louisiana crawfish
  • Biological studies on Pink bollworm
  • Biological studies on snails
  • Biological studies on Bush Crickets
  • Biological studies on Mountain Gorillas
  • Biological studies on piranha
  • Consequences of mosquito feeding
  • Birds as bioindicators of environmental health
  • Biological studies on victoria crowned pigeon
  • Biological studies on black rhinoceros
  • Biological studies on European spider
  • Biological studies on dumbo octopus
  • Biological studies on markhor
  • Study of genetic and demographic variation in amphibian populations
  • Ecology and population dynamics of the blackberry turtle
  • Small-scale population differentiation in ecological and evolutionary mechanisms
  • Challenges in vulture conservation

Also interesting: 232  Chemistry Research Topics  To Make Your Neurochemicals Dance

Submarine Animals Research Topics

submarine animals research topics

  • The physiology behind the luminous fish
  • A study of Fish population dynamics
  • Study of insects on the surface of the water
  • Structure and function of schools of fish
  • Physiological ecology of whales and dolphins
  • Form and function in fish locomotion
  • Why do whales and dolphins jump?
  • Impact of Noise on Early Development and Hearing in Zebrafish
  • Animal cruelty against marine life on the hand of fishermen

Read More:  Accounting Research Topics

Animal Biology Research Topics

animal biology research topics

  • Systematic and zoogeographical study of the ocellated lizards
  • Morphological study of neuro histogenesis in the diencephalon of the chick embryo
  • Anatomical study of three species of Nudibranch
  • The adaptive strategy of two species of lagomorphs
  • The Black vulture: population, general biology, and interactions with other birds
  • Ocellated lizards: their phylogeny and taxonomy
  • Studies on the behavior of ocellated lizards in captivity
  • Comparative studies of the egg-laying and egg-hatching methods of ocellated lizards
  • Studies on the ecology and behavior of ocellated lizards
  • The taxonomic and phylogenetic implications of ocellated lizards
  • Research on the egg-laying and egg-hatching methods of ocellated lizards
  • Studies on the ecology and behavior of ocellated lizards in their natural environment
  • Comparative studies of the egg-laying and egg-hatching methods of ocellated lizards in different countries
  • Studies on the ecology and behavior of ocellated lizards in their natural environment in the light of evolutionary and ecological insights

Animal research topics are not hard to find for you anymore. As you have already read a load of them. You can use any of them and ace your research paper, and you don’t even need to ask permission. If you are looking for a research paper writing service , be it animal research, medical research, or any sort of research, you can contact us 24/7.

Order Original Papers & Essays

Your First Custom Paper Sample is on Us!

timely deliveries

Timely Deliveries

premium quality

No Plagiarism & AI

unlimited revisions

100% Refund

Try Our Free Paper Writing Service

Related blogs.

blog-img

Connections with Writers and support

safe service

Privacy and Confidentiality Guarantee

quality-score

Average Quality Score

  • How it works

researchprospect post subheader

Useful Links

How much will your dissertation cost?

Have an expert academic write your dissertation paper!

Dissertation Services

Dissertation Services

Get unlimited topic ideas and a dissertation plan for just £45.00

Order topics and plan

Order topics and plan

Get 1 free topic in your area of study with aim and justification

Yes I want the free topic

Yes I want the free topic

45+ Veterinary Dissertation Topics

Published by Owen Ingram at January 2nd, 2023 , Revised On May 3, 2024

Veterinary medicine is a broad area of study, so there are many potential issues you can base your dissertation or thesis on. You may want to consider veterinary science comparable to human health care, such as laboratory animal medicine, animal welfare, and law so that you can come up with an impactful veterinary dissertation topic.

Choose an interesting but focused research topic that enables you to contribute to your field of study. Choosing a topic for a paper or dissertation is one of the most crucial decisions students must make. So, avoid writing about an idea that is so narrow that you end up having no academic sources to use in the res earch. 

Other Subject Links:

  • Evidence-based Practice Nursing Dissertation Topics
  • Child Health Nursing Dissertation Topics
  • Adult Nursing Dissertation Topics
  • Critical Care Nursing Dissertation Topics
  • Palliative Care Nursing Dissertation Topics
  • Mental Health Nursing Dissertation Topics
  • Nursing Dissertation Topics
  • Coronavirus (COVID-19) Nursing Dissertation Topics

Veterinary Dissertation Topics and Ideas

  • Animals used for fine needle aspiration cytology (FNAC)
  • Necropsy’s significance in veterinary medicine
  • The value of veterinarians to the retail industry
  • Examination of contemporary pet vaccinations
  • Why not crocodiles or zebras? – investigating contemporary quirks in pet selection
  • Investigating the components of natural animal feeds as the pet food business transitions to natural
  • Rural locations with poor veterinary care: cause and remedies
  • Fear or the dominance theory? – investigating the behavioural issues with dogs
  • The best remedies for thunderstorm anxiety
  • Why do the majority of pets have this phobia? Is it treatable?
  • Is it a myth that animals act poorly because they want to rule the pack?
  • Why do owners of sick animals need to be on guard?
  • Environmental influences on chickens’ egg-laying productivity
  • When do some chickens produce more eggs than others? What are the ideal circumstances to maintain their high levels of productivity?
  • Cardiovascular changes in canine leishmaniasis
  • Relevant clinical alterations in breast cancer in stage 3 females
  • Cancer patients’ nutritional needs and metabolic changes are managed
  • Review of the literature on alternative methods for treating canine atopic dermatitis
  • Analysis of the primary epidemiological traits present in a buck with a breast tumour
  • Cost-benefit analysis of supplemental mineral feeding to beef cattle
  • Little ones frequently experience heart disorders
  • Breast cancer reconstruction procedures for female dogs and cats
  • Laws and public education about animal abuse
  • An outline of the veterinary nurse’s responsibility in stopping owner maltreatment of animals
  • Following surgery, the animals get rehabilitation
  • What part does the veterinary nurse play in addressing the psychological effects of animal abuse? Is there any way to make it better?
  • Illnesses that are extremely contagious and harm domestic animals
  • Veterinary students are taught about public health as part of their training
  • Treatment of sporty horses with non-steroidal anti-inflammatory medications
  • Effectiveness of homoeopathic medication in controlling ticks in dairy cattle
  • A case study of bitches treated at the university veterinary hospital for breast cancer
  • Study of sporotrichosis and visceral leishmaniasis notifications in the CCZ
  • Investigation of the anaesthesia procedure death rate in tiny animals undergoing surgery
  • Ways to improve how domestic animals are treated in the public network
  • The significance of electrocardiography in dogs before surgery
  • Neoplasms in an animal’s reproductive system
  • The relevance of veterinarians in meeting retail needs
  • Factors affecting milk quality in family farm settings
  • As a technique for sustainability in agriculture, rotated grazing
  • Prevalence of breast cancers in women and examination of their clinical and epidemiological features
  • Cigarette carcinogens bring on principal tumours in dogs and cats
  • Carcinogen-related cancer types manifested in dogs and cats exposed to smoke
  • Gentamicin intramammary therapy in lactating cows with clinical and subclinical mastitis
  • Aloe vera and arnica Montana as natural remedies for horse pythiosis
  • Examine the veterinary nursing policies and practices of various nations and any potential working circumstances for nurses there
  • An Investigation on how changing climate patterns affect the distribution of animal diseases and the practice of veterinary medicine.
  • An Analysis of different approaches to prevent and control zoonotic diseases in animals and humans
  • Exploring recent advancements in surgical techniques for veterinary procedures
  • Examining the relationship between animal behaviour, welfare, and veterinary care and proposing strategies to improve the well-being of animals in clinical settings.
  • Investigating the development of new drugs for veterinary use
  • The concept of One Health and its application in managing complex health issues at the intersection of human and animal health
  • Study newly emerging infectious diseases in animals and implications for veterinary practice and public health.
  • A Comparative study on different diagnostic imaging techniques used in veterinary medicine
  • The effectiveness of veterinary education and training programs in preparing graduates for professional practice

Order a Proposal

Worried about your dissertation proposal? Not sure where to start?

  • Choose any deadline
  • Plagiarism free
  • Unlimited free amendments
  • Free anti-plagiarism report
  • Completed to match exact requirements

Order a Proposal

These topics will help you get motivated to start working on your dissertation. You should also check out our list of biology dissertation topics for more inspiration. 

If the topic you choose is interesting and reflects your passion for the subject, it will be much easier for you to complete the dissertation in due time. However, if you face difficulties due to lack of knowledge, time or any other reason, now is the time to use our professional dissertation services ! Hiring a professional writer can help you achieve your desired academic grade from the comfort of your bed. 

Free Dissertation Topic

Phone Number

Academic Level Select Academic Level Undergraduate Graduate PHD

Academic Subject

Area of Research

Frequently Asked Questions

How to find veterinary dissertation topics.

To find veterinary dissertation topics:

  • Investigate emerging animal health issues.
  • Explore gaps in current research.
  • Consider ethical concerns.
  • Review recent advancements.
  • Consult experts and faculty.
  • Select a topic aligning with your passion and career aspirations.

You May Also Like

Need interesting and manageable Effects of Social Media on the Youth dissertation topics? Here are the trending Effects of Social Media on the Youth dissertation titles so you can choose the most suitable one.

Are you looking for unique and intriguing branding dissertation topics, ideas and topic examples? If yes, continue reading this article because it provides several branding dissertation topic suggestions for your consideration. 

Feminist dissertation topics focus on the people who believe that women should have equal chances and rights as men. Feminism is a historical, social, and political movement founded by women to achieve gender equality and remove injustice.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Animal Research Topics Unleashed: Fauna Frontiers

image

Table of contents

  • 1 How to Choose Animals Research Topics?
  • 2.1 Animal Physiology Research Topics
  • 2.2 Controversial Animal Topics
  • 2.3 Animal Rights Topics For Research Paper
  • 2.4 Interesting Animal Research Topics
  • 2.5 Veterinary Topics For Research Paper
  • 2.6 Animal Testing Research Topics
  • 2.7 Animal Cruelty Topics
  • 2.8 Research Questions about Animals
  • 3 Get Professional Help for Your Animal Research Paper

Contrary to popular belief, animal research topics are not only used by veterinarians. They are also pursued by students majoring in Healthcare, Sound Engineering, and even subjects like Fashion Studies and Chemistry. Of course, it may require writing an excellent custom research paper because the trick here is to tailor things to what you need. The most challenging, however, is to choose your topic correctly and avoid being vague about what you must explore. Even if you would like to explore environmental issues, using animal research topics will be essential. You need to provide an explanation of your reasoning and the negative effects of human interaction with flora and fauna.

How to Choose Animals Research Topics?

While there may be no universal topic that will reflect all sides of animal-related research, consider those subjects that you know well. It must inspire you and be an area where you feel comfortable. If you love marine life and can provide personal research examples, it would be good to choose something that will suit a reflection journal. Alternatively, consider animal topics for research papers that can be supported by reliable sources and statistical information.

Start with an outline or a list of arguments that you would like to explore. Once done, continue with the wording for your topic that introduces the problem and offers a solution. You may also pose a research question about a problem or make a claim that will be supported by what you include in your paper. Always refer to your grading rubric and choose your research paper type accordingly. For example, your nursing research paper may talk about the use of animals for rehabilitation purposes, while a legal student may talk about animal rights in various countries. It all should be approached through the lens of what you learn as a primary subject!

50+ Most Interesting & Easy Animal Research Topics

Animal physiology research topics.

As you might already know, animal physiology studies anything related to the physical processes, changes in behaviors, breeding patterns, and more. As you think about choosing the animal physiology branch, always narrow things down if possible.

  • Life-supporting properties of trained dogs in the wilderness.
  • Homeostatic processes in migrating birds and the global warming challenges.
  • The changes in circadian pacemakers and the processes of aging.
  • The changes in flora and related metabolomic-based processes.
  • Self-healing practices and digestive enzyme aspects.
  • Food intake and glucose stimulation methods.
  • Insensitivity to insulin: causes and consequences among domestic animals.
  • Muscle cells development and fat management.
  • Fish and Shellfish immunology processes in relation to Covid-19 studies.
  • The role of mammals in the prevention of aquatic toxicology.

Controversial Animal Topics

This aspect of animal research essay writing may not be everyone’s cup of tea, which is why it is necessary to explore the facts and provide information that represents both sides of the debate. Stay sensitive and avoid being too graphic unless it is necessary. Below are some ideas to consider:

  • The cultural practices of whaling in the Faroe Islands and Iceland.
  • Animal testing and vaccination practices in Asian countries.
  • The use of horses, camels, and donkeys to entertain tourists in the Middle East.
  • The consequences of irresponsible dog breeding practices.
  • Climate change and the subsequent loss of the natural habitat.
  • The dark truth about the ivory trade.
  • The use of pets for advertisement and promotional purposes.
  • Animal rights protection and restrictions of breeding.
  • SPA for the pets: a natural development or immoral practice?
  • Animal trading and certification issues.

Animal Rights Topics For Research Paper

The subject of animal rights is popular among students coming from all academic disciplines. Since you can approach it via the philosophical, legal, or medical lens, think about how to reflect your primary skills. It will make your research of animal right topics sound more confident.

  • The regulation of puppy mills and breeding in the United States.
  • The legal aspect of animal sports and related regulation.
  • How should one treat pets that have been abandoned by the owners?
  • Clothing industry and legal regulations: from trading to advertisement.
  • The use of innovative methods in medical research and experimentation.
  • Animal ethics and the theological aspect of animal rights.
  • Training your dog well: what are the basic behavior rules to consider?
  • The breeding limitations and the farming practices in the United Kingdom.
  • Animal rights in the United States vs regulations in Canada.
  • Animal trading: what country should be held responsible for animal mistreatment?

Interesting Animal Research Topics

  • Why do elephants remember everything and how does their brain work?
  • Perception of love and affection among dogs vs cats.
  • The communication methods used by the dolphins.
  • Do horses feel the spirit of the competition during the ride?
  • Perception of children and the elderly by mammals.
  • Survival in the wilderness and the hunt for water.
  • The navigation system of the working bee.
  • How has technology changed domestic animals and their habits?
  • The use of dogs in the world’s rescue operations: unusual case studies.
  • Establishment of emotional bonds with dogs vs cats.

Veterinary Topics For Research Paper

In the majority of cases, you may refer to your veterinary branch first and proceed from there or take a look at the variety of veterinary research topics that we have presented below. Remember to quote every citation and idea that has been taken from other sources to avoid plagiarism.

  • How to establish immune responses in chickens by using disease vaccine prevention methods?
  • How do low doses of ketamine affect healthy dogs during epidural anesthesia?
  • The use of biomarkers for therapeutic purposes and the role of pet owners.
  • RNA genetic analysis and the use of AI-based endometria research to establish common sequences.
  • What do we know about canine coronavirus research: pros and cons of artificial modeling.
  • Egg production changes related to air pollution and chemical vapors.
  • Wildlife surveillance ethics in the United States: pros and cons of modern remote monitoring.
  • What are the causes and consequences of selenium deficiency and how can this aspect be addressed by the tissue analysis.
  • Veterinary cardiology principles and the use of knowledge sourced from human cardio-vascular research.
  • Canine immunopathologies and the high levels of stress caused by Covid-19 restrictions and social distancing.

Animal Testing Research Topics

Even though this subject seems to be discussed everywhere these days, finding good animals topics to write about that deal with animal testing is not easy. Think about what are the underlying reasons for testing and what forces scientists to use it as a method. It will help you come up with ideas and better exploration strategies.

  • Does finding a cure without the use of animals represent only an economical challenge?
  • Genetic research in the United States and the use of animals for research purposes.
  • Should animal cloning and illegal breeding practices be banned?
  • Beauty products industry and animal testing controversies.
  • Stell Cell Research: the role of animals in the current advancement.
  • Cell modulation and modeling as the replacement of animal testing.
  • Animal experimentation and the history of the world’s vaccination methods.
  • Does animal testing lead to safety in relation to emerging diseases?
  • Animal lifespan and the research objectives for medical testing.
  • Current human testing practices: do they represent an alternative to animal testing?

Animal Cruelty Topics

Warning: writing about animal cruelty subject is not for everyone, which is why you must be aware that the facts and statistics you may find will be shocking. It should be explored only if you are ready to embrace this disturbing subject. At the same time, you can explore milder animal cruelty cases like using pets as influencers on social media or the use of donkeys at the beaches to entertain tourists. There is always something to think about!

  • The practice of cockfighting.
  • The cultural heritage of bull-fighting in Spain.
  • The use of monkeys for entertaining purposes.
  • How are animal rights obeyed during filming practices?
  • The use of pets as animal beauty promoters and social media influencers.
  • Illegal farming practices in Asian countries and the Middle East.
  • How can dog hunters be identified and punished?
  • Why does whaling still continue in the Faroe Islands?
  • The use of natural fur during beauty commercials.
  • Vegetarian foods production: how justified it is for natural animal habitat?

Research Questions about Animals

When you would like to take a general approach to animals research, it is good to come up with a research question as a part of your thesis statement or main argumentation. See these animals research paper examples:

  • The use of canines in cancer research methods: what breeds fit the most?.
  • Pig kidney transplantation methods: what are the core genetic aspects.
  • The use of rats in the decrease of immune diseases: why do they represent the most fitting species?
  • Blood transfusions and the use of animal cardio-vascular system principles: what are the points to consider?
  • Can animal behavior patterns be helpful for use in human mental diseases?
  • Animal Welfare Regulations: are there mechanisms to have an impact on animal care?
  • The use of dangerous dog breeds in the world: should such breeding be regulated like gun control?
  • Improvement of cognitive functions among children who are dog owners: what is the role of the animals in question?.
  • PTSD among military veterans: how can we use the animals to help the healing processes?
  • The study of myocardial infarction in primates vs canine studies: why dogs represent better research models?

Get Professional Help for Your Animal Research Paper

Without a doubt, it is easy to get stuck with a multitude of topics and ideas. If you are planning to write about animal rights but do not know how to include certain animal physiology principles, it is safer to consider timely help with research paper. Our skilled team of specialists in this field will provide you with relevant sources and will help you polish things to perfection when you need assistance or do not know how to continue.

The same relates to checking your existing draft and citations in terms of plagiarism and originality. Writing about animals is never easy, which is why we know how you feel and also realize what your college professors expect to see. Take a look at our research topics about animals, trust us with your concerns and we shall help you achieve success!

Readers also enjoyed

150 Actual Biology Research Paper Topics

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

animal health research paper topics

  • Reference Manager
  • Simple TEXT file

People also looked at

Perspective article, the new era of canine science: reshaping our relationships with dogs.

animal health research paper topics

  • 1 School of Anthropology, University of Arizona, Tucson, AZ, United States
  • 2 College of Veterinary Medicine, University of Arizona, Tucson, AZ, United States
  • 3 Cognitive Science, University of Arizona, Tucson, AZ, United States
  • 4 California State Polytechnic University, Pomona, CA, United States
  • 5 Department of Psychology, Western Carolina University, Cullowhee, NC, United States
  • 6 Center for Urban Resilience, Loyola Marymount University, Los Angeles, CA, United States
  • 7 Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia

Canine science is rapidly maturing into an interdisciplinary and highly impactful field with great potential for both basic and translational research. The articles in this Frontiers Research Topic, Our Canine Connection: The History, Benefits and Future of Human-Dog Interactions , arise from two meetings sponsored by the Wallis Annenberg PetSpace Leadership Institute, which convened experts from diverse areas of canine science to assess the state of the field and challenges and opportunities for its future. In this final Perspective paper, we identify a set of overarching themes that will be critical for a productive and sustainable future in canine science. We explore the roles of dog welfare, science communication, and research funding, with an emphasis on developing approaches that benefit people and dogs, alike.

Dogs have played important roles in the lives of humans for millennia ( 1 , 2 ). However, throughout much of scientific history they have been dismissed as an artificial species with little to contribute to our understanding of the natural world, or our place within it. During the last two decades, this sentiment has changed dramatically; canine science is rapidly maturing into an established, impactful, and highly interdisciplinary field ( Figure 1 ). Canine scientists, who previously occupied relatively marginalized roles in academic research, are increasingly being hired at major research universities, and centers devoted to the study of dogs and their interactions with humans are proliferating around the world. The factors underlying dogs' newfound popularity in science are diverse and include (1) increased interest in understanding dog origins, behavior, and cognition; (2) diversification in our approaches to research with non-human animals; (3) recognition of dogs' value as a unique biological model with relevance for humans; and (4) growth in research on the nature and consequences of dog-human interactions, in their myriad forms, from working dog performance to displaced canines living in shelters.

www.frontiersin.org

Figure 1 . Canine science is an interdisciplinary field with connections to other traditional and emerging areas of research. The specific fields shown overlap in ways not depicted here and are not an exhaustive list of disciplines contributing to canine science. Rather, they are included as examples of the diversity of scholarship in canine science.

This Perspective represents the final article in a collection of manuscripts arising from two workshops sponsored by the Wallis Annenberg PetSpace Leadership Institute. Leadership Fellows from around the world gathered in 2017 and 2020 to discuss the state of research and future directions in canine science. The individual articles in this collection provide a detailed treatment of key topics discussed at these events. In this final article, we identify a set of overarching challenges that emerge from this work and identify priorities and opportunities for the future of canine science.

The rise of canine science has benefited substantially from public interest and participation in the research process. Unlike many research studies, which unfold quietly in the ivory towers of research universities, the new era of canine science is intentionally public facing. The dogs being studied are not laboratory animals, bred and housed for research purposes, but rather are companions living in private homes, or assisting humans in capacities ranging from assistance for people with disabilities, to medical and explosives detection. Campus-based research laboratories have opened their doors to members of the public who bring their dogs to participate in problem-solving tasks, social interactions, and sometimes even non-invasive neuroimaging studies. Increasingly, dog owners themselves play a significant role in the scientific process, serving as community scientists who contribute to the systematic gathering of data from the convenience of their homes.

This new research model in conjunction with emerging technologies, makes canine science a highly visible field that engages public stakeholders in unprecedented ways. From a scientific perspective, society has become the new laboratory, and in doing so, has facilitated research with dogs of a scope and scale that was heretofore unthinkable. As tens of thousands of dogs contribute to research on topics ranging from cognition and genetics ( 3 , 4 ) to aging and human loneliness ( 5 ), canine science is entering the realm of “big data” and eclipsing many traditional research approaches. Importantly, these advances are occurring simultaneously across diverse fields of science, creating powerful new opportunities for consilience that will make canine science even more valuable in the years ahead. However, maturing this model toward a sustainable future that serves its diverse stakeholders—who include scientists, research funders, members of the public, and dogs themselves—will require careful navigation of key challenges related to dog welfare, science communication, and financial support ( Figure 2 ).

www.frontiersin.org

Figure 2 . Visual summary of the key issues identified in this Perspective . A sustainable future in canine science will require (1) research approaches that prioritize and monitor the welfare of dogs, (2) improved science communication to avoid incorrect reporting of study results, and to translate research findings to meaningful change in practices relating to dogs, and (3) availability of research funding that is not tied exclusively to studying the possible benefits of dogs for humans.

