analysis of data thesis example

How To Write The Results/Findings Chapter

For quantitative studies (dissertations & theses).

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | July 2021

So, you’ve completed your quantitative data analysis and it’s time to report on your findings. But where do you start? In this post, we’ll walk you through the results chapter (also called the findings or analysis chapter), step by step, so that you can craft this section of your dissertation or thesis with confidence. If you’re looking for information regarding the results chapter for qualitative studies, you can find that here .

Overview: Quantitative Results Chapter

  • What exactly the results chapter is
  • What you need to include in your chapter
  • How to structure the chapter
  • Tips and tricks for writing a top-notch chapter
  • Free results chapter template

What exactly is the results chapter?

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected. It presents the data using a clear text narrative, supported by tables, graphs and charts. In doing so, it also highlights any potential issues (such as outliers or unusual findings) you’ve come across.

But how’s that different from the discussion chapter?

Well, in the results chapter, you only present your statistical findings. Only the numbers, so to speak – no more, no less. Contrasted to this, in the discussion chapter , you interpret your findings and link them to prior research (i.e. your literature review), as well as your research objectives and research questions . In other words, the results chapter presents and describes the data, while the discussion chapter interprets the data.

Let’s look at an example.

In your results chapter, you may have a plot that shows how respondents to a survey  responded: the numbers of respondents per category, for instance. You may also state whether this supports a hypothesis by using a p-value from a statistical test. But it is only in the discussion chapter where you will say why this is relevant or how it compares with the literature or the broader picture. So, in your results chapter, make sure that you don’t present anything other than the hard facts – this is not the place for subjectivity.

It’s worth mentioning that some universities prefer you to combine the results and discussion chapters. Even so, it is good practice to separate the results and discussion elements within the chapter, as this ensures your findings are fully described. Typically, though, the results and discussion chapters are split up in quantitative studies. If you’re unsure, chat with your research supervisor or chair to find out what their preference is.

Free template for results section of a dissertation or thesis

What should you include in the results chapter?

Following your analysis, it’s likely you’ll have far more data than are necessary to include in your chapter. In all likelihood, you’ll have a mountain of SPSS or R output data, and it’s your job to decide what’s most relevant. You’ll need to cut through the noise and focus on the data that matters.

This doesn’t mean that those analyses were a waste of time – on the contrary, those analyses ensure that you have a good understanding of your dataset and how to interpret it. However, that doesn’t mean your reader or examiner needs to see the 165 histograms you created! Relevance is key.

How do I decide what’s relevant?

At this point, it can be difficult to strike a balance between what is and isn’t important. But the most important thing is to ensure your results reflect and align with the purpose of your study .  So, you need to revisit your research aims, objectives and research questions and use these as a litmus test for relevance. Make sure that you refer back to these constantly when writing up your chapter so that you stay on track.

There must be alignment between your research aims objectives and questions

As a general guide, your results chapter will typically include the following:

  • Some demographic data about your sample
  • Reliability tests (if you used measurement scales)
  • Descriptive statistics
  • Inferential statistics (if your research objectives and questions require these)
  • Hypothesis tests (again, if your research objectives and questions require these)

We’ll discuss each of these points in more detail in the next section.

Importantly, your results chapter needs to lay the foundation for your discussion chapter . This means that, in your results chapter, you need to include all the data that you will use as the basis for your interpretation in the discussion chapter.

For example, if you plan to highlight the strong relationship between Variable X and Variable Y in your discussion chapter, you need to present the respective analysis in your results chapter – perhaps a correlation or regression analysis.

Need a helping hand?

analysis of data thesis example

How do I write the results chapter?

There are multiple steps involved in writing up the results chapter for your quantitative research. The exact number of steps applicable to you will vary from study to study and will depend on the nature of the research aims, objectives and research questions . However, we’ll outline the generic steps below.

Step 1 – Revisit your research questions

The first step in writing your results chapter is to revisit your research objectives and research questions . These will be (or at least, should be!) the driving force behind your results and discussion chapters, so you need to review them and then ask yourself which statistical analyses and tests (from your mountain of data) would specifically help you address these . For each research objective and research question, list the specific piece (or pieces) of analysis that address it.

At this stage, it’s also useful to think about the key points that you want to raise in your discussion chapter and note these down so that you have a clear reminder of which data points and analyses you want to highlight in the results chapter. Again, list your points and then list the specific piece of analysis that addresses each point. 

Next, you should draw up a rough outline of how you plan to structure your chapter . Which analyses and statistical tests will you present and in what order? We’ll discuss the “standard structure” in more detail later, but it’s worth mentioning now that it’s always useful to draw up a rough outline before you start writing (this advice applies to any chapter).

Step 2 – Craft an overview introduction

As with all chapters in your dissertation or thesis, you should start your quantitative results chapter by providing a brief overview of what you’ll do in the chapter and why . For example, you’d explain that you will start by presenting demographic data to understand the representativeness of the sample, before moving onto X, Y and Z.

This section shouldn’t be lengthy – a paragraph or two maximum. Also, it’s a good idea to weave the research questions into this section so that there’s a golden thread that runs through the document.

Your chapter must have a golden thread

Step 3 – Present the sample demographic data

The first set of data that you’ll present is an overview of the sample demographics – in other words, the demographics of your respondents.

For example:

  • What age range are they?
  • How is gender distributed?
  • How is ethnicity distributed?
  • What areas do the participants live in?

The purpose of this is to assess how representative the sample is of the broader population. This is important for the sake of the generalisability of the results. If your sample is not representative of the population, you will not be able to generalise your findings. This is not necessarily the end of the world, but it is a limitation you’ll need to acknowledge.

Of course, to make this representativeness assessment, you’ll need to have a clear view of the demographics of the population. So, make sure that you design your survey to capture the correct demographic information that you will compare your sample to.

But what if I’m not interested in generalisability?

Well, even if your purpose is not necessarily to extrapolate your findings to the broader population, understanding your sample will allow you to interpret your findings appropriately, considering who responded. In other words, it will help you contextualise your findings . For example, if 80% of your sample was aged over 65, this may be a significant contextual factor to consider when interpreting the data. Therefore, it’s important to understand and present the demographic data.

 Step 4 – Review composite measures and the data “shape”.

Before you undertake any statistical analysis, you’ll need to do some checks to ensure that your data are suitable for the analysis methods and techniques you plan to use. If you try to analyse data that doesn’t meet the assumptions of a specific statistical technique, your results will be largely meaningless. Therefore, you may need to show that the methods and techniques you’ll use are “allowed”.

Most commonly, there are two areas you need to pay attention to:

#1: Composite measures

The first is when you have multiple scale-based measures that combine to capture one construct – this is called a composite measure .  For example, you may have four Likert scale-based measures that (should) all measure the same thing, but in different ways. In other words, in a survey, these four scales should all receive similar ratings. This is called “ internal consistency ”.

Internal consistency is not guaranteed though (especially if you developed the measures yourself), so you need to assess the reliability of each composite measure using a test. Typically, Cronbach’s Alpha is a common test used to assess internal consistency – i.e., to show that the items you’re combining are more or less saying the same thing. A high alpha score means that your measure is internally consistent. A low alpha score means you may need to consider scrapping one or more of the measures.

#2: Data shape

The second matter that you should address early on in your results chapter is data shape. In other words, you need to assess whether the data in your set are symmetrical (i.e. normally distributed) or not, as this will directly impact what type of analyses you can use. For many common inferential tests such as T-tests or ANOVAs (we’ll discuss these a bit later), your data needs to be normally distributed. If it’s not, you’ll need to adjust your strategy and use alternative tests.

To assess the shape of the data, you’ll usually assess a variety of descriptive statistics (such as the mean, median and skewness), which is what we’ll look at next.

Descriptive statistics

Step 5 – Present the descriptive statistics

Now that you’ve laid the foundation by discussing the representativeness of your sample, as well as the reliability of your measures and the shape of your data, you can get started with the actual statistical analysis. The first step is to present the descriptive statistics for your variables.

For scaled data, this usually includes statistics such as:

  • The mean – this is simply the mathematical average of a range of numbers.
  • The median – this is the midpoint in a range of numbers when the numbers are arranged in order.
  • The mode – this is the most commonly repeated number in the data set.
  • Standard deviation – this metric indicates how dispersed a range of numbers is. In other words, how close all the numbers are to the mean (the average).
  • Skewness – this indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph (this is called a normal or parametric distribution), or do they lean to the left or right (this is called a non-normal or non-parametric distribution).
  • Kurtosis – this metric indicates whether the data are heavily or lightly-tailed, relative to the normal distribution. In other words, how peaked or flat the distribution is.

A large table that indicates all the above for multiple variables can be a very effective way to present your data economically. You can also use colour coding to help make the data more easily digestible.

For categorical data, where you show the percentage of people who chose or fit into a category, for instance, you can either just plain describe the percentages or numbers of people who responded to something or use graphs and charts (such as bar graphs and pie charts) to present your data in this section of the chapter.

When using figures, make sure that you label them simply and clearly , so that your reader can easily understand them. There’s nothing more frustrating than a graph that’s missing axis labels! Keep in mind that although you’ll be presenting charts and graphs, your text content needs to present a clear narrative that can stand on its own. In other words, don’t rely purely on your figures and tables to convey your key points: highlight the crucial trends and values in the text. Figures and tables should complement the writing, not carry it .

Depending on your research aims, objectives and research questions, you may stop your analysis at this point (i.e. descriptive statistics). However, if your study requires inferential statistics, then it’s time to deep dive into those .