Dog Welfare

Globally, animal welfare has been linked to the public acceptability that underpins sustainable animal interactions and partnerships ( 6 ). Where human-animal interactions have failed to meet community expectations, practices and in some case entire industries, have been disrupted or ceased. Recent examples include whaling for profit and greyhound racing ( 6 , 7 ). Science is not exempt from this necessity to meet with public expectations and the new era of canine science must place canine welfare at the forefront. Considering dogs as individuals and co-workers, rather than tools for work or subjects, reflects a community moral and ethical paradigm shift that is currently underway. Reimagining our relationship with domestic dogs in research will also help inform our treatment of other animals. In this way, studies of dogs and our interactions with them can serve as a pioneering new model for many areas of science.

As scientists advocate for the revision of community and industry practices with dogs in light of new evidence, we must apply the same criteria to the conduct of our research. This includes adjusting canine research and training methods to acknowledge the sentience of dogs, and the importance of the affective experience for dogs in both research and community settings ( 8 – 11 ). The discipline of animal welfare science has progressed rapidly over the last two decades, and we have many animal-based, welfare-outcome measures available to us ( 6 , 11 ). Ensuring the well-being of the dogs we study will be as critical to ongoing social license to operate (i.e., community approval) for canine science as it is for working dog interests ( 12 ). Being transparent about the issues of animal consent and vulnerability, as well as offering animals agency with regard to their participation in science are valuable suggestions offered within this special issue. We encourage our colleagues to not just consider this paradigm shift, but to effect it through prioritizing and representing the dog's perspective and welfare in their research.

Although increasingly, researchers may include a single or limited set of canine stress measures in studies exploring dogs' potential benefits to humans, this approach alone does not fill the need for studies that prioritize an understanding of canine welfare as their central focus. Canine welfare should be considered not just as an emergent population-level measure ( 13 ) but rather with respect to the way in which it is experienced: from the perspectives of individual dogs. Commonly used statistical methods from human research, such as group-based trajectory analysis ( 14 ) may offer proven techniques that allow meaningful reporting on populations while reflecting the nuance of shared, sub-group patterns. Such approaches will better reflect individual differences, for example variations in canine personality, social support and relationship styles, as well as other significant factors. One impediment to robust measurement of animal welfare in canine science has been limited funding.

We believe that all granting bodies who fund exploration of the possible benefits to people from dogs should also fund and require the canine perspective to be robustly monitored and reported. Impediments to this work arise not from lack of researcher interest or access to dogs, but rather from challenges to securing funding that is independent from a focus on human health outcomes, or other tangible outcomes of work that dogs perform. To be able to optimize canine welfare, there is an urgent need for increased funding specifically to study the welfare of dogs, in all their diversity. The new era of canine science will identify what dogs need to thrive, propelling us toward a mutually sustainable partnership between people and dogs.

Communication

One area that has not received much attention in relation to canine science is the way in which research findings are communicated outside the empirical literature. Fueled by media reports, interest in canine science and the impact of dogs on human health and well-being has grown substantially in the last 10 years. A survey by the Human-Animal Bond Research Institute found that 71% of pet owners were aware of studies demonstrating that pets improve mental and physical health. Some of these claims are justified. For example, many studies have found that interacting with therapy dogs reduces stress and anxiety and increases positive emotional states in a variety of settings including hospitals, schools and nursing homes ( 15 , 16 ). In other cases, high public expectations about the healing power of pets are not matched by the results of empirical studies. For instance, while the Human-Animal Bond Research Institute survey found that 86% of pet owners believe pets relieve depression, the majority of studies on pet-ownership and depression do not support these conclusions ( 17 ).

Because so many people have extensive personal experiences with dogs, investigators face unique challenges in sharing research results with the public. In their hearts, dog owners believe that their canine companions make them feel less depressed, or that dogs feel guilty when they've eliminated indoors or explored the kitchen garbage—even though research might suggest otherwise. In addition, when it comes to animal companions, people much prefer to read a news article in which visits with a therapy dog improved the well-being of a child undergoing chemotherapy than an article about a randomized clinical trial which found no differences between the well-being of children in a therapy dog group and a control group ( 18 ). Nor is there likely to be much press coverage devoted to methodological issues such as small effect sizes and inappropriate attributions of causality to the results of correlational studies.

Canine scientists and scholars of human-animal interactions (anthrozoologists) are fortunate that the public is intrinsically interested in our research. We feel that it is critical for investigators to make efforts to communicate the findings of important studies to the public. We caution however, that researchers should not overstate the implications of their findings in press releases and conversations with journalists, despite frequent pressure to do so. These distortions could have a negative impact on misleading the public and misrepresenting the actual findings, a problem that is particularly acute in canine science where well-intentioned pet owners may eagerly adopt practices based on media coverage of scientific studies. The now-established discipline of science communication offers guidance for how best to engage with community and research stakeholders in meaningful ways.

Traditionally, science communication has relied on the knowledge deficit model of communication ( 19 ). Directionally one-way, the deficit model operates on the assumption that ignorance is the reason for a lack of community support and application of scientific evidence. Examples where practices have not been updated in response to research findings include dog training methodology ( 9 ) and breeding selection for extreme body types, such as brachycephaly in pugs and bulldogs, even though the health and welfare impacts are scientifically well understood ( 20 ). Scientists who share their research results thinking that knowledge disseminated—to “educate” the public—is enough to result in different dog care decisions, industry practices or legislation, will generally find this to be ineffective ( 21 ). This is because the deficit model overlooks the underlying beliefs, existing attitudes and motivations for current practices. We now recognize that the deficit model is not the most effective way to communicate, engage stakeholders and effect change ( 22 , 23 ).

Further exploration of the effect of targeted and intentional science communication, informed by human behavior change research, will improve the translation of canine science to meaningful outcomes for dogs and people alike ( 12 ). This is important, as many studies in canine science have applied aims designed to inform global policies and the creation of best practices ( 24 , 25 ). Applied research from the livestock and farming sector suggests that coordinating human behavior change strategies from social and psychological sciences can influence beliefs and attitudes to motivate changes in the ways people behave toward animals, resulting in improved animal welfare ( 26 – 28 ). In the era of attention economics, where scientists are competing for public attention alongside other diverse media, it is vital that the communication of our work is honest, relevant, and effective, to ensure that our field stays on the radar of key stakeholders, funding bodies and change agents.

A third key challenge in the future of canine science concerns research funding and a careful balancing of the priorities of scientists and funding agencies. In the last decade, canine science has received considerable support from the pet care sector, as well as human health and defense agencies [e.g., ( 29 )]. Fine and Andersen ( 30 ) stress that although funding is still a challenge in human-animal interaction research, there are now more options to be found. In 2008, the Waltham Petcare Science Institute initiated a public-private partnership with the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Over the past decade, this partnership has provided funding for research aimed at measuring the impact of specific Animal-assisted interventions. Since 2014, the Human Animal Bond Research Institute has funded a total of 35 academic research grants investigating the health outcomes of pet ownership and/or human-animal interaction, both for the people and non-human animals involved. Despite clear benefits for enabling research, there remains a limited group of agencies responsible for funding this work. This has potential to constrain the range of topics being studied. In addition, scientists may feel compelled to support the agendas of industry groups, such as those in the pet sector, who often encourage research that will demonstrate the benefits of pets and human-animal interactions.

These constraints were recognized by Wallis Annenberg PetSpace in 2017 when they envisioned their Leadership Institute Program with a mission to promote interdisciplinary scholarship and convene meetings to accelerate research and policy development ( https://www.annenbergpetspace.org/about/leadership ). This model for engagement inspired the organization to offer two invited retreats (2017, 2020) for a total of 33 experts in the field that provided opportunities for open ended and frank discussion about the nature of human-animal interaction research, and the maturing field of canine science. By providing the space and financial support, plus the opportunity to work together and publish, Annenberg PetSpace provided a way to both illuminate current limitations, and to identify priorities for the future, free of constraints from outside interest groups. These intellectual salons have no specific agenda other than to consider the future of the field and what kinds of questions need to be asked based on what we already know. The results of these two retreats include 14 published refereed papers, plus a suite of collaborations that might otherwise not have happened. We hope that these fellowships and retreats continue and inspire others to support similar initiatives so that scholars across multiple disciplines have the opportunity to experience the transformational exchanges that occur during these programs. The new era of canine science will require diverse funding that is not limited to how dogs can benefit humans, from health, safety and economic perspectives. This change will enable researchers the freedom to further our understanding of dogs and their needs for optimized welfare. In turn, this will allow us to identify how dogs and people can thrive together.

Looking Ahead

We hope that the publications emerging from these retreats will reach a diverse community of stakeholders, including students, early career researchers, animal welfare and advocacy groups, legislators and policy makers, philanthropies, and traditional agency funders. The goal of these papers is to spark imagination for projects not yet engaged and to help set the agenda for future research that can enhance our understanding of human-dog interactions and identify paths to ensure a future of symbiotic relationships between these species.

The vision of this collective group of scholars includes the goal of establishing studies with dogs as a sustainable and broad-reaching research focus. Although dogs provide many advantages as a “model species” —including their phenotypic diversity, and shared environments and evolutionary history with humans—a research model centered around dogs has many additional benefits. Dogs provide a rich, interactive and sentient model with deep implications for the way scientists approach animal research, and animal welfare. Dogs also increase the accessibility of research, both literally, due to their ubiquity and opportunities for large-scale public participation in research ( 31 , 32 ), and figuratively, through a body of work with appeal to the broader public.

The field of canine science has much in common with a similar emerging science, that of urban ecology. Humans are historically at the core of the subject material, but non-human elements are often the focus of the study. As such, the work is always culturally embedded, relevant to a variety of stakeholders, and ultimately expected to improve quality of life. The urban ecologists coined a term Use-Inspired Research ( 33 ) from modifying the existing idea of Pasteur's Quadrant which organizes research questions across the axes of fundamental understanding and considerations of use ( 34 ). Both canine research and urban ecology seek fundamental understanding, but also expect to directly apply the knowledge gained to improve outcomes for their subjects and stakeholders.

By including the public in canine science we not only increase the quantity of the data that we can gather, we serve as ambassadors for a new model of responsible animal research. The result increases the value of human-animal interaction research and creates opportunities for the next generation of interdisciplinary scientists. The goal of this collection has been both to highlight specific recent advances in canine science as well as to identify emerging and overarching issues that will shape the future of this field. The multidisciplinary nature of our work with dogs allows scientists to contribute to a robust research agenda, enhancing our understanding of canines and their impact on society. Ultimately, the nexus of our discoveries should have profound effects on reshaping and enriching our relationships with dogs.

Data Availability Statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

We thank Wallis Annenberg PetSpace for supporting the open-access publishing fees associated with this manuscript.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

1. Serpell JA. Commensalism or cross-species adoption? A critical review of theories of wolf domestication. Front Vet Sci . (2021) 8:662370. doi: 10.3389/fvets.2021.662370

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Wynne C. The indispensable dog. Front Vet Sci. (2021).

3. Chen F, Zimmermann M, Hekman JP, Lord KA, Logan B, Russenberger J, et al. Advancing genetic selection and behavioral genomics of working dogs through collaborative science. Front Vet Sci. (2021).

Google Scholar

4. Gnanadesikan GE, Hare B, Snyder-Mackler N, MacLean EL. Estimating the heritability of cognitive traits across dog breeds reveals highly heritable inhibitory control and communication factors. Anim Cogn . (2020) 23:953–64. doi: 10.1007/s10071-020-01400-4

5. McCune S, Promislow D. Healthy, active aging for people and dogs. Front Vet Sci . (2021). doi: 10.3389/fvets.2021.655191

6. Broom DM. International Animal Welfare Perspectives, Including Whaling and Inhumane Seal Killing as a Wto Public Morality Issue. In: Animal Law and Welfare-International Perspectives . New York, NY: Springer (2016). p. 45–61.

7. Markwell K, Firth T, Hing N. Blood on the race track: an analysis of ethical concerns regarding animal-based gambling. Ann Leisure Res. (2017) 20:594–609. doi: 10.1080/11745398.2016.1251326

CrossRef Full Text | Google Scholar

8. Cobb M, Lill A, Bennett P. Not all dogs are equal: Perception of canine welfare varies with context. Anim Welfare. (2020) 29:27–35. doi: 10.7120/09627286.29.1.027

9. Hall NJ, Johnston AM, Bray EE, Otto CM, MacLean EL, Udell MA. Working dog training for the 21st century. Front Vet Sci. (2021).

10. Horowitz A. Considering the “dog” in dog-human interaction. Front Vet Sci . (2021). doi: 10.3389/fvets.2021.642821

11. Mellor DJ, Beausoleil NJ, Littlewood KE, McLean AN, McGreevy PD, Jones B, et al. The 2020 five domains model: including human–animal interactions in assessments of animal welfare. Animals. (2020) 10:1870. doi: 10.3390/ani10101870

12. Cobb ML, Otto CM, Fine AH. The animal welfare science of working dogs: current perspectives on recent advances and future directions. Front Vet Sci. (2021).

13. Richter SH, Hintze S. From the individual to the population–and back again? Emphasising the role of the individual in animal welfare science. Appl Anim Behav Sci. (2019) 212:1–8. doi: 10.1016/j.applanim.2018.12.012

14. Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Ann Rev Clin Psychol. (2010) 6:109–38. doi: 10.1146/annurev.clinpsy.121208.131413

15. Barker SB, Gee NR. Canine-assisted interventions in hospitals: Best practices for maximizing human and canine safety. Front Vet Sci . (2021) 8:615730. doi: 10.3389/fvets.2021.615730

16. Gee NR, Rodriguez KE, Fine AH, Trammell JP. Dogs supporting human health and wellbeing: a biopsychosocial approach. Front Vet Sci . (2021) 8:630465. doi: 10.3389/fvets.2021.630465

17. Rodriguez KE, Herzog H, Gee NR. Variability in human-animal interaction research. Front Vet Sci . (2021) 7:619600. doi: 10.3389/fvets.2020.619600

18. McCullough A, Ruehrdanz A, Jenkins MA, Gilmer MJ, Olson J, Pawar A, et al. Measuring the effects of an animal-assisted intervention for pediatric oncology patients and their parents: a multisite randomized controlled trial. J Pediatr Oncol Nurs. (2018) 35:159–77. doi: 10.1177/1043454217748586

19. Simis MJ, Madden H, Cacciatore MA, Yeo SK. The lure of rationality: why does the deficit model persist in science communication? Public Understand Sci. (2016) 25:400–14. doi: 10.1177/0963662516629749

20. Packer RM, O'Neill DG, Fletcher F, Farnworth MJ. Great expectations, inconvenient truths, and the paradoxes of the dog-owner relationship for owners of brachycephalic dogs. PLoS ONE. (2019) 14:e0219918. doi: 10.1371/journal.pone.0219918

21. Seethaler S, Evans JH, Gere C, Rajagopalan RM. Science, values, and science communication: competencies for pushing beyond the deficit model. Sci Commun. (2019) 41:378–88. doi: 10.1177/1075547019847484

22. Philpotts I, Dillon J, Rooney N. Improving the welfare of companion dogs—is owner education the solution? Animals. (2019) 9:662. doi: 10.3390/ani9090662

23. Westgarth C, Christley RM, Marvin G, Perkins E. The responsible dog owner: the construction of responsibility. Anthrozoös. (2019) 32:631–46. doi: 10.1080/08927936.2019.1645506

24. Bray EE, Otto CM, Udell MA, Hall NJ, Johnston AM, MacLean EL. Enhancing the selection and performance of working dogs. Front Vet Sci . (2021) 8:644431. doi: 10.3389/fvets.2021.644431

25. Feldman S, Fine AH, Melfi L. Research, practice, science public policy: How they fit together in the context of aai. In: Fine AH, editor. Handbook on Animal Assisted Therapy. 5th ed. San Diego, CA: Elsevier/Academic Press (2019). p. 417–24.

26. Coleman G, Hemsworth PH. Training to improve stockperson beliefs and behaviour towards livestock enhances welfare and productivity. Rev Sci Tech. (2014) 33:131–7. doi: 10.20506/rst.33.1.2257

27. Fernandes J, Blache D, Maloney SK, Martin GB, Venus B, Walker FR, et al. Addressing animal welfare through collaborative stakeholder networks. Agriculture. (2019) 9:132. doi: 10.3390/agriculture9060132

28. Vigors B. Reducing the consumer attitude–behaviour gap in animal welfare: the potential role of ‘nudges’. Animals. (2018) 8:232. doi: 10.3390/ani8120232

29. McCune S, McCardle P, Griffin JA, Esposito L, Hurley K, Bures R, et al. Human-animal interaction (hai) research: a decade of progress. Front Vet Sci. (2020) 7:44. doi: 10.3389/fvets.2020.00044

30. Fine AH, Andersen SJ. A commentary on the contemporary issues confronting animal assisted and equine assisted interactions. J Equine Vet Sci. (2021) 103436. doi: 10.1016/j.jevs.2021.103436

31. Kaeberlein M, Creevy KE, Promislow DE. The dog aging project: Translational geroscience in companion animals. Mamm Genome. (2016) 27:279–88. doi: 10.1007/s00335-016-9638-7

32. Stewart L, MacLean EL, Ivy D, Woods V, Cohen E, Rodriguez K, et al. Citizen science as a new tool in dog cognition research. PLoS ONE. (2015) 10:e0135176. doi: 10.1371/journal.pone.0135176

33. Grove JM, Childers DL, Galvin M, Hines S, Muñoz-Erickson T, Svendsen ES. Linking science and decision making to promote an ecology for the city: practices and opportunities. Ecosyst Health Sustain. (2016) 2:e01239. doi: 10.1002/ehs2.1239

34. Stokes DE. Pasteur's Quadrant: Basic Science and Technological Innovation . Washington, DC: Brookings Institution Press (2011).

Keywords: canine science, dog, animal welfare, human-animal interaction, science communication, funding, sustainability

Citation: MacLean EL, Fine A, Herzog H, Strauss E and Cobb ML (2021) The New Era of Canine Science: Reshaping Our Relationships With Dogs. Front. Vet. Sci. 8:675782. doi: 10.3389/fvets.2021.675782

Received: 03 March 2021; Accepted: 11 June 2021; Published: 15 July 2021.

Reviewed by:

Copyright © 2021 MacLean, Fine, Herzog, Strauss and Cobb. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Evan L. MacLean, evanmaclean@arizona.edu

This article is part of the Research Topic

Our Canine Connection: The History, Benefits and Future of Human-Dog Interactions

Loading metrics

Open Access

Essays articulate a specific perspective on a topic of broad interest to scientists.

See all article types »

A guide to open science practices for animal research

Contributed equally to this work with: Kai Diederich, Kathrin Schmitt

Affiliation German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany

* E-mail: [email protected]

ORCID logo

  • Kai Diederich, 
  • Kathrin Schmitt, 
  • Philipp Schwedhelm, 
  • Bettina Bert, 
  • Céline Heinl

PLOS

Published: September 15, 2022

  • https://doi.org/10.1371/journal.pbio.3001810
  • Reader Comments

Fig 1

Translational biomedical research relies on animal experiments and provides the underlying proof of practice for clinical trials, which places an increased duty of care on translational researchers to derive the maximum possible output from every experiment performed. The implementation of open science practices has the potential to initiate a change in research culture that could improve the transparency and quality of translational research in general, as well as increasing the audience and scientific reach of published research. However, open science has become a buzzword in the scientific community that can often miss mark when it comes to practical implementation. In this Essay, we provide a guide to open science practices that can be applied throughout the research process, from study design, through data collection and analysis, to publication and dissemination, to help scientists improve the transparency and quality of their work. As open science practices continue to evolve, we also provide an online toolbox of resources that we will update continually.

Citation: Diederich K, Schmitt K, Schwedhelm P, Bert B, Heinl C (2022) A guide to open science practices for animal research. PLoS Biol 20(9): e3001810. https://doi.org/10.1371/journal.pbio.3001810

Copyright: © 2022 Diederich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors received no specific funding for this work.

Competing interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: All authors are employed at the German Federal Institute for Risk Assessment and part of the German Centre for the Protection of Laboratory Animals (Bf3R) which developed and hosts animalstudyregistry.org , a preregistration platform for animal studies and animaltestinfo.de, a database for non-technical project summaries (NTS) of approved animal study protocols within Germany.

Abbreviations: CC, Creative Commons; CIRS-LAS, critical incident reporting system in laboratory animal science; COVID-19, Coronavirus Disease 2019; DOAJ, Directory of Open Access Journals; DOI, digital object identifier; EDA, Experimental Design Assistant; ELN, electronic laboratory notebook; EU, European Union; IMSR, International Mouse Strain Resource; JISC, Joint Information Systems Committee; LIMS, laboratory information management system; MGI, Mouse Genome Informatics; NC3Rs, National Centre for the Replacement, Refinement and Reduction of Animals in Research; NTS, non-technical summary; RRID, Research Resource Identifier

Introduction

Over the past decade, the quality of published scientific literature has been repeatedly called into question by the failure of large replication studies or meta-analyses to demonstrate sufficient translation from experimental research into clinical successes [ 1 – 5 ]. At the same time, the open science movement has gained more and more advocates across various research areas. By sharing all of the information collected during the research process with colleagues and with the public, scientists can improve collaborations within their field and increase the reproducibility and trustworthiness of their work [ 6 ]. Thus, the International Reproducibility Networks have called for more open research [ 7 ].

However, open science practices have not been adopted to the same degree in all research areas. In psychology, which was strongly affected by the so-called reproducibility crisis, the open science movement initiated real practical changes leading to a broad implementation of practices such as preregistration or sharing of data and material [ 8 – 10 ]. By contrast, biomedical research is still lagging behind. Open science might be of high value for research in general, but in translational biomedical research, it is an ethical obligation. It is the responsibility of the scientist to transparently share all data collected to ensure that clinical research can adequately evaluate the risks and benefits of a potential treatment. When Russell and Burch published “The Principles of Humane Experimental Technique” in 1959, scientists started to implement their 3Rs principle to answer the ethical dilemma of animal welfare in the face of scientific progress [ 11 ]. By replacing animal experiments wherever possible, reducing the number of animals to a strict minimum, and refining the procedures where animals have still to be used, this ethical dilemma was addressed. However, in recent years, whether the 3Rs principle is sufficient to fully address ethical concerns about animal experiments has been questioned [ 12 ].

Most people tolerate the use of animals for scientific purposes only under the basic assumption that the knowledge gained will advance research in crucial areas. This implies that performed experiments are reported in a way that enables peers to benefit from the collected data. However, recent studies suggest that a large proportion of animal experiments are never actually published. For example, scientists working within the European Union (EU) have to write an animal study protocol for approval by the competent authorities of the respective country before performing an animal experiment [ 13 ]. In these protocols, scientists have to describe the planned study and justify every animal required for the project. By searching for publications resulting from approved animal study protocols from 2 German University Medical Centers, Wieschowski and colleagues found that only 53% of approved protocols led to a publication after 6 years [ 14 ]. Using a similar approach, Van der Naald and colleagues determined a publication rate of 60% at the Utrecht Medical Center [ 15 ]. In a follow-up survey, the respective researchers named so-called “negative” or null-hypothesis results as the main cause for not publishing outcomes [ 15 ]. The current scientific system is shaped by publishers, funders, and institutions and motivates scientists to publish novel, surprising, and positive results, revealing one of the many structural problems that the numerous efforts towards open science initiatives are targeting. Non-publication not only strongly contradicts ethical values, but also it compromises the quality of published literature by leading to overestimation of effect sizes [ 16 , 17 ]. Furthermore, publications of animal studies too often show poor reporting that strongly impairs the reproducibility, validity, and usefulness of the results [ 18 ]. Unfortunately, the idea that negative or equivocal findings can also contribute to the gain of scientific knowledge is frequently neglected.