Dive into the inferential statistics

Step 6 – Present the inferential statistics

Inferential statistics are used to make generalisations about a population , whereas descriptive statistics focus purely on the sample . Inferential statistical techniques, broadly speaking, can be broken down into two groups .

First, there are those that compare measurements between groups , such as t-tests (which measure differences between two groups) and ANOVAs (which measure differences between multiple groups). Second, there are techniques that assess the relationships between variables , such as correlation analysis and regression analysis. Within each of these, some tests can be used for normally distributed (parametric) data and some tests are designed specifically for use on non-parametric data.

There are a seemingly endless number of tests that you can use to crunch your data, so it’s easy to run down a rabbit hole and end up with piles of test data. Ultimately, the most important thing is to make sure that you adopt the tests and techniques that allow you to achieve your research objectives and answer your research questions .

In this section of the results chapter, you should try to make use of figures and visual components as effectively as possible. For example, if you present a correlation table, use colour coding to highlight the significance of the correlation values, or scatterplots to visually demonstrate what the trend is. The easier you make it for your reader to digest your findings, the more effectively you’ll be able to make your arguments in the next chapter.

make it easy for your reader to understand your quantitative results

Step 7 – Test your hypotheses

If your study requires it, the next stage is hypothesis testing. A hypothesis is a statement , often indicating a difference between groups or relationship between variables, that can be supported or rejected by a statistical test. However, not all studies will involve hypotheses (again, it depends on the research objectives), so don’t feel like you “must” present and test hypotheses just because you’re undertaking quantitative research.

The basic process for hypothesis testing is as follows:

  • Specify your null hypothesis (for example, “The chemical psilocybin has no effect on time perception).
  • Specify your alternative hypothesis (e.g., “The chemical psilocybin has an effect on time perception)
  • Set your significance level (this is usually 0.05)
  • Calculate your statistics and find your p-value (e.g., p=0.01)
  • Draw your conclusions (e.g., “The chemical psilocybin does have an effect on time perception”)

Finally, if the aim of your study is to develop and test a conceptual framework , this is the time to present it, following the testing of your hypotheses. While you don’t need to develop or discuss these findings further in the results chapter, indicating whether the tests (and their p-values) support or reject the hypotheses is crucial.

Step 8 – Provide a chapter summary

To wrap up your results chapter and transition to the discussion chapter, you should provide a brief summary of the key findings . “Brief” is the keyword here – much like the chapter introduction, this shouldn’t be lengthy – a paragraph or two maximum. Highlight the findings most relevant to your research objectives and research questions, and wrap it up.

Some final thoughts, tips and tricks

Now that you’ve got the essentials down, here are a few tips and tricks to make your quantitative results chapter shine:

  • When writing your results chapter, report your findings in the past tense . You’re talking about what you’ve found in your data, not what you are currently looking for or trying to find.
  • Structure your results chapter systematically and sequentially . If you had two experiments where findings from the one generated inputs into the other, report on them in order.
  • Make your own tables and graphs rather than copying and pasting them from statistical analysis programmes like SPSS. Check out the DataIsBeautiful reddit for some inspiration.
  • Once you’re done writing, review your work to make sure that you have provided enough information to answer your research questions , but also that you didn’t include superfluous information.

If you’ve got any questions about writing up the quantitative results chapter, please leave a comment below. If you’d like 1-on-1 assistance with your quantitative analysis and discussion, check out our hands-on coaching service , or book a free consultation with a friendly coach.

analysis of data thesis example

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Soo

Thank you. I will try my best to write my results.

Lord

Awesome content 👏🏾

Tshepiso

this was great explaination

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

analysis of data thesis example

  • Print Friendly

11 Tips For Writing a Dissertation Data Analysis

Since the evolution of the fourth industrial revolution – the Digital World; lots of data have surrounded us. There are terabytes of data around us or in data centers that need to be processed and used. The data needs to be appropriately analyzed to process it, and Dissertation data analysis forms its basis. If data analysis is valid and free from errors, the research outcomes will be reliable and lead to a successful dissertation. 

So, in today’s topic, we will cover the need to analyze data, dissertation data analysis, and mainly the tips for writing an outstanding data analysis dissertation. If you are a doctoral student and plan to perform dissertation data analysis on your data, make sure that you give this article a thorough read for the best tips!

What is Data Analysis in Dissertation?

Even f you have the data collected and compiled in the form of facts and figures, it is not enough for proving your research outcomes. There is still a need to apply dissertation data analysis on your data; to use it in the dissertation. It provides scientific support to the thesis and conclusion of the research.

Data Analysis Tools

There are plenty of indicative tests used to analyze data and infer relevant results for the discussion part. Following are some tests  used to perform analysis of data leading to a scientific conclusion:

Hypothesis TestingRegression and Correlation analysis
T-testZ test
Mann-Whitney TestTime Series and index number
Chi-Square TestANOVA (or sometimes MANOVA) 

11 Most Useful Tips for Dissertation Data Analysis

Doctoral students need to perform dissertation data analysis and then dissertation to receive their degree. Many Ph.D. students find it hard to do dissertation data analysis because they are not trained in it.

1. Dissertation Data Analysis Services

The first tip applies to those students who can afford to look for help with their dissertation data analysis work. It’s a viable option, and it can help with time management and with building the other elements of the dissertation with much detail.

Dissertation Analysis services are professional services that help doctoral students with all the basics of their dissertation work, from planning, research and clarification, methodology, dissertation data analysis and review, literature review, and final powerpoint presentation.

One great reference for dissertation data analysis professional services is Statistics Solutions , they’ve been around for over 22 years helping students succeed in their dissertation work. You can find the link to their website here .

Following are some helpful tips for writing a splendid dissertation data analysis:

2. Relevance of Collected Data

It involves  data collection  of your related topic for research. Carefully analyze the data that tends to be suitable for your analysis. Do not just go with irrelevant data leading to complications in the results. Your data must be relevant and fit with your objectives. You must be aware of how the data is going to help in analysis. 

3. Data Analysis

For analysis, it is crucial to use such methods that fit best with the types of data collected and the research objectives. Elaborate on these methods and the ones that justify your data collection methods thoroughly. Make sure to make the reader believe that you did not choose your method randomly. Instead, you arrived at it after critical analysis and prolonged research.

Data analysis involves two approaches –  Qualitative Data Analysis and Quantitative Data Analysis.   Qualitative data analysis  comprises research through experiments, focus groups, and interviews. This approach helps to achieve the objectives by identifying and analyzing common patterns obtained from responses. 

The overall objective of data analysis is to detect patterns and inclinations in data and then present the outcomes implicitly.  It helps in providing a solid foundation for critical conclusions and assisting the researcher to complete the dissertation proposal. 

4. Qualitative Data Analysis

Qualitative data refers to data that does not involve numbers. You are required to carry out an analysis of the data collected through experiments, focus groups, and interviews. This can be a time-taking process because it requires iterative examination and sometimes demanding the application of hermeneutics. Note that using qualitative technique doesn’t only mean generating good outcomes but to unveil more profound knowledge that can be transferrable.

Presenting qualitative data analysis in a dissertation  can also be a challenging task. It contains longer and more detailed responses. Placing such comprehensive data coherently in one chapter of the dissertation can be difficult due to two reasons. Firstly, we cannot figure out clearly which data to include and which one to exclude. Secondly, unlike quantitative data, it becomes problematic to present data in figures and tables. Making information condensed into a visual representation is not possible. As a writer, it is of essence to address both of these challenges.

This method involves analyzing qualitative data based on an argument that a researcher already defines. It’s a comparatively easy approach to analyze data. It is suitable for the researcher with a fair idea about the responses they are likely to receive from the questionnaires.

In this method, the researcher analyzes the data not based on any predefined rules. It is a time-taking process used by students who have very little knowledge of the research phenomenon.

5. Quantitative Data Analysis

The Presentation of quantitative data  depends on the domain to which it is being presented. It is beneficial to consider your audience while writing your findings. Quantitative data for  hard sciences  might require numeric inputs and statistics. As for  natural sciences , such comprehensive analysis is not required.

Following are some of the methods used to perform quantitative data analysis. 

6. Data Presentation Tools

Since large volumes of data need to be represented, it becomes a difficult task to present such an amount of data in coherent ways. To resolve this issue, consider all the available choices you have, such as tables, charts, diagrams, and graphs. 

7. Include Appendix or Addendum

After presenting a large amount of data, your dissertation analysis part might get messy and look disorganized. Also, you would not be cutting down or excluding the data you spent days and months collecting. To avoid this, you should include an appendix part. 

8. Thoroughness of Data

Thoroughly demonstrate the ideas and critically analyze each perspective taking care of the points where errors can occur. Always make sure to discuss the anomalies and strengths of your data to add credibility to your research.

9. Discussing Data

10. findings and results.

Findings refer to the facts derived after the analysis of collected data. These outcomes should be stated; clearly, their statements should tightly support your objective and provide logical reasoning and scientific backing to your point. This part comprises of majority part of the dissertation. 

11. Connection with Literature Review

The role of data analytics at the senior management level.

From small and medium-sized businesses to Fortune 500 conglomerates, the success of a modern business is now increasingly tied to how the company implements its data infrastructure and data-based decision-making. According

The Decision-Making Model Explained (In Plain Terms)

Any form of the systematic decision-making process is better enhanced with data. But making sense of big data or even small data analysis when venturing into a decision-making process might

13 Reasons Why Data Is Important in Decision Making

Wrapping up.