So far, the scientific community using animals has shown limited resonance to the open science movement. Due to the strong controversy surrounding animal experiments, scientists have been reluctant to share information on the topic. Additionally, translational research is highly competitive and researchers tend to be secretive about their ideas until they are ready for publication or patent [ 19 , 20 ]. However, this missing openness could also point to a lack of knowledge and training on the many open science options that are available and suitable for animal research. Researchers have to be convinced of the benefits of open science practices, not only for science in general, but also for the individual researcher and each single animal. Yet, the key players in the research system are already starting to value open science practices. An increasing number of journals request open sharing of data, funders pay for open access publications and institutions consider open science practices in hiring decisions. Open science practices can improve the quality of work by enabling valuable scientific input from peers at the early stages of research projects. Furthermore, the extended communication that open science practices offer can draw attention to research and help to expand networks of collaborators and lead to new project opportunities or follow-up positions. Thus, open science practices can be a driver for careers in academia, particularly those of early career researchers.

Beyond these personal benefits, improving transparency in translational biomedical research can boost scientific progress in general. By bringing to light all the recorded research outputs that until now have remained hidden, the publication bias and the overestimation of effect sizes can be reduced [ 17 ]. Large-scale sharing of data can help to synthesize research outputs in preclinical research that will enable better decision-making for clinical research. Disclosing the whole research process will help to uncover systematic problems and support scientists in thoroughly planning their studies. In the long run, we predict that the implementation of open science practices will lead to the use of fewer animals in unintentionally repeated experiments that previously showed unreported negative results or in the establishment of methods by avoiding experimental dead ends that are often not published. More collaborations and sharing of materials and methods can further reduce the number of animal experiments used for the implementation of new techniques.

Open science can and should be implemented at each step of the research process ( Fig 1 ). A vast number of tools are already provided that were either directly conceptualized for animal research or can be adapted easily. In this Essay, we provide an overview of open science tools that improve transparency, reliability, and animal welfare in translational in vivo biomedical research by supporting scientists to clearly communicate their research and by supporting collaborative working. Table 1 lists the most prominent open science tools we discuss, together with their respective links. We have structured this Essay to guide you through which tools can be used at each stage of the research process, from planning and conducting experiments, through to analyzing data and communicating the results. However, many of these tools can be used at many different steps. Table 1 has been deposited on Zenodo and will be updated continuously [ 21 ].

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

Application of open science practices at each step of the research process can maximize the impact of performed animal experiments. The implementation of these practices will lead to less time pressure at the end of a project. Due to the connection of most of these open science practices, spending more time in the planning phase and during the conduction of experiments will save time during the data analysis and publication of the study. Indeed, consulting reporting guidelines early on, preregistering a statistical plan, and writing down crucial experimental details in an electronic lab notebook, will strongly accelerate the writing of a manuscript. If protocols or even electronic lab notebooks were made public, just citing these would simplify the writing of publications. Similarly, if a data management plan is well designed before starting data collection, analyzing, and depositing data in a public repository, as is increasingly required, will be fast. NTS, non-technical summary.

https://doi.org/10.1371/journal.pbio.3001810.g001

thumbnail

https://doi.org/10.1371/journal.pbio.3001810.t001

Planning the study

Transparent practices can be adopted at every stage of the research process. However, to ensure full effectivity, it is highly recommended to engage in detailed planning before the start of the experiment. This can prevent valuable time from being lost at the end of the study due to careless decisions being made at the beginning. Clarifying data management at the start of a project can help avoiding filing chaos that can be very time consuming to untangle. Keeping clear track of a project and study design will also help if new colleagues are included later on in the project or if entire project parts are handed over. In addition, all texts written on the rationale and hypothesis of the study or method descriptions, or design schemes created during the planning phase can be used in the final publications ( Fig 1 ). Similarly, information required for preregistration of animal studies or for reporting according to the ARRIVE guidelines are an extension of the details required for ethical approval [ 22 , 23 ]. Thus, the time burden within the planning phase is often overestimated. Furthermore, the thorough planning of experiments can avoid the unnecessary use of animals by preventing wrong avenues from being pursued.

Implementing open scientific practices at the beginning of a project does not mean that the idea and study plan must be shared immediately, but rather is critical for making the entire workflow transparent at the end of the project. However, optional early sharing of information can enable peers to give feedback on the study plan. Studies potentially benefit more from this a priori input than they would from the classical a posteriori peer-review process.

Most people perceive guidelines as advice that instructs on how to do something. However, it is sometimes useful to consider the term in its original meaning; “the line that guides us”. In this sense, following guidelines is not simply fulfilling a duty, but is a process that can help to design a sound research study and, as such, guidelines should be consulted at the planning stage of a project. The PREPARE guidelines are a list of important points that should be thought-out before starting a study involving animal experiments in order to reduce the waste of animals, promote alternatives, and increase the reproducibility of research and testing [ 24 ]. The PREPARE checklist helps to thoroughly plan a study and focuses on improving the communication and collaboration between all involved participants of the study (i.e., animal caretakers and scientists). Indeed, open science begins with the communication within a research facility. It is currently available in 33 languages and the responsible team from Norecopa, Norway’s 3R-center, takes requests for translations into further languages.

The UK Reproducibility Network has also published several guiding documents (primers) on important topics for open and reproducible science. These address issues such as data sharing [ 25 ], open access [ 26 ], open code and software [ 27 ], and preprints [ 28 ], as well as preregistration and registered reports [ 27 ]. Consultation of these primers is not only helpful in the relevant phases of the experiment but is also encouraged in the planning phase.

Although the ARRIVE guidelines are primarily a reporting guideline specifically designed for preparing a publication containing animal data, they can also support researchers when planning their experiments [ 22 , 23 ]. Going through the ARRIVE website, researchers will find tools and explanations that can support them in planning their experiments [ 29 ]. Consulting the ARRIVE checklist at the beginning of a project can help in deciding what details need to be documented during conduction of the experiments. This is particularly advisable, given that compliance to ARRIVE is still poor [ 18 ].

Experimental design

To maximize the validity of performed experiments and the knowledge gained, designing the study well is crucial. It is important that the chosen animal species reflects the investigated disease well and that basic characteristics of the animal, such as sex or age, are considered carefully [ 30 ]. The Canadian Institutes of Health Research provides a collection of resources on the integration of sex and gender in biomedical research with animals, including tips and tools for researchers and reviewers [ 31 ]. Additionally, it is advisable to avoid unnecessary standardization of biological and environmental factors that can reduce the external validity of results [ 32 ]. Meticulous statistical planning can further optimize the use of animals. Free to use online tools for calculating sample sizes such as G*Power or the inVivo software package for R can further support animal researchers in designing their statistical plan [ 33 , 34 ]. Randomization for the allocation of groups can be supported with specific tools for scientists like Research Randomizer, but also by simple online random number generators [ 35 ]. Furthermore, it might be advisable when designing the study to incorporate pathological analyses into the experimental plan. Optimal planning of tissue collection, performance of pathological procedures according to accepted best practices, and use of optimal pathological analysis and reporting methods can add some extra knowledge that would otherwise be lost. This can improve the reproducibility and quality of translational biomedicine, especially, but not exclusively, in animal studies with morphological endpoints. In all animal studies, unexpected deaths in experimental animals can occur and be the cause of lost data or missed opportunities to identify health problems [ 36 , 37 ].

To support researchers in designing their animal research, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) has also developed the Experimental Design Assistant (EDA) [ 38 , 39 ]. This online tool helps researchers to better structure in vivo research by creating detailed schemes of the study design. It provides feedback on the entered design, drawing researcher’s attention to crucial decisions in the project. The resulting schemes can be used to transparently share the study design by uploading it into a study preregistration, enclosing it in a grant application, or submitting it with a final manuscript. The EDA can be used for different study designs in diverse scenarios and helps to communicate researcher plans to others [ 40 ]. The EDA might be particularly of interest to clarify very complex study designs involving multiple experimental groups. Working with the EDA might appear rather complex in the beginning, but the NC3R provides regular webinars that can help to answer any questions that arise.

Preregistration

Preregistration is an effective tool to improve the quality and transparency of research. To preregister their work, scientists must determine crucial details of the study before starting any experiment. Changes occurring during a study can be outlined at the end. A preregistered study plan should include at least the hypothesis and determine all the parameters that are known in advance. A description of the planned study design and statistical analysis will enable reviewers and peers to better retrace the workflow. It can prevent the intentional use of the flexibility of analysis to reach p -values under a certain significance level (e.g., p-hacking or HARKing (Hypothesizing After Results are Known)). With preregistration, scientists can also claim their idea at an early stage of their research with a citable individual identifier that labels the idea as their own. Some open preregistration platforms also provide a digital object identifier (DOI), which makes the registered study citable. Three public registries actively encourage the preregistration of animal studies conducted around the world: OSF registry, preclinicaltrials.eu, and animalstudyregistry.org [ 41 – 45 ]. Scientists can choose the registry according to their needs. Preregistering a study in a public registry supports scientists in planning their study and later to critically reevaluate their own work and assess its limitations and potentials.

As an alternative to public registries, researchers can also submit their study plan to one of hundreds of journals already publishing registered reports, including many journals open to animal research [ 8 ]. A submitted registered report passes 2 steps of peer review. In the first step, reviewers comment on the idea and the study design. After an “in-principle-acceptance,” researchers can conduct their study as planned. If the authors conduct the experiments as described in the accepted study protocol, the journal will publish the final study regardless of the outcome. This might be an attractive option, especially for early career researchers, as a manuscript is published at the beginning of a project with the guarantee of a future final publication.

The benefits of preregistration can already be observed in clinical research, where registration has been mandatory for most trials for more than 20 years. Preregistration in clinical research has helped to make known what has been tested and not just what worked and was published, and the implementation of trial registration has strongly reduced the number of publications reporting significant treatment effects [ 46 ]. In animal research, with its unrealistically high percentage of positive results, preregistration seems to be particularly worthwhile.

Research data management

To get the most out of performed animal experiments, effective sharing of data at the end of the study is essential. Sharing research data optimally is complex and needs to be prepared in advance. Thus, data management can be seen as one part of planning a study thoroughly. Many funders have recognized the value of the original research data and request a data management plan from applicants in advance [ 25 , 47 ]. Various freely available tools such as DMPTool or DMPonline already exist to design a research data management plan that complies to the requirements of different funders [ 48 , 49 ]. The data management plan defines the types of data collected and describes the handling and names responsible persons throughout the data lifecycle. This includes collecting the data, analyzing, archiving, and sharing it. Finally, a data management plan enables long-term access and the possibility for reuse by peers. Developing such a plan, whether it is required by funders or not, will later simplify the application of the FAIR data principle (see section on the FAIR data principle). The Longwood Medical Area Research Data Management Working Group from the Harvard Medical School developed a checklist to assist researchers in optimally managing their data throughout the data lifecycle [ 50 ]. Similarly, the Joint Information Systems Committee (JISC) provides a great research data management toolkit including a checklist for researchers planning their project [ 51 ]. Consulting this checklist in the planning phase of a project can prevent common errors in research data management.

Non-technical project summary

One instrument specifically conceived to create transparency on animal research for the general public is the so-called non-technical project summary (NTS). All animal protocols approved within the EU must be accompanied by these comprehensible summaries. NTSs are intended to inform the public about ongoing animal experiments. They are anonymous and include information on the objectives and potential benefits of the project, the expected harm, the number of animals, the species, and a statement of compliance with the requirements of the 3Rs principle. However, beyond simply informing the public, NTSs can also be used for meta-research to help identify new research areas with an increased need for new 3R technologies [ 52 , 53 ]. NTSs become an excellent tool to appropriately communicate the scientific value of the approved protocol and for meta-scientists to generate added value by systematically analyzing theses summaries if they fulfill a minimum quality threshold [ 54 , 55 ]. In 2021, the EU launched the ALURES platform ( Table 1 ), where NTSs from all member states are published together, opening the opportunities for EU-wide meta-research. NTSs are, in contrast to other open science practices, mandatory in the EU. However, instead of thinking of them as an annoying duty, it might be worth thoroughly drafting the NTS to support the goals of more transparency towards the public, enabling an open dialogue and reducing extreme opinions.

Conducting the experiments

Once the experiments begin, documentation of all necessary details is essential to ensure the transparency of the workflow. This includes methodological details that are crucial for replicating experiments, but also failed attempts that could help peers to avoid experiments that do not work in the future. All information should be stored in such a way that it can be found easily and shared later. In this area, many new tools have emerged in recent years ( Table 1 ). These tools will not only make research transparent for colleagues, but also help to keep track of one’s own research and improve internal collaboration.

Electronic laboratory notebooks

Electronic laboratory notebooks (ELNs) are an important pillar of research data management and open science. ELNs facilitate the structured and harmonized documentation of the data generation workflow, ensure data integrity, and keep track of all modifications made to the original data based on an audit trail option. Moreover, ELNs simplify the sharing of data and support collaborations within and outside the research group. Methodological details and research data become searchable and traceable. There is an extensive amount of literature providing advice on the selection and the implementation process of an ELN depending on the specific needs and research area and its discussion would be beyond the scope of this Essay [ 56 – 58 ]. Some ELNs are connected to a laboratory information management system (LIMS) that provides an animal module supporting the tracking of animal details [ 59 ]. But as research involving animals is highly heterogeneous, this might not be the only decision point and we cannot recommend a specific ELN that is suitable for all animal research.

ELNs are already established in the pharmaceutical industry and their use is on the rise among academics as well. However, due to concerns around costs for licenses, data security, and loss of flexibility, many research institutions still fear the expenses that the introduction of such a system would incur [ 56 ]. Nevertheless, an increasing number of academic institutions are implementing ELNs and appreciating the associated benefits [ 60 ]. If your institution already has an ELN, it might be easiest to just use the option available in the research environment. If not, the Harvard Medical School provides an extensive and updated overview of various features of different ELNs that can support scientists in choosing the appropriate one for their research [ 61 ]. There are many commercial ELN products, which may be preferred when the administrative workload should be outsourced to a large extent. However, open-source products such as eLabFTW or open BIS provide a greater opportunity for customization to meet specific needs of individual research institutions [ 62 – 64 ]. A huge number of options are available depending on the resources and the features required. Some scientists might prefer generic note taking tools such as Evernote or just a simple Word document that offers infinite flexibility, but specific ELNs can further support good record keeping practice by providing immutability, automated backups, standardized methods, and protocols to follow. Clearly defining the specific requirements expected might help to choose an adequate system that would improve the quality of the record compared to classical paper laboratory notebooks.

Sharing protocols

Adequate sharing of methods in translational biomedical sciences is key to reproducibility. Several repositories exist that simplify the publication and exchange of protocols. Writing down methods at the end of the project bears the risk that crucial details might be missing [ 65 ]. On protocols.io, scientists can note all methodological details of a procedure, complete them with uploaded documents, and keep them for personal use or share them with collaborators [ 66 ]. Authors can also decide at any point in time to make their protocol public. Protocols published on protocols.io receive a DOI and become citable; they can be commented on by peers and adapted according to the needs of the individual researcher. Protocol.io files from established protocols can also be submitted together with some context and sample datasets to PLOS ONE , where it can be peer-reviewed and potentially published [ 67 , 68 ]. Depending on the affiliation of the researchers to academia or industry and on an internal or public sharing of files, protocols.io can be free of charge or come with costs. Other journals also encourage their authors to deposit their protocols in a freely accessible repository, such as protocol exchange from Nature portfolio [ 69 ]. Another option might be to separately submit a protocol that was validated by its use in an already published research article to an online and peer-reviewed journal specific for research protocols, such as Bio-Protocol. A multitude of journals, including eLife and Science already collaborate with Bio-Protocol and recommend authors to publish the method in Bio-Protocol [ 70 ]. Bio-Protocol has no submission fees and is freely available to all readers. Both protocols.io and Bio-Protocol allow the illustration of complex scientific methods by uploading videos to published protocols. In addition, protocols can be deposited in a general research repository such as the Open Science Framework (OSF repository) and referenced in appropriate publications.

Sharing critical incidents

Sharing critical or even adverse events that occur in the context of animal experimentation can help other scientists to avoid committing the same mistakes. The system of sharing critical incidents is already established in clinical practice and helps to improve medical care [ 71 , 72 ]. The online platform critical incident reporting system in laboratory animal science (CIRS-LAS) represents the first preclinical equivalent to these clinical systems [ 73 ]. With this web-based tool, critical incidents in animal research can be reported anonymously without registration. An expert panel helps to analyze the incident to encourage an open dialogue. Critical incident reporting is still very marginal in animal research and performed procedures are very variable. These factors make a systemic analysis and a targeted search of incidence difficult. However, it may be of special interest for methods that are broadly used in animal research such as anesthesia. Indeed, a broad feed of this system with data on errors occurring in standard procedures today could help avoid critical incidences in the future and refine animal experiments.

Sharing animals, organs, and tissue

When we think about open science, sharing results and data are often in focus. However, sharing material is also part of a collaborative and open research culture that could help to greatly reduce the number of experimental animals used. When an animal is killed to obtain specific tissue or organs, the remainder is mostly discarded. This may constitute a wasteful practice, as surplus tissue can be used by other researchers for different analyses. More animals are currently killed as surplus than are used in experiments, demonstrating the potential for sharing these animals [ 74 , 75 ].

Sharing information on generated surplus is therefore not only economical, but also an effective way to reduce the number of animals used for scientific purposes. The open-source software Anishare is a straightforward way for breeders of genetically modified lines to promote their surplus offspring or organs within an institution [ 76 ]. The database AniMatch ( Table 1 ) connects scientists within Europe who are offering tissue or organs with scientists seeking this material. Scientists already sharing animal organs can support this process by describing it in publications and making peers aware of this possibility [ 77 ]. Specialized research communities also allow sharing of animal tissue or animal-derived products worldwide that are typically used in these fields on a collaborative basis via the SEARCH-framework [ 78 , 79 ]. Depositing transgenic mice lines into one of several repositories for mouse strains can help to further minimize efforts in producing new transgenic lines and most importantly reduce the number of surplus animals by supporting the cryoconservation of mouse lines. The International Mouse Strain Resource (IMSR) can be used to help find an adequate repository or to help scientists seeking a specific transgenic line find a match [ 80 ].

Analyzing the data

Animal researchers have to handle increasingly complex data. Imaging, electrophysiological recording, or automated behavioral tracking, for example, produce huge datasets. Data can be shared as raw numerical output but also as images, videos, sounds, or other forms from which raw numerical data can be generated. As the heterogeneity and the complexity of research data increases, infinite possibilities for analysis emerge. Transparently reporting how the data were processed will enable peers to better interpret reported results. To get the most out of performed animal experiments, it is crucial to allow other scientists to replicate the analysis and adapt it to their research questions. It is therefore highly recommended to use formats and tools during the analysis that allow a straightforward exchange of code and data later on.

Transparent coding

The use of non-transparent analysis codes have led to a lack of reproducibility of results [ 81 ]. Sharing code is essential for complex analysis and enables other researchers to reproduce results and perform follow-up studies, and citable code gives credit for the development of new algorithms ( Table 1 ). Jupyter Notebooks are a convenient way to share data science pipelines that may use a variety of coding languages, including like Python, R or Matlab, and also share the results of analyses in the form of tables, diagrams, images, and videos. Notebooks contain source code and can be published or collaboratively shared on platforms like GitHub or GitLab, where version control of source code is implemented. The data-archiving tool Zenodo can be used to archive a repository on GitHub and create a DOI for the archive. Thereby contents become citable. Using free and open-source programming language like R or Python will increase the number of potential researchers that can work with the published code. Best practice for research software is to publish the source code with a license that allows modification and redistribution.

Choice of data visualization

Choosing the right format for the visualization of data can increase its accessibility to a broad scientific audience and enable peers to better judge the validity of the results. Studies based on animal research often work with very small sample sizes. Visualizing these data in histograms may lead to an overestimation of the outcomes. Choosing the right dot plots that makes all recorded points visible and at the same time focusses on the summary instead of the individual points can further improve the intuitive understanding of a result. If the sample size is too low, it might not be meaningful to visualize error bars. A variety of freely available tools already exists that can support scientists in creating the most appropriate graphs for their data [ 82 ]. In particular, when representing microscopy results or heat maps, it should be kept in mind that a large part of the population cannot perceive the classical red and green representation [ 83 ]. Opting for the color-blind safe color maps and checking images with free tools such as color oracle ( Table 1 ) can increase the accessibility of graphs. Multiple journals have already addressed flaws in data visualization and have introduced new policies that will accelerate the uptake of transparent representation of results.

Publication of all study outcomes

Open science practices have received much attention in the past few years when it comes to publication of the results. However, it is important to emphasize that although open science tools have their greatest impact at the end of the project, good study preparation and sharing of the study plan and data early on can greatly increase the transparency at the end.

The FAIR data principle

To maximize the impact and outcome of a study, and to make the best long-term use of data generated through animal experiments, researchers should publish all data collected during their research according to the FAIR data principle. That means the data should be findable, accessible, interoperable, and reusable. The FAIR principle is thus an extension of open access publishing. Data should not only be published without paywalls or other access restrictions, but also in such a manner that they can be reused and further processed by others. For this, legal as well as technical requirements must be met by the data. To achieve this, the GoFAIR initiative has developed a set of principles that should be taken into account as early as at the data collection stage [ 49 , 84 ]. In addition to extensively described and machine-readable metadata, these principles include, for example, the application of globally persistent identifiers, the use of open file formats, and standardized communication protocols to ensure that humans and machines can easily download the data. A well-chosen repository to upload the data is then just the final step to publish FAIR data.

FAIR data can strongly increase the knowledge gained from performed animal experiments. Thus, the same data can be analyzed by different researchers and could be combined to obtain larger sample sizes, as already occurs in the neuroimaging community, which works with comparable datasets [ 85 ]. Furthermore, the sharing of data enables other researchers to analyze published datasets and estimate measurement reliabilities to optimize their own data collection [ 86 , 87 ]. This will help to improve the translation from animal research into clinics and simultaneously reduce the number of animal experiment in future.

Reporting guidelines

In preclinical research, the ARRIVE guidelines are the current state of the art when it comes to reporting data based on animal experiments [ 22 , 23 ]. The ARRIVE guidelines have been endorsed by more than 1,000 journals who ask that scientists comply with them when reporting their outcomes. Since the ARRIVE guidelines have not had the expected impact on the transparency of reporting in animal research publications, a more rigorous update has been developed to facilitate their application in practice (ARRIVE 2.0 [ 23 ]). We believe that the ARRIVE guidelines can be more effective if they are implemented at a very early stage of the project (see section on guidelines). Some more specialized reporting guidelines have also emerged for individual research fields that rely on animal studies, such as endodontology [ 88 ]. The equator network collects all guidelines and makes them easily findable with their search tool on their website ( Table 1 ). MERIDIAN also offers a 1-stop shop for all reporting guidelines involving the use of animals across all research sectors [ 89 ]. It is thus worth checking for new reporting guidelines before preparing a manuscript to maximize the transparency of described experiments.

Identifiers

Persistent identifiers for published work, authors, or resources are key for making public data findable by search engines and are thus a prerequisite for compliance to FAIR data principles. The most common identifier for publications will be a DOI, which makes the work citable. A DOI is a globally unique string assigned by the International DOI Foundation to identify content permanently and provide a persistent link to its location on the Internet. An ORCID ID is used as a personal persistent identifier and is recommendable to unmistakably identify an author ( Table 1 ). This will avoid confusions between authors with the same name or in the case of name changes or changes of affiliation. Research Resource Identifiers (RRID) are unique ID numbers that help to transparently report research resources. RRID also apply to animals to clearly identify the species used. RRID help avoid confusion between different names or changing names of genetic lines and, importantly, make them machine findable. The RRID Portal helps scientists find a specific RRID or create one if necessary ( Table 1 ). In the context of genetically altered animal lines, correct naming is key. The Mouse Genome Informatics (MGI) Database is the authoritative source of official names for mouse genes, alleles, and strains ([ 90 ]).

Preprint publication

Preprints have undergone unprecedented success, particularly during the height of the Coronavirus Disease 2019 (COVID-19) pandemic when the need for rapid dissemination of scientific knowledge was critical. The publication process for scientific manuscripts in peer-reviewed journals usually requires a considerable amount of time, ranging from a few months to several years, mainly due to the lengthy review process and inefficient editorial procedures [ 91 , 92 ]. Preprints typically precede formal publication in scientific journals and, thus, do not go through a peer review process, thus, facilitating the prompt open dissemination of important scientific findings within the scientific community. However, submitted papers are usually screened and checked for plagiarism. Preprints are assigned a DOI so they can be cited. Once a preprint is published in a journal, its status is automatically updated on the preprint server. The preprint is linked to the publication via CrossRef and mentioned accordingly on the website of the respective preprint platform.

After initial skepticism, most publishers now allow papers to be posted on preprint servers prior to submission. An increasing number of journals even allow direct submission of a preprint to their peer review process. The US National Institutes of Health and the Wellcome Trust, among other funders, also encourage prepublication and permit researchers to cite preprints in their grant applications. There are now numerous preprint repositories for different scientific disciplines. BioASAP provides a searchable database for preprint servers that can help in identifying the one that best matches an individual’s needs [ 93 ]. The most popular repository for animal research is bioRxiv, which is hosted by the Cold Spring Harbor Laboratory ( Table 1 ).

The early exchange of scientific results is particularly important for animal research. This acceleration of the publication process can help other scientists to adapt their research or could even prevent animal experiments if other scientists become aware that an experiment has already been done before starting their own. In addition, preprints can help to increase the visibility of research. Journal articles that have a corresponding preprint publication have higher citation and Altmetric counts than articles without preprint [ 94 ]. In addition, the publication of preprints can help to combat publication bias, which represents a major problem in animal research [ 16 ]. Since journals and readers prioritize cutting-edge studies with positive results over inconclusive or negative results, researchers are reluctant to invest time and money in a manuscript that is unlikely to be accepted in a high-impact journal.

In addition to the option of publishing as preprint, other alternative publication formats have recently been introduced to facilitate the publication of research results that are hard to publish in traditional peer-reviewed journals. These include micro publications, data repositories, data journals, publication platforms, and journals that focus on negative or inconclusive results. The tool fiddle can support scientists in choosing the right publication format [ 95 , 96 ].

Open access publication

Publishing open access is one of the most established open science strategies. In contrast to the FAIR data principle, the term open access publication refers usually to the publication of a manuscript on a platform that is accessible free of charge—in translational biomedical research, this is mostly in the form of a scientific journal article. Originally, publications accessible free of charge were the answer to the paywalls established by renowned publishing houses, which led to social inequalities within and outside the research system. In translational biomedical research, the ethical aspect of urgently needed transparency is another argument in favor of open access publication, as these studies will not only be findable, but also internationally readable.

There are different ways of open access publishing; the 2 main routes are gold open access and green open access. Numerous journals offer now gold open access. It refers to the immediate and fully accessible publication of an article. The Directory of Open Access Journals (DOAJ) provides a complete and updated list for high-quality, open access, and peer-reviewed journals [ 97 ]. Charité–Universitätsmedizin Berlin offers a specific tool for biomedical open access journals that supports animal researchers to choose an appropriate journal [ 49 ]. In addition, the Sherpa Romeo platform is a straightforward way to identify publisher open access policies on a journal-by-journal basis, including information on preprints, but also on licensing of articles [ 51 ]. Hybrid open access refers to openly accessible articles in otherwise paywalled journals. By contrast, green open access refers to the publication of a manuscript or article in a repository that is mostly operated by institutions and/or universities. The publication can be exclusively on the repository or in combination with a publisher. In the quality-assured, global Directory of Open Access Repositories (openDOAR), scientists can find thousands of indexed open access repositories [ 49 ]. The publisher often sets an embargo during which the authors cannot make the publication available in the repository, which can restrict the combined model. It is worth mentioning that gold open access is usually more expensive for the authors, as they have to pay an article processing charge. However, the article’s outreach is usually much higher than the outreach of an article in a repository or available exclusively as subscription content [ 98 ]. Diamond open access refers to publications and publication platforms that can be read free of charge by anyone interested and for which no costs are incurred by the authors either. It is the simplest and fairest form of open access for all parties involved, as no one is prevented from participating in scientific discourse by payment barriers. For now, it is not as widespread as the other forms because publishers have to find alternative sources of revenue to cover their costs.

As social media and the researcher’s individual public outreach are becoming increasingly important, it should be remembered that the accessibility of a publication should not be confused with the licensing under which the publication is made available. In order to be able to share and reuse one’s own work in the future, we recommend looking for journals that allow publications under the Creative Commons licenses CC BY or CC BY-NC. This also allows the immediate combination of gold and green open access.

Creative commons licenses

Attributing Creative Commons (CC) licenses to scientific content can make research broadly available and clearly specifies the terms and conditions under which people can reuse and redistribute the intellectual property, namely publications and data, while giving the credit to whom it deserves [ 49 ]. As the laws on copyright vary from country to country and law texts are difficult to understand for outsiders, the CC licenses are designed to be easily understandable and are available in 41 languages. This way, users can easily avoid accidental misuse. The CC initiative developed a tool that enables researchers to find the license that best fits their interests [ 49 ]. Since the licenses are based on a modular concept ranging from relatively unrestricted licenses (CC BY, free to use, credit must be given) to more restricted licenses (CC BY-NC-ND, only free to share for non-commercial purposes, credit must be given), one can find an appropriate license even for the most sensitive content. Publishing under an open CC license will not only make the publication easy to access but can also help to increase its reach. It can stimulate other researchers and the interested public to share this article within their network and to make the best future use of it. Bear in mind that datasets published independently from an article may receive a different CC license. In terms of intellectual property, data are not protected in the same way as articles, which is why the CC initiative in the United Kingdom recommends publishing them under a CC0 (“no rights reserved”) license or the Public Domain Mark. This gives everybody the right to use the data freely. In an animal ethics sense, this is especially important in order to get the most out of data derived from animal experiments.

Data and code repositories

Sharing research data is essential to ensure reproducibility and to facilitate scientific progress. This is particularly true in animal research and the scientific community increasingly recognizes the value of sharing research data. However, even though there is increasing support for the sharing of data, researchers still perceive barriers when it comes to doing so in practice [ 99 – 101 ]. Many universities and research institutions have established research data repositories that provide continuous access to datasets in a trusted environment. Many of these data repositories are tied to specific research areas, geographic regions, or scientific institutions. Due to the growing number and overall heterogeneity of these repositories, it can be difficult for researchers, funding agencies, publishers, and academic institutions to identify appropriate repositories for storing and searching research data.

Recently, several web-based tools have been developed to help in the selection of a suitable repository. One example is Re3data, a global registry of research data repositories that includes repositories from various scientific disciplines. The extensive database can be searched by country, content (e.g., raw data, source code), and scientific discipline [ 49 ]. A similar tool to help find a data archive specific to the field is FAIRsharing, based at Oxford University [ 102 ]. If there is no appropriate subject-specific data repository or one seems unsuitable for the data, there are general data repositories, such as Open Science Framework, figshare, Dryad, or Zenodo. To ensure that data stored in a repository can be found, a DOI is assigned to the data. Choosing the right license for the deposited code and data ensures that authors get credit for their work.

Publication and connection of all outcomes

If scientists have used all available open science tools during the research process, then publishing and linking all outcomes represents the well-deserved harvest ( Fig 2 ). At the end of a research process, researchers will not just have 1 publication in a journal. Instead, they might have a preregistration, a preprint, a publication in a journal, a dataset, and a protocol. Connecting these outcomes in a way that enables other scientists to better assess the results that link these publications will be key. There are many examples of good open science practices in laboratory animal science, but we want to highlight one of them to show how this could be achieved. Blenkuš and colleagues investigated how mild stress-induced hyperthermia can be assessed non-invasively by thermography in mice [ 103 ]. The study was preregistered with animalstudyregistry.org , which is referred to in their publication [ 104 ]. A deviation from the originally preregistered hypothesis was explained in the manuscript and the supplementary material was uploaded to figshare [ 105 ].

thumbnail

Application of open science practices can increase the reproducibility and visibility of a research project at the same time. By publishing different research outputs with more detailed information than can be included in a journal article, researchers enable peers to replicate their work. Reporting according to guidelines and using transparent visualization will further improve this reproducibility. The more research products that are generated, the more credit can be attributed. By communicating on social media or additionally publishing slides from delivered talks or posters, more attention can be raised. Additionally, publishing open access and making the work machine-findable makes it accessible to an even broader number of peers.

https://doi.org/10.1371/journal.pbio.3001810.g002

It might also be helpful to provide all resources from a project in a single repository such as Open Science Framework, which also implements other, different tools that might have been used, like GitHub or protocols.io.

Communicating your research

Once all outcomes of the project are shared, it is time to address the targeted peers. Social media is an important instrument to connect research communities [ 106 ]. In particular, Twitter is an effective way to communicate research findings or related events to peers [ 107 ]. In addition, specialized platforms like ResearchGate can support the exchange of practical experiences ( Table 1 ). When all resources related to a project are kept in one place, sharing this link is a straightforward way to reach out to fellow scientists.

With the increasing number of publications, science communication has become more important in recent years. Transparent science that communicates openly with the public contributes to strengthening society’s trust in research.

Conclusions

Plenty of open science tools are already available and the number of tools is constantly growing. Translational biomedical researchers should seize this opportunity, as it could contribute to a significant improvement in the transparency of research and fulfil their ethical responsibility to maximize the impact of knowledge gained from animal experiments. Over and above this, open science practices also bear important direct benefits for the scientists themselves. Indeed, the implementation of these tools can increase the visibility of research and becomes increasingly important when applying for grants or in recruitment decisions. Already, more and more journals and funders require activities such as data sharing. Several institutions have established open science practices as evaluation criteria alongside publication lists, impact factor, and h-index for panels deciding on hiring or tenure [ 108 ]. For new adopters, it is not necessary to apply all available practices at once. Implementing single tools can be a safe approach to slowly improve the outreach and reproducibility of one’s own research. The more open science products that are generated, the more reproducible the work becomes, but also the more the visibility of a study increases ( Fig 2 ).

As other research fields, such as social sciences, are already a step ahead in the implementation of open science practices, translational biomedicine can profit from their experiences [ 109 ]. We should thus keep in mind that open science comes with some risks that should be minimized early on. Indeed, the more open science practices become incentivized, the more researchers could be tempted to get a transparency quality label that might not be justified. When a study is based on a bad hypothesis or poor statistical planning, this cannot be fixed by preregistration, as prediction alone is not sufficient to validate an interpretation [ 110 ]. Furthermore, a boom of data sharing could disconnect data collectors and analysts, bearing the risk that researchers performing the analysis lack understanding of the data. The publication of datasets could also promote a “parasitic” use of a researcher’s data and lead to scooping of outcomes [ 111 ]. Stakeholders could counteract such a risk by promoting collaboration instead of competition.

During the COVID-19 pandemic, we have seen an explosion of preprint publications. This unseen acceleration of science might be the adequate response to a pandemic; however, the speeding up science in combination with the “publish or perish” culture could come at the expense of the quality of the publication. Nevertheless, a meta-analysis comparing the quality of reporting between preprints and peer-reviewed articles showed that the quality of reporting in preprints in the life sciences is at most slightly lower on average compared to peer-reviewed articles [ 112 ]. Additionally, preprints and social media have shown during this pandemic that a premature and overconfident communication of research results can be overinterpreted by journalists and raise unfounded hopes or fears in patients and relatives [ 113 ]. By being honest and open about the scope and limitations of the study and choosing communication channels carefully, researchers can avoid misinterpretation. It should be noted, however, that by releasing all methodological details and data in research fields such as viral engineering, where a dual use cannot be excluded, open science could increase biosecurity risk. Implementing access-controlled repositories, application programming interfaces, and a biosecurity risk assessment in the planning phase (i.e., by preregistration) could mitigate this threat [ 114 ].

Publishing in open access journals often involves higher publication costs, which makes it more difficult for institutes and universities from low-income countries to publish there [ 115 ]. Equity has been identified as a key aim of open science [ 116 ]. It is vital, therefore, that existing structural inequities in the scientific system are not unintentionally reinforced by open science practices. Early career researchers have been the main drivers of the open science movement in other fields even though they are often in vulnerable positions due to short contracts and hierarchical and strongly networked research environments. Supporting these early career researchers in adopting open science tools could significantly advance this change in research culture [ 117 ]. However, early career researchers can already benefit by publishing registered reports or preprints that can provide a publication much faster than conventional journal publications. Communication in social media can help them establish a network enabling new collaborations or follow-up positions.

Even though open science comes with some risks, the benefits easily overweigh these caveats. If a change towards more transparency is accompanied by the implementation of open science in the teaching curricula of the universities, most of the risks can be minimized [ 118 ]. Interestingly, we have observed that open science tools and infrastructure that are specific to animal research seem to mostly come from Europe. This may be because of strict regulations within Europe for animal experiments or because of a strong research focus in laboratory animal science along with targeted research funding in this region. Whatever the reason might be, it demonstrates the important role of research policy in accelerating the development towards 3Rs and open science.

Overall, it seems inevitable that open science will eventually prevail in translational biomedical research. Scientists should not wait for the slow-moving incentive framework to change their research habits, but should take pioneering roles in adopting open science tools and working towards more collaboration, transparency, and reproducibility.

Acknowledgments

The authors gratefully acknowledge the valuable input and comments from Sebastian Dunst, Daniel Butzke, and Nils Körber that have improved the content of this work.

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 6. Cary Funk MH, Brian Kennedy, Courtney Johnson. Americans say open access to data and independent review inspire more trust in research findings. Pew Research Center Website: Pew Research Center; 2019. Available from: https://www.pewresearch.org/science/2019/08/02/americans-say-open-access-to-data-and-independent-review-inspire-more-trust-in-research-findings/ .
  • 7. International Reproducibility Networks. International Networks Statement UK Reproducibility Network Website: UK Reproducibility Network. 2021. Available from: https://cpb-eu-w2.wpmucdn.com/blogs.bristol.ac.uk/dist/b/631/files/2021/09/International-Networks-Statement-v1.0.pdf .
  • 13. Article 36 of Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 amended by Regilation (EU) 2019/1010 of the European Parliament and of the Council of 5 June 2019. OJEU. 2010;L276:36.
  • 19. American Association for Cancer Research. Editorial Policies. 2021. Available from: https://aacrjournals.org/content/authors/editorial-policies .
  • 21. Diederich K, Schmitt K, Schwedhelm P, Bert B, Heinl C. Open Science Toolbox for Animal Research. Zenodo. 2022. Available from: https://zenodo.org/record/6497560 .
  • 29. NC3R. ARRIVE guidelines. NC3R Website. Available from: https://arriveguidelines.org/ .
  • 31. Canadian Institutes of Health Research. How to integrate sex and gender into research. Website of the Canadian Institutes of Health Research: Canadian Institutes of Health Research. 2019 [cited 2019 Aug 21]. Available from: https://cihr-irsc.gc.ca/e/50836.html .
  • 33. Simon T, Bate RAC. InVivoStat. Available from: https://invivostat.co.uk/ .
  • 35. Urbaniak G, Plous S. Research randomizer (version 4.0) [computer software]. 2013.
  • 47. Medical Research Council’s. Data sharing policy. UK Research and Innovation Website 2021. Available from: https://www.ukri.org/publications/mrc-data-sharing-policy/ .
  • 48. University of California Curation Center. DMPTool. 2021. Available from: https://dmptool.org/ .
  • 49. Digital Curation Centre. DMPOnline. Available from: https://dmponline.dcc.ac.uk/ . Digital Curation Centre; 2021.
  • 50. Harvard Longwood Medical Area Research Data Management Working Group. Biomedical Data Lifecycle. Harvard Medical School Website: Harvard Medical School; 2021. Available from: https://datamanagement.hms.harvard.edu/about/what-research-data-management/biomedical-data-lifecycle .
  • 51. Joint Information Systems Committee. Research data management toolkit JISC Website: JISC; 2018. Available from: https://www.jisc.ac.uk/guides/rdm-toolkit .
  • 54. German Centre for the Protection of Laboratory Animals (Bf3R). NTPs—Nicht Technische Projektzusammenfassungen 3R-SMART; 2020. Available from: https://www.3r-smart.de/index.php?id=6895 .
  • 55. Understanding Animal Research. Guide to writing non-technical summaries concordat on openness on animal research in the UK2018. Available from: https://concordatopenness.org.uk/guide-to-writing-non-technical-summaries .
  • 56. Gerlach B, Untucht C, Stefan A. Electronic Lab Notebooks and Experimental Design Assistants. In: Bespalov A, Michel MC, Steckler T, editors. Good Research Practice in Non-Clinical Pharmacology and Biomedicine. Cham: Springer International Publishing; 2020. p. 257–75.
  • 58. Adam BL, Birte L. ELN Guide: electronic laboratory notebooks in the context of research data management and good research practice–a guide for the life sciences. Cologne, Germany: ZB MED–Information Centre for Life Sciences; 2021.
  • 59. AgileBio. LabCollector Website https://labcollector.com/labcollector-lims/features/modules/animals-module/2022 . Available from: https://labcollector.com/labcollector-lims/features/modules/animals-module/ .
  • 61. Harvard Longwood Medical Area Research Data Management Working Group. Electronic Lab Notebook Comparison Matrix. Zenodo. 2021.
  • 70. Bio-protocol. Collaborating Journals bio-protocol website2021. Available from: https://bio-protocol.org/default.aspx?dw=Collaborating .
  • 76. Dinkel H. anishare: GitHub; [updated June 2018]. Available from: https://github.com/hdinkel/anishare .
  • 89. O’Connor AM. MERIDIAN: Menagerie of Reporting guidelines Involving Animals. Iowa State University; 2022. Available from: https://meridian.cvm.iastate.edu/ .
  • 90. The Jackson Laboratory. Mouse Nomenclature Home Page at the Mouse Genome Informatics website World Wide Web: The Jackson Laboratory,Bar Harbor, Maine. Available from: http://www.informatics.jax.org/mgihome/nomen/index.shtml .
  • 97. Directory of Open Access Journals. Find open access journals & articles. Available from: https://doaj.org/ . Directory of Open Access Journals, [DOAJ]; 2021.
  • 98. Gold Open Access research has greater societal impact as used more outside of academia [press release]. Springer Nature Website: Springer. Nature. 2020;30:2020.
  • 104. Franco NH. Can we use infrared thermography for assessing emotional states in mice?—A comparison between handling-induced stress by different techniques. Available from: animalstudyregistry.org . German Federal Institute for Risk Assessment (BfR); 2020. https://doi.org/10.17590/asr.0000224
  • Open access
  • Published: 24 August 2011

Issues and special features of animal health research

  • Christian Ducrot 1 ,
  • Bertrand Bed'Hom 2 ,
  • Vincent Béringue 3 ,
  • Jean-Baptiste Coulon 4 ,
  • Christine Fourichon 5 ,
  • Jean-Luc Guérin 6 ,
  • Stéphane Krebs 5 ,
  • Pascal Rainard 7 ,
  • Isabelle Schwartz-Cornil 3 ,
  • Didier Torny 8 ,
  • Muriel Vayssier-Taussat 9 ,
  • Stephan Zientara 10 ,
  • Etienne Zundel 11 &
  • Thierry Pineau 12  

Veterinary Research volume  42 , Article number:  96 ( 2011 ) Cite this article

52k Accesses

19 Citations

5 Altmetric

Metrics details

In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food security, agriculture economics, and the ensemble of economic activities associated with agriculture. There are in addition issues related to public health (zoonoses, xenobiotics, antimicrobial resistance), the environment, and animal welfare.

Animal health research is distinguished by particular methodologies and scientific questions that stem from the specific biological features of domestic species and from animal husbandry practices. It generally does not explore the same scientific questions as research on human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context.

Generic and methodological synergies nevertheless exist with biomedical research, particularly with regard to tools and biological models. Certain domestic species furthermore present more functional similarities with humans than laboratory rodents.

The singularity of animal health research in relation to biomedical research should be taken into account in the organization, evaluation, and funding of the field through a policy that clearly recognizes the specific issues at stake. At the same time, the One Health approach should facilitate closer collaboration between biomedical and animal health research at the level of research teams and programmes.

Table of contents

1. introduction, 2. issues and special features of animal health research, 2.1. animal health and veterinary public health, 2.2. issues at stake in animal health, 2.3. importance of diseases, prioritization of issues at stake, 2.3.1. special features of diseases according to the types of animals, 2.3.2. prioritization of issues at stake, 2.3.3. issues at stake in animal health research, 3. special features of animal health research, 3.1. distinguishing features of the objectives, methods, and biological models, 3.2. special features of scientific questioning, 3.3. generic and methodological areas of convergence with human health, 4. relationships between animal health and human health research, 4.1. domestic animal models for human targeted research, 4.2. funding and evaluation of research, 4.3. parallels between research, surveillance of diseases and the pharmaceutical industry, 4.3.1. surveillance and control of diseases.

4.3.2. Pharmaceutical industry

4.4. The "One world, One Health" approach

5. Conclusion

Competing interests, authors' contributions, acknowledgements.

Understanding of animal health research, and the expectations of donors and research organizations, is changing. A growing number of actors consider such research from the limited perspective of the dangers and risks directly posed to human health by traditional and emerging animal diseases. Some furthermore consider health as an asset shared by all species, animal and human, that would be guaranteed by a single medicine guided by biomedical research. In this evolving context, a collective discussion on the special features of animal health research, the issues at stake and the specific contributions such research can provide to generic health research was deemed necessary. This article summarizes the results of this discussion, addressing the issues at stake at the global level. Presented in three sections, the first describes the challenges facing animal health and research on animal health, the majority of which are not related to zoonotic diseases. The second section describes the distinguishing features of animal health research that are related to scientific constraints, the manner by which the discipline is grounded in an agricultural and economic context, and the perspectives from which scientific questions are posed. The third section addresses the relationships between animal health and biomedical research. The conclusion proposes changes that would permit research to be adapted to the special features of the field while at the same time favouring partnerships with research on human health. This discussion deliberately was limited to livestock; pets and wild animals only are mentioned for purposes of comparison.