Writing data analysis in the dissertation involves dedication, and its implementations demand sound knowledge and proper planning. Choosing your topic, gathering relevant data, analyzing it, presenting your data and findings correctly, discussing the results, connecting with the literature and conclusions are milestones in it. Among these checkpoints, the Data analysis stage is most important and requires a lot of keenness.

As an IT Engineer, who is passionate about learning and sharing. I have worked and learned quite a bit from Data Engineers, Data Analysts, Business Analysts, and Key Decision Makers almost for the past 5 years. Interested in learning more about Data Science and How to leverage it for better decision-making in my business and hopefully help you do the same in yours.

Recent Posts

Raw Data to Excellence: Master Dissertation Analysis

Discover the secrets of successful dissertation data analysis. Get practical advice and useful insights from experienced experts now!

' src=

Have you ever found yourself knee-deep in a dissertation, desperately seeking answers from the data you’ve collected? Or have you ever felt clueless with all the data that you’ve collected but don’t know where to start? Fear not, in this article we are going to discuss a method that helps you come out of this situation and that is Dissertation Data Analysis.

Dissertation data analysis is like uncovering hidden treasures within your research findings. It’s where you roll up your sleeves and explore the data you’ve collected, searching for patterns, connections, and those “a-ha!” moments. Whether you’re crunching numbers, dissecting narratives, or diving into qualitative interviews, data analysis is the key that unlocks the potential of your research.

Dissertation Data Analysis

Dissertation data analysis plays a crucial role in conducting rigorous research and drawing meaningful conclusions. It involves the systematic examination, interpretation, and organization of data collected during the research process. The aim is to identify patterns, trends, and relationships that can provide valuable insights into the research topic.

The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.

Descriptive statistics are commonly used to summarize and describe the main characteristics of the data, such as measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). These statistics help researchers gain an initial understanding of the data and identify any outliers or anomalies.

Furthermore, qualitative data analysis techniques can be employed when dealing with non-numerical data, such as textual data or interviews. This involves systematically organizing, coding, and categorizing qualitative data to identify themes and patterns.

Types of Research

When considering research types in the context of dissertation data analysis, several approaches can be employed:

1. Quantitative Research

This type of research involves the collection and analysis of numerical data. It focuses on generating statistical information and making objective interpretations. Quantitative research often utilizes surveys, experiments, or structured observations to gather data that can be quantified and analyzed using statistical techniques.

2. Qualitative Research

In contrast to quantitative research, qualitative research focuses on exploring and understanding complex phenomena in depth. It involves collecting non-numerical data such as interviews, observations, or textual materials. Qualitative data analysis involves identifying themes, patterns, and interpretations, often using techniques like content analysis or thematic analysis.

3. Mixed-Methods Research

This approach combines both quantitative and qualitative research methods. Researchers employing mixed-methods research collect and analyze both numerical and non-numerical data to gain a comprehensive understanding of the research topic. The integration of quantitative and qualitative data can provide a more nuanced and comprehensive analysis, allowing for triangulation and validation of findings.

Primary vs. Secondary Research

Primary research.

Primary research involves the collection of original data specifically for the purpose of the dissertation. This data is directly obtained from the source, often through surveys, interviews, experiments, or observations. Researchers design and implement their data collection methods to gather information that is relevant to their research questions and objectives. Data analysis in primary research typically involves processing and analyzing the raw data collected.

Secondary Research

Secondary research involves the analysis of existing data that has been previously collected by other researchers or organizations. This data can be obtained from various sources such as academic journals, books, reports, government databases, or online repositories. Secondary data can be either quantitative or qualitative, depending on the nature of the source material. Data analysis in secondary research involves reviewing, organizing, and synthesizing the available data.

If you wanna deepen into Methodology in Research, also read: What is Methodology in Research and How Can We Write it?

Types of Analysis 

Various types of analysis techniques can be employed to examine and interpret the collected data. Of all those types, the ones that are most important and used are:

  • Descriptive Analysis: Descriptive analysis focuses on summarizing and describing the main characteristics of the data. It involves calculating measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). Descriptive analysis provides an overview of the data, allowing researchers to understand its distribution, variability, and general patterns.
  • Inferential Analysis: Inferential analysis aims to draw conclusions or make inferences about a larger population based on the collected sample data. This type of analysis involves applying statistical techniques, such as hypothesis testing, confidence intervals, and regression analysis, to analyze the data and assess the significance of the findings. Inferential analysis helps researchers make generalizations and draw meaningful conclusions beyond the specific sample under investigation.
  • Qualitative Analysis: Qualitative analysis is used to interpret non-numerical data, such as interviews, focus groups, or textual materials. It involves coding, categorizing, and analyzing the data to identify themes, patterns, and relationships. Techniques like content analysis, thematic analysis, or discourse analysis are commonly employed to derive meaningful insights from qualitative data.
  • Correlation Analysis: Correlation analysis is used to examine the relationship between two or more variables. It determines the strength and direction of the association between variables. Common correlation techniques include Pearson’s correlation coefficient, Spearman’s rank correlation, or point-biserial correlation, depending on the nature of the variables being analyzed.