In animals, health may be defined as the absence of disease or the normal functioning of an organism and normal behaviour based on the observation of a certain number of individuals that determine the standard and thus health [ 1 ]. In production sectors, health also may be defined as the state allowing the highest productivity. However, this narrow definition often is enriched by the concept of a balance between the animal and its environment, and of the animal's physical welfare. This broader definition undoubtedly is linked to changes observed in the field of veterinary medicine, which is focussing increasingly on prevention rather than cure, and which takes the animal's environment into fuller account [ 2 ].

Animal diseases may be organized schematically into three categories. Multifactorial diseases are provoked by a set of risk factors linked in particular to livestock management, with at times the participation of pathogens widespread in livestock. Known as "production diseases", multifactorial diseases are present on a large majority of livestock farms with highly variable frequencies. The major epidemic diseases are highly contagious and impact livestock heavily (for example, foot-and-mouth disease, swine fever, highly pathogenic avian influenza); the challenge is to eradicate such diseases from a territory when possible, and their appearence in a totally susceptible population can have extensive health and economic consequences. Other transmissible infectious diseases are less contagious or have slighter impacts, and frequently are present in populations in an endemic manner. Among transmissible diseases are zoonotic diseases, which are those that can be transmitted to humans. Animals also may be healthy carriers of agents that are pathogenic for humans but which do not affect the health of the animal (for example, Salmonella and Campylobacter ).

In response to these challenges, and picking up on a framework produced by international bodies (World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO), World organization for Animal Health (OIE)), WHO [ 3 ] currently defines veterinary public health as " the sum of all contributions to the physical, mental and social well-being of humans through an understanding and application of veterinary science ". In an editorial of the OIE bulletin [ 4 ], The Veterinary Services are stated as the " key players in the prevention and control of animal diseases and in the improvement of food security, nutrition, food safety, veterinary public health and market access for animals and products ". Veterinary public health activities thus include the control of animal diseases that have a direct impact on human health due their zoonotic character, as well as the control of all non-transmissible animal diseases capable of causing important production losses (safety of animal product supply) and disrupting markets (animal and products of animal origin).

There are four types of issues at stake in the field of animal health:

1/ Economic issues for a range of diseases that impact the economic viability of livestock farms (notably livestock diseases and endemic diseases that lead to production losses, prevention or treatment costs, disruption of the farm or the work of the livestock farmer) and animal production sectors (notably epidemic diseases due to their effect on production, the impact of health regulations on markets, and impediments to trade). In industrialized countries, these diseases weigh heavily on the overall economic competiveness of livestock farms, businesses, and animal production sectors. In developing countries, there are the added risks of food scarcity, capital dilution (insofar as cattle constitute standing capital, the only form of savings and social security for many people), and the loss of draught and labor power (leading to a reduction in overall agricultural efficiency).

2/ Public health issues , which concern three domains: zoonoses, infectious or parasitic diseases transmissible from animals to humans, whether contagious (for example, tuberculosis, brucellosis, certain influenza viruses), vectorial (West Nile disease, Rift Valley fever, Lyme disease), or food-borne (BSE, toxic food poisoning); resistance to antibiotics; and traces of medicine in animal products.

3/ Environmental issues related to the impact of agriculture; this involves the dumping of xenobiotics into the environment (medicine residues), the spread of resistance to antibiotics, and infectious diseases that can be transmitted between domestic and wild animals (such as bovine tuberculosis detected in wildlife).

4/ Animal welfare issues , which are related closely to changes of regulations in this domain. Diseases induce suffering and pain, the absence of which is one of the criteria chosen for recently proposed animal welfare evaluation tools [ 5 ].

In a recent report on the state of food and agriculture in the world focusing on livestock, the FAO [ 6 ] summarizes these different issues at stake as: "Animal diseases, and a lack of adequate food hygiene resulting in foodborne illnesses, are a problem for everyone because they can threaten human health, disrupt markets and trade, reduce productivity and deepen poverty. Improving the management of livestock with a view to preventing and controlling disease can provide significant economic, social, and human health benefits for the poor and for society at large" . Among the report's four key messages, it is noted that, " Livestock diseases pose systemic risks that must be addressed ."

For all of these diseases, while the issues at stake primarily concern agricultural farms, associated economic sectors also are involved: live animals, products of animal origin, agricultural inputs and services. Consumers and citizens are all concerned, as much by quantitative and qualitative food security as by public health. Livestock and agro-food sectors play a central role in industrialized countries, reaching 53% of the gross domestic product [ 7 ] (food safety, extensive economic activities linked to supplying the livestock sector which include the pharmaceutical industry, and the valorization and trade of agricultural products and food that often are very technologically advanced), as in developing countries (subsistence agriculture, food security, intake of quality protein). The economic issues involved in animal health, without even mentioning the risks of bioterrorism, therefore represent critical strategic challenges , even if they receive less media coverage than public health issues.

Furthermore, these different types of issues are not independent of each other . For example, the risk of the presence of medicine residues in animal products, as well as the risk of antibiotic resistance coming from the animal world, are both public health issues, and are both directly correlated to the frequency of enzootic diseases impacting the economic equilibrium of animal production chains; they thus pertain above all to the economic stakes involved in ensuring animal health.

For production animals, infectious and parasitic diseases predominate, even if metabolic and degenerative disorders naturally exist that most frequently are related to an insufficient control of production systems. In contrast, household pets and sports animals present a pathological profile very similar to humans (endocrinian disorders, cancers, degenerative neuro and osteoarticular diseases, obesity, aging). This leads to a more reduced presence of infectious and parasitic pathologies in favour of internal medicine, cancerology, and endocrinology, although antibiotic and anti-parasite medicines and vaccines together account for 75% of the consumption of medicine by pets. Lastly, non-captive wildlife constitutes a relatively new subject of animal health research, principally concerning major epidemiological reservoirs of potentially zoonotic agents (for example, bat lyssavirus and avian influenza) and sentinels of contamination and toxicologic pollution of the environment.

It is difficult to arrange the different challenges presented by animal diseases and their control into an order of priority. There are several ways to assess the importance of animal diseases. The first is to estimate their impact on zootechnical and economic performance . The average mortality rates of animals in Western European livestock systems can be significant for certain age groups, and may reach high levels in herds when pathology is poorly controlled. For example, the mortality of calves before weaning is on average 12%, that of dairy cows 3%, that of piglets before weaning 20% (including stillborns), with another 7% loss between the weaning and slaughter of pigs. The various costs of controlling disease are added to those of mortality. The current economic impact of mastitis in dairy cows in France may be assessed at 350 million €/year, principally due to reductions in productivity and longevity, reduced sale prices of milk and the costs of prevention measures and treatment. In poultry, coccidioses have a major impact; based on a British model [ 8 ], their global economic impact is estimated at over two billion dollars, principally due to their impact on production and feed efficiency. In the case of endemic diseases, economic losses remain usually limited in each farm, but the global economic impact is high due to the large number of farms affected [ 9 ]. The probability of epidemic diseases is lower but when present, they may induce very severe losses [ 10 ], even beyond the agronomic and agri food sectors.

OIE's list of notifiable diseases [ 11 ] includes infectious transmissible diseases deemed to be most damaging at the international level from an economic and public health point of view; among the 119 diseases listed, only 31 are zoonotic to one degree or another [ 12 ]. The declared priorities of international bodies (WHO, FAO, OIE) federated under the GLEWS [ 13 ] programme ( Global Early Warning and Response System for Major Animal Diseases, including Zoonoses ) for the surveillance and monitoring of animal diseases nevertheless derive from an approach first initiated by WHO that gave priority to zoonotic diseases. This is why the GLEWS list includes 6 non-zoonotic and 19 zoonotic diseases.

On the basis of vaccine production, it should be noted that almost all those used in the field of animal health protect against strictly animal pathogens. The rabies vaccine is one of the rare veterinary vaccines meant to protect humans. Certain other veterinary vaccines, such as for leptospira, target a zoonotic agent but are used mainly to protect pets, the exception being the New Zealand cattle vaccination programme that also aims to protect farmers; vaccines against zoonotic agents generally are not meant to protect animals in the name of public health.

Precise light was thrown on the subject by a bibliometric study covering the 2006-2009 period conducted under the European Era-Net EMIDA programme (Emerging Infectious Diseases of Animals) [ 14 ] which focused on infectious and parasitic diseases of production animals. The map generated by the study shows that animal health is situated at the intersection of other disciplinary fields such as human health, but also the health of wild animals and ecosystems, animal nutrition, animal genetics, and animal welfare. The study also demonstrates that barely 20% of the 12 000 publications on infectious diseases surveyed address zoonoses and food safety, and thus have a direct link to public health issues. This means that, in contrast, 80% of the publications address exclusively animal diseases presenting primarily economic, environmental, and animal welfare challenges. The distribution of research work on infectious and parasitic diseases at the international scale [ 15 ] according to the production animal species and pathogens involved is presented in Figure 1 .

figure 1

Distribution of publications on infectious and parasitic diseases in animal health according to the livestock species (a) and pathogens (b) involved . Analysis in the framework of the European Star-Idaz project [ 15 ] of 28 750 international scientific articles published on the subject from 2006 to June 2010.

At the European level, it should be noted that an effort to prioritize issues at stake and research involving over 50 infectious and parasitic animal diseases is led by a group of experts under the aegis of Discontools (Disease Control Tools) working with the European ETPGAH platform (European Technology Platform for Global Animal Health). The first outputs may be accessed online on the Discontools web site [ 16 ].

Given the breadth of the challenges related to animal health, numerous research questions need to be explored that touch upon different domains of biology and social sciences to broaden existing knowledge, with a continuum from basic to applied research. The questions involve knowledge of pathogens, the relationship between a host (infected animal) and a pathogenic agent, as well as the interaction of pathogens and hosts at the scale of animal populations. The research to be carried out thus aims to propose tools to control the exposure of domestic animals to pathogens, reinforce the resistance of hosts to pathogenic agents (notably through vaccination), and to treat sick animals. The containment and control of diseases through control and prevention programmes also requires assessments of economic and social impacts of health management plans.

In addition to such targetted research, there is a need for fundamental research geared to producing generic knowledge on animal models. The research undertaken in this field is enriching understanding of biology thanks to comparative biology. The diversity of the model species studied, the availability of experimental mechanisms and of biological material, as well as the mastery of particular infectious models, are all important assets for this research, which produces knowledge on living organisms that does not necessarily have an immediate application, but which may prove to be very useful in the future (example of innate immunity molecules-defensins, Toll receptors-identified in invertebrates that have vaccinal and immunomodulatory applications in humans and domestic animals).

Animal health research is distinguished by particular objectives, methods, biological models and scientific questions. However, there nevertheless are areas of generic and methodological convergence with biomedical research.

First of all, livestock farming is an economic activity whose end goal is to generate revenue. In this context, animal health is one of several factors that farmers must manage; they do so by minimizing their herds' exposure to health risks and by finding the least expensive way to limit the impact of disease [ 17 ]. In a given livestock system, diseases are closely linked to the way livestock are managed, notably to parameters related to the quality of housing, nutrition, hygiene, and to animal production levels. The intensification of livestock systems that has taken place in agriculture over the past fifty years has accentuated the tension between limiting inputs, increasing production, and the risk of disease.

Over time, questions regarding livestock health have moved beyond a sole objective of achieving economic gains by reducing disease frequency to addressing the sanitary quality of products of animal origin, reducing the use of xenobiotics, and animal welfare in the interest of public health and sustainable development. The multiplicity of the challenges leads to the question of how the best balance may be achieved between these different parameters. To continue working in this direction, animal health stakeholders, whether from the perspective of research or development, need to establish close ties with livestock sciences and agricultural professionals.

To take into account these elements, population medicine on farms will be needed, as well as research on diseases that specifically recognizes the close connections between health and animal production science. This implies in-depth collaboration with other animal science disciplines on one hand, and with the various stakeholders in the livestock world on the other. The only pertinent research is that carried out in close contact with the actual practices of farmers and animal sectors. For example, within an integrated agriculture framework, integrated research on livestock health management implies solid understanding of the livestock world, requires close collaboration between animal production, genetics, livestock economics, sociology and animal health disciplines, and relies on a partnership with livestock health stakeholders.

A second distinguishing feature of animal health research is the overwhelming predominance of infectious and parasitic diseases, at least for livestock, with a very large diversity of pathologies and a very large repertoire of pathogens involved [ 18 ]. Animal health research teams consequently are obliged to study a wide variety of pathogen families, developing in the process a pool of rare and precious skills in virology, bacteriology, parasitology, and medical entomology.

A third distinguishing feature of animal health research is related to the special genetic features of livestock animals. The evolution of animal species, which results in the diversity of species, takes much longer time than phases of domestication, which result in the diversity of breeds. The intensive selection practices implemented over the past fifty years has improved production considerably, but the cost has been a sharp drop in genetic diversity among livestock [ 19 , 20 ]. A distinguishing feature of livestock systems effectively is the possibility of human intervention to select animals for particular genetic traits, most often production (for example, quantity of milk) but also resistance to disease (for example, against scrapie). To understand the genetic foundations of susceptibility to infectious diseases, the duration of co-evolution, genetic diversity, and the respective evolutionary dynamics of hosts and pathogens therefore must be taken into account. The genetic improvement of the immune response is a complex selection objective. It generally either is directed against a single target (pathogen) that is constantly evolving (due to its rapid evolutionary dynamic), or seeks a better overall immunocompetence; in either case, there tends to a negative correlation with the selection of production traits.

Animals of economic importance include species that belong to very distinct animal clades such as fish, bees, chicken, pigs, goats, sheep and cattle. These clades diverged from each other hundreds of millions of years ago. Even within mammals, the Laurasiatheria superorder, which includes ruminants and pigs, and the Euarchontoglires superorder, which includes humans and mice, diverged from each other around 100 million years ago, rendering mice and human phylogenetically closer to each other (so called supra-primates) than they are to ruminants and pigs [ 21 ]. These millions of years of separated evolution generated specific anatomical, metabolic and physiological traits, as well as specific commensal-host and pathogen-host relationships. For example, fish show particularities linked to their aquatic environment with some pathogens entering via fins [ 22 ]; they present a more primitive immune system and their cells are highly permissive to DNA transfer, allowing highly efficient DNA vaccination [ 23 ].

Whereas the basic structures and the generation mechanisms of the T cell receptors and immunoglobulins are similar from teleost fish to higher mammals, each species presents particularities, such as specific isotypes (unlike humans, mice do not secrete IgD or IgG4) and specific mechanisms of antibody diversity generation (gene conversion in chicken, hyper somatic mutations in human and mice). Notably, cytokines are specific to some species; for example, those controlling the production of type I IFN in humans and probably pigs does not exist in mice. Across species, mother to offspring transmission of pathogens and of immunity is strongly dependent on developmental characteristics related to oviparity and variations in placentation modalities. Thus whereas baby mice acquire their immunoglobulin pool during pregnancy by translocation through the placenta, ruminants acquire their immunoglobulin pool at birth via the colostrum due to the relative impermeability of their placenta.

Most basic and applied research is conducted on laboratory mice, in which some human and domestic animal diseases have been experimentally adapted. In many instances, therapeutic and prophylactic treatments that are effective in laboratory mice do no work when transposed to human and veterinary species. This lack of transposition can be explained by the specific physiological traits mentioned above and by the artificial pathological mouse models used in the laboratories. It is very important for pathogen-host interactions and novel therapeutic and prophylactic treatments to be evaluated on the targeted veterinary species, thereby studying the effect in the actual host and consequently limiting a "mouse" bias as much as possible. Research and experiments on "target" species (fish, chicken, pigs, ruminants) therefore often is necessary, and presents an advantage because the research findings may be applied directly to the species without the extra step of validating an extrapolation based on an animal model, in contrast to research undertaken for biomedical applications.

Lastly, there are special features related to the types of actions taken for animal disease control and health management. Beyond vaccination and the protection of livestock, animal health rules covering contagious diseases include a range of control methods, including at times the slaughter of animals to eliminate those posing a risk for unaffected animals and humans. These practices lead to specific research questions regarding intervention mechanisms. At the top of this list is the need to update serological tools so that vaccinated animals may be distinguished from infected animals because disease control measures are different for these two categories of animals. Another priority is the set of questions regarding the comparative economic advantage of different control methods and the conditions by which they are appropriated by livestock farmers and public officials.

While the livestock world has many other distinguishing characteristics, these do not seem to have a notable impact on the manner by which animal health research is conducted.

In addition to the aspects discussed in the preceding sections, one of the main distinguishing features of animal health research are the scientific questions pursued, which are posed from the perspective of animal, and not human, health. Consequently, even in the case of zoonotic agents, the questions asked by animal health teams are not the same as those asked by biomedical teams. In the case of zoonotic vector agents, for example, Bartonella or Borrelia agents of Lyme disease, animal health research would focus on the role of animals as reservoirs of agents potentially pathogenic for humans, and on the elements that allow the development of an infectious agent in its host reservoir versus a human. Biomedical research, on the other hand, would focus on the development of an infectious agent in a human. For prion diseases, an animal health perspective leads to studying the diversity of strains found in the animal and to an attempt to decipher the interactions between the infectious strain and the host species. More broadly, studies of pathogenic agent/host interactions that are pursued from an animal health angle often prove to be fruitful from both a pure and applied perspective. This is due in particular to the genetic knowledge generated on the infected host and the possibility of implementing protocols with an experimental cohort with a defined genetic status. This is, for example, the case with the demonstration in sheep of the modulation of susceptibility to scrapie in connection with the polymorphism of the protein prion coding gene [ 24 ].

It thus would appear that, while working on the same agents and with the same tools, the questions pursued in animal health may be different from, and complementary to, those in human biology, and lead to the production of complementary knowledge. It follows that opportunities for collaboration between animal health and biomedical teams should be pursued, each having, through the questions they pursue and their "natural" partnership networks (hospitals versus farms or the environment), access to different and complementary types of samples. For example, collaboration could focus on comparing, with an epidemiological objective, Bartonella strains sampled from humans and different animal species.

In certain fields, research carried out in human biology and animal health use similar tools, and even the same models, to address research questions. When this is the case, notably in the framework of the study of zoonotic pathogens, the only difference lies in the nature of the questions explored.

In certain circumstances, the convergence continues up to point where the biomedical and animal health teams share the same questions, and then no evident distinguishing feature remains. The development of projects initially focused on animal health progressively may lead the teams involved to pose questions that are increasingly focussed on models shared with human biology. As an illustration, we may cite fundamental research approaches to the molecular mechanisms of the invasion of cells targeted by the influenza virus, or the biological origin of prions and the determinants of the species barrier modulating their transmission capacity. In such cases, it is easy to imagine that the same research could be conducted in research laboratories unrelated to animal health. However, an animal health perspective offers certain advantages, notably expertise for extensive experimental research in a confinement area, and special links maintained through collaborations with other scientists working notably in the fields of pathogenesis and animal genetics.

The discussion presented here was conducted in relation to human biology research work. A parallel approach could be envisioned in relation to work carried out on plant health. Such an analysis may elicit a certain community of tools and methods with animal health, an advantage of comparative biology, but apparently few shared issues at stake for the pathogens of interest.

Mice often prove to be an inadequate model in physiopathological, prophylactic, and therapeutic studies for humans. This is due to the reduced size of the species, physiological considerations, and the absence of a natural corresponding pathology. With regard to the latter point, it often is necessary to infect a mouse with the human pathogen agent, and thereby create an artificial model without pertinent symptoms. In certain situations, domestic species prove to be better study models for human-oriented research. Domestic species can be infected by viruses that have co-evolved with their host. These diseases present similarities in molecular and physiopathologic mechanisms to human disorders without being zoonotic. Pigs infected by an influenza virus that has adapted to pigs thus suffer an influenza syndrome resembling that found in humans infected with a human influenza virus. Young calves infected by a respiratory syncytial virus distinct from the human virus develop a broncho-pulmonary pathology close to that of a child. These animal disorders thus allow the development of therapeutic, vaccination, and diagnostic strategies that can be adapted or extrapolated to humans.

Furthermore, through evolutionary convergence, certain domestic species present more functional similarities to humans than mice: for example, sheep for respiratory pathology (immunologic study of asthma treatment), and pigs for skin structure (study of transcutaneous therapy or vaccination), cardio-vascular diseases, and the development of spontaneous melanoma where the progression of tumors resembles that observed in humans.

Lastly, domestic animals, due to their large size, allow immune functions to be studied in an original manner that would not be possible with mice. It thus is possible to catheterize lymphatic vessels in pigs, cows, and sheep to study baseline migrant leukocyte populations directly in the lymph during an infection or vaccination, enabling certain immune response features to be monitored in real time.

For these different reasons, in-depth knowledge of domestic animal physiopathologies and the existence of high performance animal experimentation platforms are useful for biomedical research. Overall, the diversity of models (animal species) studied, the foundation of comparative biology, is important to produce general knowledge that can have diverse applications, notably in human biology.

Compared to research on pathogens affecting public health, it is notoriously difficult to find funding for research dedicated to animal health that is focussed on non-zoonotic pathogens or to publish the results in high quality scientific journals. These difficulties seem to be inversely proportional to the genericity of the knowledge produced and to its potential biomedical contribution. For example, in a call for proposals on infectious disease research, an excellent project on a non-zoonotic pathogen will systematically be eclipsed by a project addressing a topic such as hemorrhagic fevers due to the evaluators' perception of the stakes involved. Similarily, numerous human health and scientific journals that have a high impact factor due to the larger size of the scientific community involved in human biology compared to animal health, rarely accept an article on non-zoonotic agents that effectively fall outside their domain.

This state of affairs is extremely important to take into consideration given the current imperative to obtain credit to finance research and the use of the "impact factor" criteria in the scientific evaluation of research teams. This point is even more critical as the apparent proximity of animal health and human biology sectors nevertheless does not render their objectives equivalent. An overly hasty approach to the question by evaluators who are ill-informed or insufficiently aware of the issues involved will lead them to apply criteria and indicators to animal health research that are appropriated from human biology and which are completely unsuitable, and indeed unfair, in the field of animal health. Research units that address both zoonotic and non-zoonotic pathogens face a delicate situation. Teams within the same unit are not in the same boat with regard to seeking funding and publication levels.

What emerges from this analysis is that, when research of equivalent scientific quality are considered together, work on non-zoonotic diseases are financed less easily, and are published in journals with a lower impact factor, than work on zoonotic animal diseases. In a similar fashion, research on animal diseases are financed and published less easily than human biomedical research. In the absence of specific corrective action, the existence of a "species barrier" in terms of funding and publication is endangering 80% of animal health research. It thus is absolutely necessary to act far upstream of national and international research programmes by ensuring that calls for research proposals specifically mention the issues at stake in animal health on one hand, and that research organizations for their part officially adopt a policy to recognize the stakes and scientific outputs that are specifically linked to animal health.

A parallel may be drawn between the domain of research and that of disease surveillance and control. OIE officials call attention to a school of thought circulating at the international level that suggests economies of scale would be possible if veterinary medicine services were regrouped with human health facilities in each country. Along the same lines, public services such as disease surveillance are perceived to be expendable variables that may be played with to cut costs in debt-ridden countries. In the same spirit, this school of thought also advocates that only animal diseases posing risks to humans should be considered important due to their zoonotic character. In such a logic of cost-cutting and the regrouping of animal and human health spheres, financial trade-offs naturally would favour human health priorities at the expense of veterinary services.

The OIE's strategy is to take the opposing view which holds that prevention costs less than resolving crises, and that quality prevention is based on national animal health systems that can ensure appropriate surveillance, early detection, transparency, and rapid response to animal disease outbreaks and on a durable network of veterinary services endowed with a specific budget. Thus in 2006, the OIE reiterated its affirmation that veterinary services were a global public good [ 25 ]. The disastrous consequences of cutbacks in public services, and the efficacy of the preventative and global approach taken by the OIE, is leading progressively to a swing of opinion in favour of this approach. This change is visible, for example, in the international documents debated during successive forums on the control of avian influenza [ 26 ].

4.3.2. Pharmaceutic industry

Most pharmaceutical companies have subsidiaries dedicated to animal health, which is related to the fact that economic scales between animal and human health cannot be compared; as an example, sales of a human vaccine may be 20 to 50 times higher than those of a veterinary vaccine. If a choice must be made between two very different vaccine projects, even if each is a priori profitable, the human vaccine automatically will be chosen over the veterinary vaccine. In the same manner, shared services will be put at the disposal of the human vaccine project given the higher economic stakes involved. Lastly, it also is more difficult to find public funding, and thus complementary private funding, for the development of vaccines against non-zoonotic pathogens than for human vaccines. A fusion between human and animal activities would translate into the disappearance of the animal sector, or into animal models being developed only when they have a direct interest for humans. In contrast, what is shared by animal and human vaccines is an ensemble of vaccine production technology, innovations in this field and preceding research on pathogen families, cytology, certain features of immunology, all knowledge that deserves to be shared between human and animal health in the form of cooperation.

4.4. The "One World, One Health" approach

As mentioned by the Director of the OIE in an editorial [ 27 ], the "One World, One Health" approach is indispensable in the sense that " the only way to prevent all these new hazards (zoonotics) is to adapt the existing systems of health governance at world, regional and national levels in a harmonised and coordinated manner ", but " the concept "One World, One Health" should not serve as a pretext for dangerous initiatives like trying to achieve economies of scale based on purely theoretical notions worthy of a sorcerer's apprentice, such as trying to merge the Veterinary Services and the Public Health Services ". Taking this perspective, it effectively is out of the question to merge services because each must assume its functions with the resources dedicated to it and the approaches suited to its particular mission; however, it is necessary to develop collaboration, cooperation, and synergies [ 28 ]. For the past few years, there has been a concensus on this issue among the OIE, FAO, and WHO. Different discussions are underway to define ways to implement this cooperation between organisations.

The present discussion, the opinion of experts, and a critical reading of the literature has led to the following observations.

International bodies (WHO, FAO, OIE) affirm that, over and above the threat of diseases that can be transmitted to humans (zoonotic diseases), the challenges facing the field of animal health are considerable. They concern food security, economics, agriculture and associated economic activities in both industrialized and developing countries. The challenges facing animal health, beyond those posed by zoonotic diseases, overlap with those of public health and the environment, notably regarding the use of xenobiotics and the development of antibiotic resistance.

The distinguishing features of animal health research are methodological and scientific in nature. They notably pertain to special biological features of domestic species and to the interaction between humans in their practice of livestock husbandry and animals in their biology and evolution. Animal biology generally does not pursue the same scientific questions as human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context. For animal health stakeholders, whether from the perspective of research or development, finding an optimal balance between the economic profitability of a farm, animal welfare, the maintenance of animal health and the quality of products of animal origin involves close collaboration between animal husbandry sciences and the agricultural profession.

Knowledge produced by comparative biology is fed by research conducted on animal species. For example, animal models are a source of generic knowledge due to their special evolutionary features and, in certain cases, their functional similarities with humans. The diversity of the model species studied and the control of particular infectious diseases contribute greatly to the production of knowledge about living organisms.

These observations present a strong case in favor of taking into account the uniqueness of animal health research, in terms of its organization, evaluation, and funding, compared to biomedical research. If this is not done, strictly biomedical priorities will lead to the elimination, sooner or later, of quality research on non-zoonotic animal diseases. A special "treatment" of this research thus is necessary with regard to the issues at stake; specially designed calls for proposals should be dedicated to the field, the field's journal corpus should be recognized as being different from that of biomedical research, and the research should be evaluated in the light of this specific corpus.

The "One Health" approach is important insofar as it argues that the management of health requires reinforced coordination between human and animal components and, in the same manner, in-depth collaboration between biomedical and animal health research. The organization of such collaboration can only reinforce the capacity of both groups to produce relevant science, and to realize the potential of research efforts and more global approaches integrating human and animal components in federated projects.

In terms of research, this collaboration may assume different forms and take place at different levels, ranging from cooperation between teams up to the organization of research and its funding. The questions explored in animal health and human biology regarding the same zoonotic pathogen frequently are complementary. They allow scientific collaborations to be built that can respond to more general questions, and notably to address the complexity of the biological systems of certain diseases. Another form of collaboration is the establishment of calls for joint public health and animal health proposals for research on pathogens whose study and control require combined research approaches. This has been the case for research on transmissible spongiform encephalopathies, with joint animal-human calls for projects and pluridisciplinary projects in the United Kingdom, Netherlands, Germany, France and the European Union. At a more general level, comparative biology represents a precious source of knowledge.

Baker JK, Greer WJ: Animal health: a layman's guide to disease control. 1980, IPP the Interstates Printers and publishers, Danville, Illinois

Google Scholar  

Gunnarson S: Definition of health and disease in textbooks of veterinarian medicine. Animal production in Europe: The way forward in a changing world. Proc. 13th International Society of Animal Hygien, Saint-Malo, France. 2004, 105-109.

Future trends in veterinary public health. Report of a WHO Study Group. 907. WHO Technical Reports Series, World Health Organization, Geneva, 96 pp (2002), [Consulted 17 November 2010], [ http://whqlibdoc.who.int/trs/WHO_TRS_907.pdf ]

Editorial: Veterinary legislation is the foundation of any efficient animal health Policy. Bulletin n 4 OIE 77th General Session (2009). (consulted 31 May 2011), [ http://www.oie.int/en/publications-and-documentation/bulletins-online/ ]

Botreau R, Veissier I, Butterworth A, Bracke MBM, Keeling LJ: Definition of criteria for overall assessment of animal welfare. Anim Welf. 2007, 16: 225-228.

CAS   Google Scholar  

FAO-The State of Food and Agriculture 2009-Livestock in the Balance, 166pp. (consulted 9 June 2011), [ http://www.fao.org/docrep/012/i0680e/i0680e00.htm ]

Thornton PK: Livestock production: recent trends, future prospects. Philos Trans R Soc Lond B Biol Sci. 2010, 365: 2853-2867. 10.1098/rstb.2010.0134.

Article   PubMed Central   PubMed   Google Scholar  

Williams RB: A compartmentalised model for the estimation of the cost of coccidiosis to the world's chicken production industry. Int J Parasitol. 1999, 29: 1209-1229. 10.1016/S0020-7519(99)00086-7.

Article   CAS   PubMed   Google Scholar  

Seegers H, Fourichon C, Beaudeau F: Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res. 2003, 34: 475-491. 10.1051/vetres:2003027.

Article   PubMed   Google Scholar  

Thompson D, Muriel P, Russell D, Osborne P, Bromley A, Rowland M, Creigh-Tyte S, Brown C: Economic costs of the foot and mouth disease outbreak in the United Kingdom in 2001. Rev Sci Tech. 2002, 21 (3): 675-687.

CAS   PubMed   Google Scholar  

OIE listed diseases 2011. (consulted 31 May 2011), [ http://www.oie.int/eng/maladies/en_classification2010.htm ]

Ganière JP: Importance et hiérarchisation des zoonoses en France: le point de vue vétérinaire. Epidémiol et santé anim. 2004, 46: 27-32. (in French)

Global Early Warning and Response System for Major Animal Diseases including Zoonoses. (consulted 31 May 2011), [ http://www.glews.net/ ]

de Rycke J: World Research Landscape Mapping of European Research Organisations. A bibliometrical analysis of research output (2004-2008). EMIDA ERA-NET-Report of Wordpackage 2; 60 pp (2009). (Consulted 31 May 2011), [ http://www.emida-era.net/upload/pdf/Final%20WP2%20report%20090407.pdf ]

de Rycke J: World mapping of research institutions, topics and collaboration in the field of infectious diseases of animals; a bibliometric analysis using publication records extracted from the Web of Science (2006-2010). Report, 47 pp. 2010

Discontools: Disease Control Tools. (consulted 31 May 2011), [ http://www.discontools.eu/home/index ]

Ganière J-P, André-Fontaine G, Drouin P, Faye B, Madec F, Rosner G, Fourichon C, Wang B, Tillon J-P: L'écopathologie: une méthode d'approche de la santé en élevage. INRA Prod Anim. 1991, 4 (3): 247-256.

Timoney JF, Gillespie JH, Scott FW, Barlough JE: Microbiology and infectious diseases of domestic animals. 1988, Cornell University Press, New York, 8

Muir WM, Wong GK, Zhang Y, Wang J, Groenen MA, Crooijmans RP, Megens HJ, Zhang H, Okimoto R, Vereijken A, Jungerius A, Albers GA, Lawley CT, Delany ME, MacEachern S, Cheng HH: Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc Natl Acad Sci USA. 2008, 105: 17312-17317. 10.1073/pnas.0806569105.

Article   PubMed Central   CAS   PubMed   Google Scholar  

Taberlet P, Coissac E, Pansu J, Pompanon F: Conservation genetics of cattle, sheep, and goats. C R Biol. 2011, 334: 247-254. 10.1016/j.crvi.2010.12.007.

Nishihara H, Hasegawa M, Okada N: Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci USA. 2006, 103: 9929-9934. 10.1073/pnas.0603797103.

Harmache A, Leberre M, Droineau S, Giovannini M, Brémont M: Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. J Virol. 2006, 80 (7): 3655-3659. 10.1128/JVI.80.7.3655-3659.2006.

Boudinot P, Blanco M, de Kinkelin P, Benmansour A: Combined DNA immunization with the glycoprotein gene of viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus induces double-specific protective immunity and nonspecific response in rainbow trout. Virology. 1998, 249 (2): 297-306. 10.1006/viro.1998.9322.

Goldmann W: PrP genetics in ruminant transmissible spongiform encephalopathies. Vet Res. 2008, 39 (4): 30-10.1051/vetres:2008010.

Editorial: Prevention, detection and monitoring of animal diseases, including those harmful to humans: veterinary services are the keystone of the global system. Bulletin n°3 Evaluation and support of Veterinary Services (2006). (consulted 31 May 2011), [ http://www.oie.int/en/publications-and-documentation/bulletins-online/ ]

The FAO-OIE-WHO Collaboration sharing responsibilities and coordinating global activities to address health risks at the animal-human-ecosystems interfaces. FAO-OIE-WHO Collaboration Concept Note on health risks at the human-animal interface (2010). (consulted 31 May 2011), [ http://www.oie.int/en/for-the-media/press-releases/detail/article/fao-oie-who-collaboration-concept-note-on-health-risks-at-the-human-animal-interface-is-available-on/ ]

Editorial: One World, One Health. OIE Bulletin n° 2 One World, One Health (2009). (Consulted 1 May 2011), [ http://www.oie.int/en/publications-and-documentation/bulletins-online/ ]

Coker R, Rushton J, Mounier-Jack S, Karimuribo E, Lutumba P, Kambarage D, Pfeiffer DU, Stärk K, Rweyemamu M: Towards a conceptual framework to support one-health research for policy on emerging zoonoses. Lancet Infect Dis. 2011, 11: 326-331. 10.1016/S1473-3099(10)70312-1.

Download references

The authors are deeply grateful to Claude Leclerc (Institut Pasteur), Alain Dehove, Elisabeth Erlacher-Vindel, Kasuaki Miyagishima (OIE), Jean-Christophe Audonnet, Michel Bublot, Catherine Charreyre, François Xavier Le Gros, Pascal Hudelet (Société Merial), for their contributions to this collective discussion, as well as Bernard Charley, Jean De Rycke, Michel Fougereau, Pierre Lekeux, Henri Salmon, Henri Seegers and Etienne Thiry for their critical reading of the initial report.

Author information

Authors and affiliations.

INRA, UR346 Epidémiologie animale, 63122, Saint Genès Champanelle, France

Christian Ducrot

INRA, UMR1313 Génétique Animale et Biologie Intégrative, 78352, Jouy-en-Josas Cedex, France

Bertrand Bed'Hom

INRA, UR892 Virologie et Immunologie Moléculaires, 78352, Jouy-en-Josas, France

Vincent Béringue & Isabelle Schwartz-Cornil

INRA, Département PHASE, 63122, Saint Genès Champanelle, France

Jean-Baptiste Coulon

ONIRIS-INRA, UMR1300 Bioagression, Épidémiologie et Analyse de risque, Atlanpole La Chantrerie, BP 40706, 44307, Nantes Cedex 3, France

Christine Fourichon & Stéphane Krebs

ENVT-INRA, UMR1225 IHAP Interactions hôtes-agents pathogènes, 23 chemin des Capelles, 31076, Toulouse Cedex, France

Jean-Luc Guérin

INRA, UR1282 IASP Infectiologie animale et santé publique, 37380, Nouzilly, France

Pascal Rainard

INRA, UMR1323 RiTME, 65 Boulevard de Brandebourg, 94205, Ivry-sur-Seine, France

Didier Torny

INRA, USC Bartonella et Tiques, ANSES, 23 Avenue du Général de Gaulle, F-94700, Maisons-Alfort, France

Muriel Vayssier-Taussat

ENVA-ANSES-INRA, UMR1161 Virologie, 7 avenue du Général de Gaulle, 94704, Maisons Alfort Cedex, France

Stephan Zientara

INRA, Département de santé animale, 37380, Nouzilly, France

Etienne Zundel

INRA, Département de santé animale, BP 93173, 31027, Toulouse Cedex 3, France

Thierry Pineau

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Christian Ducrot .

Additional information

The authors declare that they have no competing interests.

All authors participated in the collective discussion on the special issues of animal health research, search for bibliography and participated in the writing of the paper in their field of competence; more precisely, VB, JLG, PR, ISC, MVT, SZ and EZ were involved in the field of microbiology, ISC in immunology, CF and CD in epidemiology, BB in genetics, JBC and EZ in animal sciences, SK in economics, DT in sociology. CD, CF and SK were involved in the discussion with scientists from OIE, CD, CF and SZ with Société Merial, ISC, SZ and MVT with Institut Pasteur. TP and CD designed the work and defined the working group. CD chaired the discussions and coordinated the paper. All authors read and approved the final manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Rights and permissions.

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Ducrot, C., Bed'Hom, B., Béringue, V. et al. Issues and special features of animal health research. Vet Res 42 , 96 (2011). https://doi.org/10.1186/1297-9716-42-96

Download citation

Received : 08 June 2011

Accepted : 24 August 2011

Published : 24 August 2011

DOI : https://doi.org/10.1186/1297-9716-42-96

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Animal Health
  • Avian Influenza
  • Lyme Disease
  • Animal Disease

Veterinary Research

ISSN: 1297-9716

animal health research paper topics

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Prev Med Hyg
  • v.63(2 Suppl 3); 2022 Jun

Ethical considerations regarding animal experimentation

Aysha karim kiani.

1 Allama Iqbal Open University, Islamabad, Pakistan

2 MAGI EUREGIO, Bolzano, Italy

DEREK PHEBY

3 Society and Health, Buckinghamshire New University, High Wycombe, UK

GARY HENEHAN

4 School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland

RICHARD BROWN

5 Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada

PAUL SIEVING

6 Department of Ophthalmology, Center for Ocular Regenerative Therapy, School of Medicine, University of California at Davis, Sacramento, CA, USA

PETER SYKORA

7 Department of Philosophy and Applied Philosophy, University of St. Cyril and Methodius, Trnava, Slovakia

ROBERT MARKS

8 Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

BENEDETTO FALSINI

9 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy

NATALE CAPODICASA

10 MAGI BALKANS, Tirana, Albania

STANISLAV MIERTUS

11 Department of Biotechnology, University of SS. Cyril and Methodius, Trnava, Slovakia

12 International Centre for Applied Research and Sustainable Technology, Bratislava, Slovakia

LORENZO LORUSSO

13 UOC Neurology and Stroke Unit, ASST Lecco, Merate, Italy

DANIELE DONDOSSOLA

14 Center for Preclincal Research and General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca‘ Granda Ospedale Maggiore Policlinico, Milan, Italy

15 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy

GIANLUCA MARTINO TARTAGLIA

16 Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy

17 UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy

MAHMUT CERKEZ ERGOREN

18 Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus

MUNIS DUNDAR

19 Department of Medical Genetics, Erciyes University Medical Faculty, Kayseri, Turkey

SANDRO MICHELINI

20 Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, Marino, Italy

DANIELE MALACARNE

21 MAGI’S LAB, Rovereto (TN), Italy

GABRIELE BONETTI

Astrit dautaj, kevin donato, maria chiara medori, tommaso beccari.

22 Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy

MICHELE SAMAJA

23 MAGI GROUP, San Felice del Benaco (BS), Italy

STEPHEN THADDEUS CONNELLY

24 San Francisco Veterans Affairs Health Care System, University of California, San Francisco, CA, USA

DONALD MARTIN

25 Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, SyNaBi, Grenoble, France

ASSUNTA MORRESI

26 Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy

ARIOLA BACU

27 Department of Biotechnology, University of Tirana, Tirana, Albania

KAREN L. HERBST

28 Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA

MYKHAYLO KAPUSTIN

29 Federation of the Jewish Communities of Slovakia

LIBORIO STUPPIA

30 Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio", Chieti, Italy

LUDOVICA LUMER

31 Department of Anatomy and Developmental Biology, University College London, London, UK

GIAMPIETRO FARRONATO

Matteo bertelli.

32 MAGISNAT, Peachtree Corners (GA), USA

Animal experimentation is widely used around the world for the identification of the root causes of various diseases in humans and animals and for exploring treatment options. Among the several animal species, rats, mice and purpose-bred birds comprise almost 90% of the animals that are used for research purpose. However, growing awareness of the sentience of animals and their experience of pain and suffering has led to strong opposition to animal research among many scientists and the general public. In addition, the usefulness of extrapolating animal data to humans has been questioned. This has led to Ethical Committees’ adoption of the ‘four Rs’ principles (Reduction, Refinement, Replacement and Responsibility) as a guide when making decisions regarding animal experimentation. Some of the essential considerations for humane animal experimentation are presented in this review along with the requirement for investigator training. Due to the ethical issues surrounding the use of animals in experimentation, their use is declining in those research areas where alternative in vitro or in silico methods are available. However, so far it has not been possible to dispense with experimental animals completely and further research is needed to provide a road map to robust alternatives before their use can be fully discontinued.

How to cite this article: Kiani AK, Pheby D, Henehan G, Brown R, Sieving P, Sykora P, Marks R, Falsini B, Capodicasa N, Miertus S, Lorusso L, Dondossola D, Tartaglia GM, Ergoren MC, Dundar M, Michelini S, Malacarne D, Bonetti G, Dautaj A, Donato K, Medori MC, Beccari T, Samaja M, Connelly ST, Martin D, Morresi A, Bacu A, Herbst KL, Kapustin M, Stuppia L, Lumer L, Farronato G, Bertelli M. Ethical considerations regarding animal experimentation. J Prev Med Hyg 2022;63(suppl.3):E255-E266. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2768

Introduction

Animal model-based research has been performed for a very long time. Ever since the 5 th century B.C., reports of experiments involving animals have been documented, but an increase in the frequency of their utilization has been observed since the 19 th century [ 1 ]. Most institutions for medical research around the world use non-human animals as experimental subjects [ 2 ]. Such animals might be used for research experimentations to gain a better understanding of human diseases or for exploring potential treatment options [ 2 ]. Even those animals that are evolutionarily quite distant from humans, such as Drosophila melanogaster , Zebrafish ( Danio rerio ) and Caenorhabditis elegans , share physiological and genetic similarities with human beings [ 2 ]; therefore animal experimentation can be of great help for the advancement of medical science [ 2 ].

For animal experimentation, the major assumption is that the animal research will be of benefit to humans. There are many reasons that highlight the significance of animal use in biomedical research. One of the major reasons is that animals and humans share the same biological processes. In addition, vertebrates have many anatomical similarities (all vertebrates have lungs, a heart, kidneys, liver and other organs) [ 3 ]. Therefore, these similarities make certain animals more suitable for experiments and for providing basic training to young researchers and students in different fields of biological and biomedical sciences [ 3 ]. Certain animals are susceptible to various health problems that are similar to human diseases such as diabetes, cancer and heart disease [ 4 ]. Furthermore, there are genetically modified animals that are used to obtain pathological phenotypes [ 5 ]. A significant benefit of animal experimentation is that test species can be chosen that have a much shorter life cycle than humans. Therefore, animal models can be studied throughout their life span and for several successive generations, an essential element for the understanding of disease progression along with its interaction with the whole organism throughout its lifetime [ 6 ].

Animal models often play a critical role in helping researchers who are exploring the efficacy and safety of potential medical treatments and drugs. They help to identify any dangerous or undesired side effects, such as birth defects, infertility, toxicity, liver damage or any potential carcinogenic effects [ 7 ]. Currently, U.S. Federal law, for example, requires that non-human animal research is used to demonstrate the efficacy and safety of any new treatment options before proceeding to trials on humans [ 8 ]. Of course, it is not only humans benefit from this research and testing, since many of the drugs and treatments that are developed for humans are routinely used in veterinary clinics, which help animals live longer and healthier lives [ 4 ].

COVID-19 AND THE NEED FOR ANIMAL MODELS

When COVID-19 struck, there was a desperate need for research on the disease, its effects on the brain and body and on the development of new treatments for patients with the disease. Early in the disease it was noticed that those with the disease suffered a loss of smell and taste, as well as neurological and psychiatric symptoms, some of which lasted long after the patients had “survived” the disease [ 9-15 ]. As soon as the pandemic started, there was a search for appropriate animal models in which to study this unknown disease [ 16 , 17 ]. While genetically modified mice and rats are the basic animal models for neurological and immunological research [ 18 , 19 ] the need to understand COVID-19 led to a range of animal models; from fruit flies [ 20 ] and Zebrafish [ 21 ] to large mammals [ 22 , 23 ] and primates [ 24 , 25 ]. And it was just not one animal model that was needed, but many, because different aspects of the disease are best studied in different animal models [ 16 , 25 , 26 ]. There is also a need to study the transmission pathways of the zoonosis: where does it come from, what are the animal hosts and how is it transferred to humans [ 27 ]?