Basic Statistical Analysis

When conducting dissertation data analysis, researchers often utilize basic statistical analysis techniques to gain insights and draw conclusions from their data. These techniques involve the application of statistical measures to summarize and examine the data. Here are some common types of basic statistical analysis used in dissertation research:

  • Descriptive Statistics
  • Frequency Analysis
  • Cross-tabulation
  • Chi-Square Test
  • Correlation Analysis

Advanced Statistical Analysis

In dissertation data analysis, researchers may employ advanced statistical analysis techniques to gain deeper insights and address complex research questions. These techniques go beyond basic statistical measures and involve more sophisticated methods. Here are some examples of advanced statistical analysis commonly used in dissertation research:

Regression Analysis

  • Analysis of Variance (ANOVA)
  • Factor Analysis
  • Cluster Analysis
  • Structural Equation Modeling (SEM)
  • Time Series Analysis

Examples of Methods of Analysis

Regression analysis is a powerful tool for examining relationships between variables and making predictions. It allows researchers to assess the impact of one or more independent variables on a dependent variable. Different types of regression analysis, such as linear regression, logistic regression, or multiple regression, can be used based on the nature of the variables and research objectives.

Event Study

An event study is a statistical technique that aims to assess the impact of a specific event or intervention on a particular variable of interest. This method is commonly employed in finance, economics, or management to analyze the effects of events such as policy changes, corporate announcements, or market shocks.

Vector Autoregression

Vector Autoregression is a statistical modeling technique used to analyze the dynamic relationships and interactions among multiple time series variables. It is commonly employed in fields such as economics, finance, and social sciences to understand the interdependencies between variables over time.

Preparing Data for Analysis

1. become acquainted with the data.

It is crucial to become acquainted with the data to gain a comprehensive understanding of its characteristics, limitations, and potential insights. This step involves thoroughly exploring and familiarizing oneself with the dataset before conducting any formal analysis by reviewing the dataset to understand its structure and content. Identify the variables included, their definitions, and the overall organization of the data. Gain an understanding of the data collection methods, sampling techniques, and any potential biases or limitations associated with the dataset.

2. Review Research Objectives

This step involves assessing the alignment between the research objectives and the data at hand to ensure that the analysis can effectively address the research questions. Evaluate how well the research objectives and questions align with the variables and data collected. Determine if the available data provides the necessary information to answer the research questions adequately. Identify any gaps or limitations in the data that may hinder the achievement of the research objectives.

3. Creating a Data Structure

This step involves organizing the data into a well-defined structure that aligns with the research objectives and analysis techniques. Organize the data in a tabular format where each row represents an individual case or observation, and each column represents a variable. Ensure that each case has complete and accurate data for all relevant variables. Use consistent units of measurement across variables to facilitate meaningful comparisons.

4. Discover Patterns and Connections

In preparing data for dissertation data analysis, one of the key objectives is to discover patterns and connections within the data. This step involves exploring the dataset to identify relationships, trends, and associations that can provide valuable insights. Visual representations can often reveal patterns that are not immediately apparent in tabular data. 

Qualitative Data Analysis

Qualitative data analysis methods are employed to analyze and interpret non-numerical or textual data. These methods are particularly useful in fields such as social sciences, humanities, and qualitative research studies where the focus is on understanding meaning, context, and subjective experiences. Here are some common qualitative data analysis methods:

Thematic Analysis

The thematic analysis involves identifying and analyzing recurring themes, patterns, or concepts within the qualitative data. Researchers immerse themselves in the data, categorize information into meaningful themes, and explore the relationships between them. This method helps in capturing the underlying meanings and interpretations within the data.

Content Analysis

Content analysis involves systematically coding and categorizing qualitative data based on predefined categories or emerging themes. Researchers examine the content of the data, identify relevant codes, and analyze their frequency or distribution. This method allows for a quantitative summary of qualitative data and helps in identifying patterns or trends across different sources.

Grounded Theory

Grounded theory is an inductive approach to qualitative data analysis that aims to generate theories or concepts from the data itself. Researchers iteratively analyze the data, identify concepts, and develop theoretical explanations based on emerging patterns or relationships. This method focuses on building theory from the ground up and is particularly useful when exploring new or understudied phenomena.

Discourse Analysis

Discourse analysis examines how language and communication shape social interactions, power dynamics, and meaning construction. Researchers analyze the structure, content, and context of language in qualitative data to uncover underlying ideologies, social representations, or discursive practices. This method helps in understanding how individuals or groups make sense of the world through language.

Narrative Analysis

Narrative analysis focuses on the study of stories, personal narratives, or accounts shared by individuals. Researchers analyze the structure, content, and themes within the narratives to identify recurring patterns, plot arcs, or narrative devices. This method provides insights into individuals’ live experiences, identity construction, or sense-making processes.

Applying Data Analysis to Your Dissertation

Applying data analysis to your dissertation is a critical step in deriving meaningful insights and drawing valid conclusions from your research. It involves employing appropriate data analysis techniques to explore, interpret, and present your findings. Here are some key considerations when applying data analysis to your dissertation:

Selecting Analysis Techniques

Choose analysis techniques that align with your research questions, objectives, and the nature of your data. Whether quantitative or qualitative, identify the most suitable statistical tests, modeling approaches, or qualitative analysis methods that can effectively address your research goals. Consider factors such as data type, sample size, measurement scales, and the assumptions associated with the chosen techniques.

Data Preparation

Ensure that your data is properly prepared for analysis. Cleanse and validate your dataset, addressing any missing values, outliers, or data inconsistencies. Code variables, transform data if necessary, and format it appropriately to facilitate accurate and efficient analysis. Pay attention to ethical considerations, data privacy, and confidentiality throughout the data preparation process.

Execution of Analysis

Execute the selected analysis techniques systematically and accurately. Utilize statistical software, programming languages, or qualitative analysis tools to carry out the required computations, calculations, or interpretations. Adhere to established guidelines, protocols, or best practices specific to your chosen analysis techniques to ensure reliability and validity.

Interpretation of Results

Thoroughly interpret the results derived from your analysis. Examine statistical outputs, visual representations, or qualitative findings to understand the implications and significance of the results. Relate the outcomes back to your research questions, objectives, and existing literature. Identify key patterns, relationships, or trends that support or challenge your hypotheses.

Drawing Conclusions

Based on your analysis and interpretation, draw well-supported conclusions that directly address your research objectives. Present the key findings in a clear, concise, and logical manner, emphasizing their relevance and contributions to the research field. Discuss any limitations, potential biases, or alternative explanations that may impact the validity of your conclusions.

Validation and Reliability

Evaluate the validity and reliability of your data analysis by considering the rigor of your methods, the consistency of results, and the triangulation of multiple data sources or perspectives if applicable. Engage in critical self-reflection and seek feedback from peers, mentors, or experts to ensure the robustness of your data analysis and conclusions.

In conclusion, dissertation data analysis is an essential component of the research process, allowing researchers to extract meaningful insights and draw valid conclusions from their data. By employing a range of analysis techniques, researchers can explore relationships, identify patterns, and uncover valuable information to address their research objectives.

Turn Your Data Into Easy-To-Understand And Dynamic Stories

Decoding data is daunting and you might end up in confusion. Here’s where infographics come into the picture. With visuals, you can turn your data into easy-to-understand and dynamic stories that your audience can relate to. Mind the Graph is one such platform that helps scientists to explore a library of visuals and use them to amplify their research work. Sign up now to make your presentation simpler. 

inductive-vs-deductive-research-blog

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Sign Up for Free

Try the best infographic maker and promote your research with scientifically-accurate beautiful figures

no credit card required

About Sowjanya Pedada

Sowjanya is a passionate writer and an avid reader. She holds MBA in Agribusiness Management and now is working as a content writer. She loves to play with words and hopes to make a difference in the world through her writings. Apart from writing, she is interested in reading fiction novels and doing craftwork. She also loves to travel and explore different cuisines and spend time with her family and friends.

Content tags

en_US

  • Dissertation Proofreading and Editing
  • Dissertation Service
  • Dissertation Proposal Service
  • Dissertation Chapter
  • Dissertation Topic and Outline
  • Statistical Analysis Services
  • Model Answers and Exam Notes
  • Dissertation Samples
  • Essay Writing Service
  • Assignment Service
  • Report Service
  • Coursework Service
  • Literature Review Service
  • Reflective Report Service
  • Presentation Service
  • Poster Service
  • Criminal Psychology Dissertation Topics | List of Trending Ideas With Research Aims
  • Cognitive Psychology Dissertation Topics | 10 Top Ideas For Research in 2024
  • Social Psychology Dissertation Topics | 10 Latest Research Ideas
  • Top 10 Clinical Psychology Dissertation Topics with Research Aims
  • Educational Psychology Dissertation Topics | 10 Interesting Ideas For Research
  • Customer Service Dissertation Topics | List of Latest Ideas For Students
  • 15 Interesting Music Dissertation Topics
  • Business Intelligence Dissertation Topics | List of Top Ideas With Research Aims
  • Physical Education Dissertation Topics | 15 Interesting Title Examples
  • 15 Top Forensic Science Dissertation Topics with Research Aims
  • Islamic Finance Dissertation Topics | List of 15 Top Ideas With Research Aims
  • Dissertation Examples
  • Dissertation Proposal Examples
  • Essay Examples
  • Report Examples
  • Coursework Examples
  • Assignment Examples
  • Literature Review Examples
  • Dissertation Topic and Outline Examples
  • Dissertation Chapter Examples
  • Dissertation Help
  • Dissertation Topics
  • Academic Library
  • Assignment Plagiarism Checker
  • Coursework Plagiarism Checke
  • Dissertation Plagiarism Checker
  • Thesis Plagiarism Checker
  • Report Plagiarism Checke
  • Plagiarism Remover Service
  • Plagiarism Checker Free Service
  • Turnitin Plagiarism Checker Free Service
  • Free Plagiarism Checker for Students
  • Difference Between Paraphrasing & Plagiarism
  • Free Similarity Checker
  • How Plagiarism Checkers Work?
  • How to Cite Sources to Avoid Plagiarism?
  • Free Topics
  • Get a Free Quote