There has been a need for animal models for understanding the pathophysiology of COVID-19 [ 28 ], for studying the mechanisms of transmission of the disease [ 16 ], for studying its neurobiology [ 29 , 30 ] and for developing new vaccines [ 31 ]. The sudden onset of the COVID-19 pandemic has highlighted the fact that animal research is necessary, and that the curtailment of such research has serious consequences for the health of both humans and animals, both wild and domestic [ 32 ] As highlighted by Adhikary et al. [ 22 ] and Genzel et al. [ 33 ] the coronavirus has made clear the necessity for animal research and the danger in surviving future such pandemics if animal research is not fully supported. Genzel et al. [ 33 ], in particular, take issue with the proposal for a European ban on animal testing. Finally, there is a danger in bypassing animal research in developing new vaccines for diseases such as COVID-19 [ 34 ]. The purpose of this paper is to show that, while animal research is necessary for the health of both humans and animals, there is a need to carry out such experimentation in a controlled and humane manner. The use of alternatives to animal research such as cultured human cells and computer modeling may be a useful adjunct to animal studies but will require that such methods are more readily accessible to researchers and are not a replacement for animal experimentation.

Pros and cons of animal experimentation

Arguments against animal experimentation.

A fundamental question surrounding this debate is to ask whether it is appropriate to use animals for medical research. Is our acceptance that animals have a morally lower value or standard of life just a case of speciesism [ 35 ]? Nowadays, most people agree that animals have a moral status and that needlessly hurting or abusing pets or other animals is unacceptable. This represents something of a change from the historical point of view where animals did not have any moral status and the treatment of animals was mostly subservient to maintaining the health and dignity of humans [ 36 ].

Animal rights advocates strongly argue that the moral status of non-human animals is similar to that of humans, and that animals are entitled to equality of treatment. In this view, animals should be treated with the same level of respect as humans, and no one should have the right to force them into any service or to kill them or use them for their own goals. One aspect of this argument claims that moral status depends upon the capacity to suffer or enjoy life [ 37 ].

In terms of suffering and the capacity of enjoying life, many animals are not very different from human beings, as they can feel pain and experience pleasure [ 38 ]. Hence, they should be given the same moral status as humans and deserve equivalent treatment. Supporters of this argument point out that according animals a lower moral status than humans is a type of prejudice known as “speciesism” [ 38 ]. Among humans, it is widely accepted that being a part of a specific race or of a specific gender does not provide the right to ascribe a lower moral status to the outsiders. Many advocates of animal rights deploy the same argument, that being human does not give us sufficient grounds declare animals as being morally less significant [ 36 ].

ARGUMENTS IN FAVOR OF ANIMAL EXPERIMENTATION

Those who support animal experimentation have frequently made the argument that animals cannot be elevated to be seen as morally equal to humans [ 39 ]. Their main argument is that the use of the terms “moral status” or “morality” is debatable. They emphasize that we must not make the error of defining a quality or capacity associated with an animal by using the same adjectives used for humans [ 39 ]. Since, for the most part, animals do not possess humans’ cognitive capabilities and lack full autonomy (animals do not appear to rationally pursue specific goals in life), it is argued that therefore, they cannot be included in the moral community [ 39 ]. It follows from this line of argument that, if animals do not possess the same rights as human beings, their use in research experimentation can be considered appropriate [ 40 ]. The European and the American legislation support this kind of approach as much as their welfare is respected.

Another aspect of this argument is that the benefits to human beings of animal experimentation compensate for the harm caused to animals by these experiments.

In other words, animal harm is morally insignificant compared to the potential benefits to humans. Essentially, supporters of animal experimentation claim that human beings have a higher moral status than animals and that animals lack certain fundamental rights accorded to humans. The potential violations of animal rights during animal research are, in this way, justified by the greater benefits to mankind [ 40 , 41 ]. A way to evaluate when the experiments are morally justified was published in 1986 by Bateson, which developed the Bateson’s Cube [ 42 ]. The Cube has three axes: suffering, certainty of benefit and quality of research. If the research is high-quality, beneficial, and not inflicting suffering, it will be acceptable. At the contrary, painful, low-quality research with lower likelihood of success will not be acceptable [ 42 , 43 ].

Impact of experimentations on animals

Ability to feel pain and distress.

Like humans, animal have certain physical as well as psychological characteristics that make their use for experimentation controversial [ 44 ].

In the last few decades, many studies have increased knowledge of animal awareness and sentience: they indicate that animals have greater potential to experience damage than previously appreciated and that current rights and protections need to be reconsidered [ 45 ]. In recent times, scientists as well as ethicists have broadly acknowledged that animals can also experience distress and pain [ 46 ]. Potential sources of such harm arising from their use in research include disease, basic physiological needs deprivation and invasive procedures [ 46 ]. Moreover, social deprivation and lack of the ability to carry out their natural behaviors are other causes of animal harm [ 46 ]. Several studies have shown that, even in response to very gentle handling and management, animals can show marked alterations in their physiological and hormonal stress markers [ 47 ].

In spite of the fact that suffering and pain are personalized experiences, several multi-disciplinary studies have provided clear evidence of animals experiencing pain and distress. In particular, some animal species have the ability to express pain similarly to human due to common psychological, neuroanatomical and genetic characteristics [ 48 ]. Similarly, animals share a resemblance to humans in their developmental, genetic and environmental risk factors for psychopathology. For instance, in many species, it has been shown that fear operates within a less organized subcortical neural circuit than pain [ 49 , 50 ]. Various types of depression and anxiety disorders like posttraumatic stress disorder have also been reported in mammals [ 51 ].

PSYCHOLOGICAL CAPABILITIES OF ANIMALS

Some researchers have suggested that besides their ability to experience physical and psychological pain and distress, some animals also exhibit empathy, self-awareness and language-like capabilities. They also demonstrate tools-linked cognizance, pleasure-seeking and advanced problem-solving skills [ 52 ]. Moreover, mammals and birds exhibit playful behavior, an indicator of the capacity to experience pleasure. Other taxa such as reptiles, cephalopods and fishes have also been observed to display playful behavior, therefore the current legislation prescribes the use of environmental enrichers [ 53 ]. The presence of self-awareness ability, as assessed by mirror self-recognition, has been reported in magpies, chimpanzees and other apes, and certain cetaceans [ 54 ]. Recently, another study has revealed that crows have the ability to create and use tools that involve episodic-like memory formation and its retrieval. From these findings, it may be suggested that crows as well as related species show evidence of flexible learning strategies, causal reasoning, prospection and imagination that are similar to behavior observed in great apes [ 55 ]. In the context of resolving the ethical dilemmas about animal experimentation, these observations serve to highlight the challenges involved [ 56 , 57 ].

Ethics, principles and legislation in animal experimentation

Ethics in animal experimentation.

Legislation around animal research is based on the idea of the moral acceptability of the proposed experiments under specific conditions [ 58 ]. The significance of research ethics that ensures proper treatment of experimental animals [ 58 ]. To avoid undue suffering of animals, it is important to follow ethical considerations during animal studies [ 1 ]. It is important to provide best human care to these animals from the ethical and scientific point of view [ 1 ]. Poor animal care can lead to experimental outcomes [ 1 ]. Thus, if experimental animals mistreated, the scientific knowledge and conclusions obtained from experiments may be compromised and may be difficult to replicate, a hallmark of scientific research [ 1 ]. At present, most ethical guidelines work on the assumption that animal experimentation is justified because of the significant potential benefits to human beings. These guidelines are often permissive of animal experimentation regardless of the damage to the animal as long as human benefits are achieved [ 59 ].

PRINCIPLE OF THE 4 RS

Although animal experimentation has resulted in many discoveries and helped in the understanding numerous aspects of biological science, its use in various sectors is strictly controlled. In practice, the proposed set of animal experiments is usually considered by a multidisciplinary Ethics Committee before work can commence [ 60 ]. This committee will review the research protocol and make a judgment as to its sustainability. National and international laws govern the utilization of animal experimentation during research and these laws are mostly based on the universal doctrine presented by Russell and Burch (1959) known as principle of the 3 Rs. The 3Rs referred to are Reduction, Refinement and Replacement, and are applied to protocols surrounding the use of animals in research. Some researchers have proposed another “R”, of responsibility for the experimental animal as well as for the social and scientific status of the animal experiments [ 61 ]. Thus, animal ethics committees commonly review research projects with reference to the 4 Rs principles [ 62 ].

The first “R”, Reduction means that the experimental design is examined to ensure that researchers have reduced the number of experimental animals in a research project to the minimum required for reliable data [ 59 ]. Methods used for this purpose include improved experimental design, extensive literature search to avoid duplication of experiments [ 35 ], use of advanced imaging techniques, sharing resources and data, and appropriate statistical data analysis that reduce the number of animals needed for statistically significant results [ 2 , 63 ].

The second “R”, Refinement involves improvements in procedure that minimize the harmful effects of the proposed experiments on the animals involved, such as reducing pain, distress and suffering in a manner that leads to a general improvement in animal welfare. This might include for example improved living conditions for research animals, proper training of people handling animals, application of anesthesia and analgesia when required and the need for euthanasia of the animals at the end of the experiment to curtail their suffering [ 63 ].

The third “R”, Replacement refers to approaches that replace or avoid the use of experimental animals altogether. These approaches involve use of in silico methods/computerized techniques/software and in vitro methods like cell and tissue culture testing, as well as relative replacement methods by use of invertebrates like nematode worms, fruit flies and microorganisms in place of vertebrates and higher animals [ 1 ]. Examples of proper application of these first “3R2 principles are the use of alternative sources of blood, the exploitation of commercially used animals for scientific research, a proper training without use of animals and the use of specimen from previous experiments for further researches [ 64-67 ].

The fourth “R”, Responsibility refers to concerns around promoting animal welfare by improvements in experimental animals’ social life, development of advanced scientific methods for objectively determining sentience, consciousness, experience of pain and intelligence in the animal kingdom, as well as effective involvement in the professionalization of the public discussion on animal ethics [ 68 ].

OTHER ASPECTS OF ANIMAL RESEARCH ETHICS

Other research ethics considerations include having a clear rationale and reasoning for the use of animals in a research project. Researchers must have reasonable expectation of generating useful data from the proposed experiment. Moreover, the research study should be designed in such a way that it should involve the lowest possible sample size of experimental animals while producing statistically significant results [ 35 ].

All individual researchers that handle experimental animals should be properly trained for handling the particular species involved in the research study. The animal’s pain, suffering and discomfort should be minimized [ 69 ]. Animals should be given proper anesthesia when required and surgical procedures should not be repeated on same animal whenever possible [ 69 ]. The procedure of humane handling and care of experimental animals should be explicitly detailed in the research study protocol. Moreover, whenever required, aseptic techniques should be properly followed [ 70 ]. During the research, anesthetization and surgical procedures on experimental animals should only be performed by professionally skilled individuals [ 69 ].

The Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines that are issued by the National Center for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs) are designed to improve the documentation surrounding research involving experimental animals [ 70 ]. The checklist provided includes the information required in the various sections of the manuscript i.e. study design, ethical statements, experimental procedures, experimental animals and their housing and husbandry, and more [ 70 ].

It is critical to follow the highest ethical standards while performing animal experiments. Indeed, most of the journals refuse to publish any research data that lack proper ethical considerations [ 35 ].

INVESTIGATORS’ ETHICS

Since animals have sensitivity level similar to the human beings in terms of pain, anguish, survival instinct and memory, it is the responsibility of the investigator to closely monitor the animals that are used and identify any sign of distress [ 71 ]. No justification can rationalize the absence of anesthesia or analgesia in animals that undergo invasive surgery during the research [ 72 ]. Investigators are also responsible for giving high-quality care to the experimental animals, including the supply of a nutritious diet, easy water access, prevention of and relief from any pain, disease and injury, and appropriate housing facilities for the animal species [ 73 ]. A research experiment is not permitted if the damage caused to the animal exceeds the value of knowledge gained by that experiment. No scientific advancement based on the destruction and sufferings of another living being could be justified. Besides ensuring the welfare of animals involved, investigators must also follow the applicable legislation [ 74 , 75 ].

To promote the comfort of experimental animals in England, an animal protection society named: ‘The Society for the Preservation of Cruelty to Animals’ (now the Royal Society for the Prevention of Cruelty to Animals) was established (1824) that aims to prevent cruelty to animal [ 76 ].

ANIMAL WELFARE LAWS

Legislation for animal protection during research has long been established. In 1876 the British Parliament sanctioned the ‘Cruelty to Animals Act’ for animal protection. Russell and Burch (1959) presented the ‘3 Rs’ principles: Replacement, Reduction and Refinement, for use of animals during research [ 61 ]. Almost seven years later, the U.S.A also adopted regulations for the protection of experimental animals by enacting the Laboratory Animal Welfare Act of 1966 [ 60 ]. In Brazil, the Arouca Law (Law No. 11,794/08) regulates the animal use in scientific research experiments [ 76 ].

These laws define the breeding conditions, and regulate the use of animals for scientific research and teaching purposes. Such legal provisions control the use of anesthesia, analgesia or sedation in experiments that could cause distress or pain to experimental animals [ 59 , 76 ]. These laws also stress the need for euthanasia when an experiment is finished, or even during the experiment if there is any intense suffering for the experimental animal [ 76 ].

Several national and international organizations have been established to develop alternative techniques so that animal experimentation can be avoided, such as the UK-based National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) ( www.caat.jhsph.edu ), the European Centre for the Validation of Alternative Methods (ECVAM) [ 77 ], the Universities Federation for Animal Welfare (UFAW) ( www.ufaw.org.uk ), The Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) [ 78 ], and The Center for Alternatives to Animal Testing (CAAT) ( www.caat.jhsph.edu ). The Brazilian ‘Arouca Law’ also constitutes a milestone, as it has created the ‘National Council for the Control of Animal Experimentation’ (CONCEA) that deals with the legal and ethical issues related to the use of experimental animals during scientific research [ 76 ].

Although national as well as international laws and guidelines have provided basic protections for experimental animals, the current regulations have some significant discrepancies. In the U.S., the Animal Welfare Act excludes rats, mice and purpose-bred birds, even though these species comprise almost 90% of the animals that are used for research purpose [ 79 ]. On the other hand, certain cats and dogs are getting special attention along with extra protection. While the U.S. Animal Welfare Act ignores birds, mice and rats, the U.S. guidelines that control research performed using federal funding ensure protections for all vertebrates [ 79 , 80 ].

Living conditions of animals

Choice of the animal model.

Based on all the above laws and regulations and in line with the deliberations of ethical committees, every researcher must follow certain rules when dealing with animal models.

Before starting any experimental work, thorough research should be carried out during the study design phase so that the unnecessary use of experimental animals is avoided. Nevertheless, certain research studies may have compelling reasons for the use of animal models, such as the investigation of human diseases and toxicity tests. Moreover, animals are also widely used in the training of health professionals as well as in training doctors in surgical skills [ 1 , 81 ].

Researcher should be well aware of the specific traits of the animal species they intend to use in the experiment, such as its developmental stages, physiology, nutritional needs, reproductive characteristics and specific behaviors. Animal models should be selected on the basis of the study design and the biological relevance of the animal [ 1 ].

Typically, in early research, non-mammalian models are used to get rapid insights into research problems such as the identification of gene function or the recognition of novel therapeutic options. Thus, in biomedical and biological research, among the most commonly used model organisms are the Zebrafish, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans . The main advantage of these non-mammalian animal models is their prolific reproducibility along with their much shorter generation time. They can be easily grown in any laboratory setting, are less expensive than the murine animal models and are somewhat more powerful than the tissue and cell culture approaches [ 82 ].

Caenorhabditis elegans is a small-sized nematode with a short life cycle and that exists in large populations and is relatively inexpensive to cultivate. Scientists have gathered extensive knowledge of the genomics and genetics of Caenorhabditis elegans ; but Caenorhabditis elegans models, while very useful in some respects, are unable to represent all signaling pathways found in humans. Furthermore, due to its short life cycle, scientists are unable to investigate long term effects of test compounds or to analyze primary versus secondary effects [ 6 ].

Similarly, the fruit fly Drosophila melanogaster has played a key role in numerous biomedical discoveries. It is small in size, has a short life cycle and large population size, is relatively inexpensive to breed, and extensive genomics and genetics information is available [ 6 ]. However, its respiratory, cardiovascular and nervous systems differ considerably from human beings. In addition, its immune system is less developed when compared to vertebrates, which is why effectiveness of a drug in Drosophila melanogaster may not be easily extrapolated to humans [ 83 ].

The Zebrafish ( Danio rerio ) is a small freshwater teleost, with transparent embryos, providing easy access for the observation of organogenesis and its manipulation. Therefore, Zebrafish embryos are considered good animal models for different human diseases like tuberculosis and fetal alcohol syndrome and are useful as neurodevelopmental research models. However, Zebrafish has very few mutant strains available, and its genome has numerous duplicate genes making it impossible to create knockout strains, since disrupting one copy of the gene will not disrupt the second copy of that gene. This feature limits the use of Zebrafish as animal models to study human diseases. Additionally they are rather expensive, have long life cycle, and genomics and genetics studies are still in progress [ 82 , 84 ].

Thus, experimentation on these three animals might not be equivalent to experimentation on mammals. Mammalian animal model are most similar to human beings, so targeted gene replacement is possible. Traditionally, mammals like monkey and mice have been the preferred animal models for biomedical research because of their evolutionary closeness to humans. Rodents, particularly mice and rats, are the most frequently used animal models for scientific research. Rats are the most suitable animal model for the study of obesity, shock, peritonitis, sepsis, cancer, intestinal operations, spleen, gastric ulcers, mononuclear phagocytic system, organ transplantations and wound healing. Mice are more suitable for studying burns, megacolon, shock, cancer, obesity, and sepsis as mentioned previously [ 85 ].

Similarly, pigs are mostly used for stomach, liver and transplantation studies, while rabbits are suitable for the study of immunology, inflammation, vascular biology, shock, colitis and transplantations. Thus, the choice of experimental animal mainly depends upon the field of scientific research under consideration [ 1 ].

HOUSING AND ENVIRONMENTAL ENRICHMENT

Researchers should be aware of the environment and conditions in which laboratory animals are kept during research, and they also need to be familiar with the metabolism of the animals kept in vivarium, since their metabolism can easily be altered by different factors such as pain, stress, confinement, lack of sunlight, etc. Housing conditions alter animal behavior, and this can in turn affect experimental results. By contrast, handling procedures that feature environmental enrichment and enhancement help to decrease stress and positively affect the welfare of the animals and the reliability of research data [ 74 , 75 ].

In animals, distress- and agony-causing factors should be controlled or eliminated to overcome any interference with data collection as well as with interpretation of the results, since impaired animal welfare leads to more animal usage during experiment, decreased reliability and increased discrepancies in results along with the unnecessary consumption of animal lives [ 86 ].

To reduce the variation or discrepancies in experimental data caused by various environmental factors, experimental animals must be kept in an appropriate and safe place. In addition, it is necessary to keep all variables like humidity, airflow and temperature at levels suitable for those species, as any abrupt variation in these factors could cause stress, reduced resistance and increased susceptibility to infections [ 74 ].

The space allotted to experimental animals should permit them free movement, proper sleep and where feasible allow for interaction with other animals of the same species. Mice and rats are quite sociable animals and must, therefore, be housed in groups for the expression of their normal behavior. Usually, laboratory cages are not appropriate for the behavioral needs of the animals. Therefore, environmental enrichment is an important feature for the expression of their natural behavior that will subsequently affect their defense mechanisms and physiology [ 87 ].

The features of environmental enrichment must satisfy the animals’ sense of curiosity, offer them fun activities, and also permit them to fulfill their behavioral and physiological needs. These needs include exploring, hiding, building nests and gnawing. For this purpose, different things can be used in their environment, such as PVC tubes, cardboard, igloos, paper towel, cotton, disposable masks and paper strips [ 87 ].

The environment used for housing of animals must be continuously controlled by appropriate disinfection, hygiene protocols, sterilization and sanitation processes. These steps lead to a reduction in the occurrence of various infectious agents that often found in vivarium, such as Sendai virus, cestoda and Mycoplasma pulmonis [ 88 ].

Euthanasia is a term derived from Greek, and it means a death without any suffering. According to the Brazilian Arouca Law (Article 14, Chapter IV, Paragraphs 1 and 2), an animal should undergo euthanasia, in strict compliance with the requirements of each species, when the experiment ends or during any phase of the experiment, wherever this procedure is recommended and/or whenever serious suffering occurs. If the animal does not undergo euthanasia after the intervention it may leave the vivarium and be assigned to suitable people or to the animal protection bodies, duly legalized [ 1 ].

Euthanasia procedures must result in instant loss of consciousness which leads to respiratory or cardiac arrest as well as to complete brain function impairment. Another important aspect of this procedure is calm handling of the animal while taking it out of its enclosure, to reduce its distress, suffering, anxiety and fear. In every research project, the study design should include the details of the appropriate endpoints of these experimental animals, and also the methods that will be adopted. It is important to determine the appropriate method of euthanasia for the animal being used. Another important point is that, after completing the euthanasia procedure, the animal’s death should be absolutely confirmed before discarding their bodies [ 87 , 89 ].

Relevance of animal experimentations and possible alternatives

Relevance of animal experiments and their adverse effects on human health.

One important concern is whether human diseases, when inflicted on experimental animals, adequately mimic the progressions of the disease and the treatment responses observed in humans. Several research articles have made comparisons between human and animal data, and indicated that the results of animals’ research could not always be reliably replicated in clinical research among humans. The latest systematic reviews about the treatment of different clinical conditions including neurology, vascular diseases and others, have established that the results of animal studies cannot properly predict human outcomes [ 59 , 90 ].

At present, the reliability of animal experiments for extrapolation to human health is questionable. Harmful effects may occur in humans because of misleading results from research conducted on animals. For instance, during the late fifties, a sedative drug, thalidomide, was prescribed for pregnant women, but some of the women using that drug gave birth to babies lacking limbs or with foreshortened limbs, a condition called phocomelia. When thalidomide had been tested on almost all animal models such as rats, mice, rabbits, dogs, cats, hamsters, armadillos, ferrets, swine, guinea pig, etc., this teratogenic effect was observed only occasionally [ 91 ]. Similarly, in 2006, the compound TGN 1412 was designed as an immunomodulatory drug, but when it was injected into six human volunteer, serious adverse reactions were observed resulting from a deadly cytokine storm that in turn led to disastrous systemic organ failure. TGN 1412 had been tested successfully in rats, mice, rabbits, and non-human primates [ 92 ]. Moreover, Bailey (2008) reported 90 HIV vaccines that had successful trial results in animals but which failed in human beings [ 93 ]. Moreover, in Parkinson disease, many therapeutic options that have shown promising results in rats and non-human primate models have proved harmful in humans. Hence, to analyze the relevance of animal research to human health, the efficacy of animal experimentation should be examined systematically [ 94 , 95 ]. At the same time, the development of hyperoxaluria and renal failure (up to dialysis) after ileal-jejunal bypass was unexpected because this procedure was not preliminarily evaluated on an animal model [ 96 ].

Several factors play a role in the extrapolation of animal-derived data to humans, such as environmental conditions and physiological parameters related to stress, age of the experimental animals, etc. These factors could switch on or off genes in the animal models that are specific to species and/or strains. All these observations challenge the reliability and suitability of animal experimentation as well as its objectives with respect to human health [ 76 , 92 ].

ALTERNATIVE TO ANIMAL EXPERIMENTATION/DEVELOPMENT OF NEW PRODUCTS AND TECHNIQUES TO AVOID ANIMAL SACRIFICE IN RESEARCH

Certainly, in vivo animal experimentation has significantly contributed to the development of biological and biomedical research. However it has the limitations of strict ethical issues and high production cost. Some scientists consider animal testing an ineffective and immoral practice and therefore prefer alternative techniques to be used instead of animal experimentation. These alternative methods involve in vitro experiments and ex vivo models like cell and tissue cultures, use of plants and vegetables, non-invasive human clinical studies, use of corpses for studies, use of microorganisms or other simpler organism like shrimps and water flea larvae, physicochemical techniques, educational software, computer simulations, mathematical models and nanotechnology [ 97 ]. These methods and techniques are cost-effective and could efficiently replace animal models. They could therefore, contribute to animal welfare and to the development of new therapies that can identify the therapeutics and related complications at an early stage [ 1 ].

The National Research Council (UK) suggested a shift from the animal models toward computational models, as well as high-content and high-throughput in vitro methods. Their reports highlighted that these alternative methods could produce predictive data more affordably, accurately and quickly than the traditional in vivo or experimental animal methods [ 98 ].

Increasingly, scientists and the review boards have to assess whether addressing a research question using the applied techniques of advanced genetics, molecular, computational and cell biology, and biochemistry could be used to replace animal experiments [ 59 ]. It must be remembered that each alternative method must be first validated and then registered in dedicated databases.

An additional relevant concern is how precisely animal data can mirror relevant epigenetic changes and human genetic variability. Langley and his colleagues have highlighted some of the examples of existing and some emerging non-animal based research methods in the advanced fields of neurology, orthodontics, infectious diseases, immunology, endocrine, pulmonology, obstetrics, metabolism and cardiology [ 99 ].

IN SILICO SIMULATIONS AND INFORMATICS

Several computer models have been built to study cardiovascular risk and atherosclerotic plaque build-up, to model human metabolism, to evaluate drug toxicity and to address other questions that were previously approached by testing in animals [ 100 ].

Computer simulations can potentially decrease the number of experiments required for a research project, however simulations cannot completely replace laboratory experiments. Unfortunately, not all the principles regulating biological systems are known, and computer simulation provide only an estimation of possible effects due to the limitations of computer models in comparison with complex human tissues. However, simulation and bio-informatics are now considered essential in all fields of science for their efficiency in using the existing knowledge for further experimental designs [ 76 ].

At present, biological macromolecules are regularly simulated at various levels of detail, to predict their response and behavior under certain physical conditions, chemical exposures and stimulations. Computational and bioinformatic simulations have significantly reduced the number of animals sacrificed during drug discovery by short listing potential candidate molecules for a drug. Likewise, computer simulations have decreased the number of animal experiments required in other areas of biological science by efficiently using the existing knowledge. Moreover, the development of high definition 3D computer models for anatomy with enhanced level of detail, it may make it possible to reduce or eliminate the need for animal dissection during teaching [ 101 , 102 ].

3D CELL-CULTURE MODELS AND ORGANS-ON-CHIPS

In the current scenario of rapid advancement in the life sciences, certain tissue models can be built using 3D cell culture technology. Indeed, there are some organs on micro-scale chip models used for mimicking the human body environment. 3D models of multiple organ systems such as heart, liver, skin, muscle, testis, brain, gut, bone marrow, lungs and kidney, in addition to individual organs, have been created in microfluidic channels, re-creating the physiological chemical and physical microenvironments of the body [ 103 ]. These emerging techniques, such as the biomedical/biological microelectromechanical system (Bio-MEMS) or lab-on-a-chip (LOC) and micro total analysis systems (lTAS) will, in the future, be a useful substitute for animal experimentation in commercial laboratories in the biotechnology, environmental safety, chemistry and pharmaceutical industries. For 3D cell culture modeling, cells are grown in 3D spheroids or aggregates with the help of a scaffold or matrix, or sometimes using a scaffold-free method. The 3D cell culture modeling conditions can be altered to add proteins and other factors that are found in a tumor microenvironment, for example, or in particular tissues. These matrices contain extracellular matrix components such as proteins, glycoconjugates and glycosaminoglycans that allow for cell communication, cell to cell contact and the activation of signaling pathways in such a way that the morphological and functional differentiation of these cells can accurately mimic their environment in vivo . This methodology, in time, will bridge the gap between in vivo and in vitro drug screening, decreasing the utilization of animal models during research [ 104 ].

ALTERNATIVES TO MICROBIAL CULTURE MEDIA AND SERUM-FREE ANIMAL CELL CULTURES

There are moves to reduce the use of animal derived products in many areas of biotechnology. Microbial culture media peptones are mostly made by the proteolysis of farmed animal meat. However, nowadays, various suppliers provide peptones extracted from yeast and plants. Although the costs of these plant-extracted peptones are the same as those of animal peptones, plant peptones are more environmentally favorable since less plant material and water are required for them to grow, compared with the food grain and fodder needed for cattle that are slaughtered for animal peptone production [ 105 ].

Human cell culture is often carried out in a medium that contains fetal calf serum, the production of which involves animal (cow) sacrifice or suffering. In fact, living pregnant cows are used and their fetuses removed to harvest the serum from the fetal blood. Fetal calf serum is used because it is a natural medium rich in all the required nutrients and significantly increases the chances of successful cell growth in culture. Scientists are striving to identify the factors and nutrients required for the growth of various types of cells, with a view to eliminating the use of calf serum. At present, most cell lines could be cultured in a chemically-synthesized medium without using animal products. Furthermore, data from chemically-synthesized media experiments may have better reproducibility than those using animal serum media, since the composition of animal serum does change from batch to batch on the basis of animals’ gender, age, health and genetic background [ 76 ].

ALTERNATIVES TO ANIMAL-DERIVED ANTIBODIES

Animal friendly affinity reagents may act as an alternative to antibodies produced, thereby removing the need for animal immunization. Typically, these antibodies are obtained in vitro by yeast, phage or ribosome display. In a recent review, a comparative analysis between animal friendly affinity reagents and animal derived-antibodies showed that the affinity reagents have superior quality, are relatively less time consuming, have more reproducibility and are more reliable and are cost-effective [ 106 , 107 ].

Conclusions

Animal experimentation led to great advancement in biological and biomedical sciences and contributed to the discovery of many drugs and treatment options. However, such experimentation may cause harm, pain and distress to the animals involved. Therefore, to perform animal experimentations, certain ethical rules and laws must be strictly followed and there should be proper justification for using animals in research projects. Furthermore, during animal experimentation the 4 Rs principles of reduction, refinement, replacement and responsibility must be followed by the researchers. Moreover, before beginning a research project, experiments should be thoroughly planned and well-designed, and should avoid unnecessary use of animals. The reliability and reproducibility of animal experiments should also be considered. Whenever possible, alternative methods to animal experimentation should be adopted, such as in vitro experimentation, cadaveric studies, and computer simulations.

While much progress has been made on reducing animal experimentation there is a need for greater awareness of alternatives to animal experiments among scientists and easier access to advanced modeling technologies. Greater research is needed to define a roadmap that will lead to the elimination of all unnecessary animal experimentation and provide a framework for adoption of reliable alternative methodologies in biomedical research.

Acknowledgements

This research was funded by the Provincia Autonoma di Bolzano in the framework of LP 15/2020 (dgp 3174/2021).

Conflicts of interest statement

Authors declare no conflict of interest.

Author's contributions

MB: study conception, editing and critical revision of the manuscript; AKK, DP, GH, RB, Paul S, Peter S, RM, BF, NC, SM, LL, DD, GMT, MCE, MD, SM, Daniele M, GB, AD, KD, MCM, TB, MS, STC, Donald M, AM, AB, KLH, MK, LS, LL, GF: literature search, editing and critical revision of the manuscript. All authors have read and approved the final manuscript.

Contributor Information

INTERNATIONAL BIOETHICS STUDY GROUP : Derek Pheby , Gary Henehan , Richard Brown , Paul Sieving , Peter Sykora , Robert Marks , Benedetto Falsini , Natale Capodicasa , Stanislav Miertus , Lorenzo Lorusso , Gianluca Martino Tartaglia , Mahmut Cerkez Ergoren , Munis Dundar , Sandro Michelini , Daniele Malacarne , Tommaso Beccari , Michele Samaja , Matteo Bertelli , Donald Martin , Assunta Morresi , Ariola Bacu , Karen L. Herbst , Mykhaylo Kapustin , Liborio Stuppia , Ludovica Lumer , and Giampietro Farronato

Penn State College of Agricultural Science Logo

Optimizing animal health, welfare, and performance through the study of basic and applied animal science.

The Department of Animal Science conducts critical research targeting animal health, reproduction, nutrition, their relationship with people and the environment, and more. We are proud to be part of a Tier 1 Research University, devoting the resources needed to maintain world-class facilities and attract world-class people.

Animal Science Research Areas

animal health research paper topics

  • Media Contacts
  • News Releases
  • Article Submissions
  • All Categories
  • Arts & Humanities
  • Campus Life
  • Equity & Diversity
  • Health & Medicine
  • Humans of the U
  • Law & Politics
  • Science & Technology
  • Sustainability
  • University Statements
  • Announcements
  • Submit an event
  • U Rising Podcast
  • About the U

Powered By Google Search

Animal research matters

As one of the nation’s top research institutions, the University of Utah is dedicated to advancing science and medicine to improve the health of people and animals. Practically every drug, treatment, medical device, diagnostic tool, and cure we know of has been developed with the help of laboratory animals . And yet, there are misconceptions about why this work is important, how it’s done, and the care animals receive. To clarify, Erin Rothwell, PhD, the U’s Vice President for Research, addresses common questions.

Animal research is an irreplaceable step for scientists to develop treatments for diseases and disabilities, advance scientific understanding, and find ways to protect the safety of people, animals, and the environment.

For instance, the mRNA vaccines that controlled the spread and severity of COVID-19 were made possible by research with mice. Gene therapy, an exciting new type of medicine now available to treat sickle cell anemia and other diseases, was developed with animal models. And studies with animals led to the creation of the drugs used in modern chemotherapy, providing hope for people with cancer.

This progress is possible because animals are like people in many ways, from our organs to the level of cells and DNA. While new technologies are developed every day, there are still no alternatives that adequately mimic the complexities of an entire living organism. The similarities between people and animals let researchers learn how the body works and make sure that medical treatments are safe and effective without putting people at risk.

At the U, animal research is leading to breakthroughs in medicine. Research with animals led to the discovery of a protein that could protect against, and even reverse, heart failure, a condition affecting more than six million Americans. Mouse research is helping doctors personalize cancer treatment to find the most effective therapies for each patient. Researchers are even developing a new treatment for diabetes based on discoveries made with a “super mouse” that doesn’t get diabetes, heart disease, or kidney disease. These discoveries, and modern medicine as a whole, fundamentally depend on animals as a part of research.

More than 99 percent of animal research at the U is done with rodents, fish, and insects. Larger animals are only used to try to answer questions about health and disease that can’t be answered any other way.

For instance, because nonhuman primates are the most similar animals to humans, they’ve helped scientists learn about conditions including AIDS, obesity, diabetes, and cancer. At the U, nonhuman primates are helping us understand how memory and vision work. Research with dogs at the U is helping us understand how the heart works and develop lifesaving devices for people with heart conditions.  Our scientists are developing other potential treatments for heart failure based on research with pigs, which was made possible because of the many similarities between pigs and humans. And research with pigs at many institutions has also led to lifesaving organ transplant methods and better therapies for serious diseases like cystic fibrosis.

Our researchers and animal care workers make every effort to ensure research animals are healthy and comfortable; it’s a moral imperative, but it’s also a requirement for meaningful research. Animals have species-appropriate enrichment and live in spaces where they can socialize, exercise, and play.

Our institutional committee reviews all animal research projects before they begin to see if there is potential for pain and distress. Any projects with that potential must be modified in order to minimize or eliminate that possibility.

The U’s researchers, staff, and veterinarians have compassion for the animals in their care. They are trained to watch for species-specific signs of discomfort, and veterinarians and professional staff check on every animal daily. In the rare instance of pain or distress, a team of veterinarians consults to provide relief, supportive care, or euthanasia if necessary.

Adverse events including accidental deaths are rare, but when they happen it saddens all of us, and we respond to all such events immediately and thoroughly. We proactively report all cases right away, meeting or exceeding federal and state reporting guidelines, and we quickly make changes to lower the chances of an incident happening again. Federal agencies review these reports, and in all cases they have judged our response satisfactory.

It's our duty to keep animals safe, so we prioritize the well-being of animals in our facilities. Both the university and the USDA regularly inspect animal research areas to make sure that all animals are receiving the utmost humane care. We’re committed to continuing to improve our animal care and ensuring humane treatment for every animal in every study.

We meet and routinely exceed the high standards of quality, ethics, and transparency specified through a network of laws and guidelines. Before doing any research with animals, our scientists need to show that their research questions can’t be answered any other way. Everyone involved in animal research, including researchers and care staff, are given species-specific training on handling and caring for the animals responsibly and with respect.

We’re also part of an additional, voluntary independent review program through AAALAC International, an organization that supports humane animal care in research. Our participation and accreditation through this program show our deep commitment to animal care, above and beyond legal requirements.

Throughout the course of a project, our institutional animal care and use committee ensures that research meets the stringent federal, local, and institutional regulations that are in place to support animal welfare. This committee also makes sure that animal facilities are maintained at the highest standards. We have dedicated veterinarians and professional staff who monitor every animal, every day. It would be hard to find people who are more devoted to responsible, ethical, and meaningful research and animal care.

We’re devoted to high-quality science and recognize that is inseparable from humane animal care. I’m excited about the difference we’re making and know that the scientific and medical advances being made here at the U are creating a better future for all of us.

RELATED ARTICLES

Research explores how heavy metal singers scream and squeal, new light-filtering lenses to combat migraine, perinatal mental health: challenges and hope for mothers, in turkey, wolves and people have shared a landscape for generations, university of utah included in noaa’s $7m weather forecasting initiative, green gentrification cycle: double-edged sword of environmental justice, gardner institute releases new utah demographic data, celebrating ‘the hive’, can coal mines be tapped for rare earth elements.

Department of

Animal Science

College of Food, Agricultural and Natural Resource Sciences

  • Graduate Students
  • Graduate Seminars
  • Diversity & Inclusion
  • Locations/Facilities
  • Student Judging Teams
  • Student Organizations
  • Prospective Students
  • Animal Science Major
  • Animal Science Minor
  • Scholarships
  • Program Emphases
  • Prospective Graduate Student
  • Current Graduate Students
  • Services and Resources
  • Graduate Faculty Directory
  • Graduate Program Contacts
  • Genetics Overview
  • Genetics Research
  • Animal Gene Mapping
  • Crossbreeding of Dairy Cattle
  • Production Systems Overview
  • Animal Production Research
  • Meat Science
  • Growth Biology Research
  • Biofuels Co-Products in Feeds
  • Integrated Animal Systems Biology
  • Meat Laboratory/Sales Room
  • U of MN Extension Programs
  • Youth Programs
  • Minnesota Nutrition Conference
  • Precision Dairy Conference
  • Quality Count$
  • W. E. Petersen Symposium
  • Alumni Overview
  • Animal Science Showcase

Animal production research in the Department of Animal Science focuses on improving livestock production systems, management practices, animal health and welfare, and food quality and safety. Animal production research topics include:

  • Organic dairy production
  • Precision dairy technologies including robotic milking, automated calf feeders and cow behavior sensors
  • Transition dairy cow health, management and welfare
  • Cow-calf and beef feedlot management
  • Pre- and/or post-weaning management practices that enhance meat quality and safety
  • Automated monitoring of behavioral indicators of swine welfare
  • Reducing piglet mortality in alternative farrowing systems
  • Statistical process control principles in dairy and swine
  • Sustainable poultry production
  • Management, health and stress interactions in market turkeys
  • Decision making processes for evaluating management at the farm level for options across all species with implications to environmental impact and food quality/safety

IMAGES

  1. 💋 Nutrition paper topics. Good Thesis Topics On Nutrition: The Top 20

    animal health research paper topics

  2. Animal Research Paper Template

    animal health research paper topics

  3. 🏷️ Good animal research topics. 137 Animal Rights Research Paper Topics

    animal health research paper topics

  4. Science: Animal Research Report (K-2)

    animal health research paper topics

  5. Health Research Paper Topics: 20+ Ideas to Get You Started

    animal health research paper topics

  6. Animal Research Project

    animal health research paper topics

VIDEO

  1. Farm animal research that could improve the effectiveness of flue shots

  2. Patient & Public Involvement Webinar: Finding & reading a research paper

  3. Animal Health Mode of Action Showreel

  4. The role of the animal and public health sectors in handling security threats

  5. The Cure for Cancer (in Dogs) #shorts

  6. Sexual Health Research Paper Video Presentation: Haley Moski

COMMENTS

  1. Veterinary Medicine Research Paper Topics

    This comprehensive list of veterinary medicine research paper topics provides students with a wide range of subjects to explore within the field. Whether you are interested in animal behavior, infectious diseases, pharmacology, surgery, or any other aspect of veterinary medicine, there are countless opportunities for research and innovation.

  2. 162 Best Animal Research Topics To Nail Your Paper In 2023

    Animal Research Topics For University. Color patterns of moths and moths. Mimicry in the sexual signals of fireflies. Ecophysiology of the garter snake. Memory, dreams regarding cat neurology. Spatiotemporal variation in the composition of animal communities. Detection of prey in the sand scorpion.

  3. 45+ Veterinary Dissertation Topics

    45+ Veterinary Dissertation Topics. Published by Owen Ingram at January 2nd, 2023 , Revised On May 3, 2024. Veterinary medicine is a broad area of study, so there are many potential issues you can base your dissertation or thesis on. You may want to consider veterinary science comparable to human health care, such as laboratory animal medicine ...

  4. Discover Inspiring Animal Research Topics

    2.1 Animal Physiology Research Topics. 2.2 Controversial Animal Topics. 2.3 Animal Rights Topics For Research Paper. 2.4 Interesting Animal Research Topics. 2.5 Veterinary Topics For Research Paper. 2.6 Animal Testing Research Topics. 2.7 Animal Cruelty Topics. 2.8 Research Questions about Animals. 3 Get Professional Help for Your Animal ...

  5. Journal of Animal Science

    The Journal of Animal Science, an official journal of the American Society of Animal Science, publishes research on topics in animal production and fundamental aspects of genetics, nutrition, physiology and the preparation and utilization of animal products.

  6. Articles

    1.687 - SNIP (Source Normalized Impact per Paper) 0.869 - SJR (SCImago Journal Rank) 2023 Speed 8 days submission to first editorial decision for all manuscripts (Median) 111 days submission to accept (Median) 2023 Usage 988,732 downloads 522 Altmetric mentions

  7. Frontiers in Animal Science

    Integration of Behavioural Ecology and Animal Welfare. E. Tobias Krause. Antonia Patt. 2,339 views. 2 articles. A multidisciplinary journal that advances our understanding of food and livestock production, while safeguarding animal welfare and environmental sustainability.

  8. Research perspectives on animal health in the era of artificial

    Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors ...

  9. Animal Health and Production: Identifying Challenges and ...

    Keywords: sustainable animal production, disease management, one-health, food security, zoonoses, host-pathogen interaction, microbiome, intelligent breeding technology, climate change, AMR . Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements.

  10. Animal Research and One Health

    Animal Research and One Health publishes open access research that examines modern animal farming industries using a multidisciplinary approach known as One Health. The journal scope includes animal breeding, genetic resource protection, nutrition, animal environment, precision management, welfare, quality control of animal products, disease control and low-carbon feeding systems.

  11. Animal physiology

    Animal physiology is the scientific study of the life-supporting properties, functions and processes of animals or their parts. The discipline covers key homeostatic processes, such as the ...

  12. Frontiers

    Canine science is rapidly maturing into an interdisciplinary and highly impactful field with great potential for both basic and translational research. The articles in this Frontiers Research Topic, Our Canine Connection: The History, Benefits and Future of Human-Dog Interactions, arise from two meetings sponsored by the Wallis Annenberg PetSpace Leadership Institute, which convened experts ...

  13. Animal behaviour

    Animal behaviour is the scientific study of the behaviour of animals. The discipline covers study under experimental conditions, behaviourism, or natural conditions, ethology. Primates have rich ...

  14. Climate Change and Animal Health: Impacts, Challenges, and ...

    This mini review paper delves into the multifaceted and far-reaching consequences of climate change on animal health, shedding light on the complexities faced by various species as they grapple with the rapidly changing environmental conditions.

  15. A guide to open science practices for animal research

    Fig 1. Using open science practices throughout translational research studies. Application of open science practices at each step of the research process can maximize the impact of performed animal experiments. The implementation of these practices will lead to less time pressure at the end of a project.

  16. Issues and special features of animal health research

    In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food ...

  17. Animal biotechnology

    Animal biotechnology is a branch of biotechnology in which molecular biology techniques are used to genetically engineer (i.e. modify the genome of) animals in order to improve their suitability ...

  18. Animal Health Research Reviews

    ISSN: 1466-2523 (Print) , 1475-2654 (Online) Editors: R. W. Stich The University of Missouri, USA, and C. Gyles University of Guelph, Canada. Editorial board. Animal Health Research Reviews provides an international, open access forum for the publication of reviews and commentaries on all aspects of animal health.

  19. Animal behaviour and welfare research: A One Health perspective

    Animal behaviour and welfare research are directly relevant to One Health, and vice versa. One Health incorporates a concern for animal welfare in its reference to wellbeing and in its connection to the World Health Organization's definition for human health that includes physical and mental wellbeing, and the World Organisation for Animal Health's definition of animal welfare as 'the ...

  20. Animal Abuse and Interpersonal Violence:

    Cruelty to animals is a widespread phenomenon with serious implications for animal welfare, individual and societal well-being, veterinary medicine in general, and veterinary pathology in particular. 65 Extensive research has identified acts of animal cruelty, abuse, and neglect as crimes that may be indicators and/or predictors of crimes of ...

  21. Ethical considerations regarding animal experimentation

    Introduction. Animal model-based research has been performed for a very long time. Ever since the 5 th century B.C., reports of experiments involving animals have been documented, but an increase in the frequency of their utilization has been observed since the 19 th century [].Most institutions for medical research around the world use non-human animals as experimental subjects [].

  22. Zoology

    Zoology is the scientific study of animals. This discipline can include animal anatomy, physiology, biochemistry, genetics, evolution, ecology, behaviour and conservation. Primates have rich ...

  23. Research

    The Department of Animal Science conducts critical research targeting animal health, reproduction, nutrition, their relationship with people and the environment, and more. We are proud to be part of a Tier 1 Research University, devoting the resources needed to maintain world-class facilities and attract world-class people.

  24. Animal research matters

    University of Utah Health -. As one of the nation's top research institutions, the University of Utah is dedicated to advancing science and medicine to improve the health of people and animals. Practically every drug, treatment, medical device, diagnostic tool, and cure we know of has been developed with the help of laboratory animals. And ...

  25. Animal Production Research

    Animal production research in the Department of Animal Science focuses on improving livestock production systems, management practices, animal health and welfare, and food quality and safety. Animal production research topics include: Organic dairy production. Precision dairy technologies including robotic milking, automated calf feeders and ...

  26. Best Management Practices

    NYSCHAP Goals Identify key livestock health, consumer, and food safety issues affecting livestock production. Establish and implement preventative intervention strategies that will enhance animal health, welfare and environmental stewardship, public health, production and product quality. Purpose A guide for use in identification of key farm management practices to prevent, eliminate or reduce ...