Premier-Dissertations-Logo-1

  • Report Generating Service
  • Model Answers and Exam Notes Writing
  • Reflective or Personal Report Writing
  • Poster Writing
  • Literature Review Writing
  • Premier Sample Dissertations
  • Course Work
  • Cognitive Psychology Dissertation Topics
  • Physical Education Dissertation Topics
  • 15 Top Forensic Science Dissertation Topics
  • Top 10 Clinical Psychology Dissertation Topics
  • Islamic Finance Dissertation Topics
  • Social Psychology Dissertation Topics
  • Educational Psychology Dissertation Topics
  • Business Intelligence Dissertation Topics
  • Customer Service Dissertation Topics
  • Criminal Psychology Dissertation Topics

analysis of data thesis example

  • Literature Review Example
  • Report Example
  • Assignment Example
  • Coursework Example

analysis of data thesis example

  • Coursework Plagiarism Checker
  • Turnitin Plagiarism Checker
  • Paraphrasing and Plagiarism
  • Best Dissertation Plagiarism Checker
  • Report Plagiarism Checker
  • Similarity Checker
  • Plagiarism Checker Free
  • FREE Topics

Get an experienced writer start working

Review our examples before placing an order, learn how to draft academic papers, a step-by-step guide to dissertation data analysis.

dissertation-conclusion-example

How to Write a Dissertation Conclusion? | Tips & Examples

analysis of data thesis example

What is PhD Thesis Writing? | Beginner’s Guide

analysis of data thesis example

A data analysis dissertation is a complex and challenging project requiring significant time, effort, and expertise. Fortunately, it is possible to successfully complete a data analysis dissertation with careful planning and execution.

As a student, you must know how important it is to have a strong and well-written dissertation, especially regarding data analysis. Proper data analysis is crucial to the success of your research and can often make or break your dissertation.

To get a better understanding, you may review the data analysis dissertation examples listed below;

  • Impact of Leadership Style on the Job Satisfaction of Nurses
  • Effect of Brand Love on Consumer Buying Behaviour in Dietary Supplement Sector
  • An Insight Into Alternative Dispute Resolution
  • An Investigation of Cyberbullying and its Impact on Adolescent Mental Health in UK

3-Step  Dissertation Process!

analysis of data thesis example

Get 3+ Topics

analysis of data thesis example

Dissertation Proposal

analysis of data thesis example

Get Final Dissertation

Types of data analysis for dissertation.

The various types of data Analysis in a Dissertation are as follows;

1.   Qualitative Data Analysis

Qualitative data analysis is a type of data analysis that involves analyzing data that cannot be measured numerically. This data type includes interviews, focus groups, and open-ended surveys. Qualitative data analysis can be used to identify patterns and themes in the data.

2.   Quantitative Data Analysis

Quantitative data analysis is a type of data analysis that involves analyzing data that can be measured numerically. This data type includes test scores, income levels, and crime rates. Quantitative data analysis can be used to test hypotheses and to look for relationships between variables.

3.   Descriptive Data Analysis

Descriptive data analysis is a type of data analysis that involves describing the characteristics of a dataset. This type of data analysis summarizes the main features of a dataset.

4.   Inferential Data Analysis

Inferential data analysis is a type of data analysis that involves making predictions based on a dataset. This type of data analysis can be used to test hypotheses and make predictions about future events.

5.   Exploratory Data Analysis

Exploratory data analysis is a type of data analysis that involves exploring a data set to understand it better. This type of data analysis can identify patterns and relationships in the data.

Time Period to Plan and Complete a Data Analysis Dissertation?

When planning dissertation data analysis, it is important to consider the dissertation methodology structure and time series analysis as they will give you an understanding of how long each stage will take. For example, using a qualitative research method, your data analysis will involve coding and categorizing your data.

This can be time-consuming, so allowing enough time in your schedule is important. Once you have coded and categorized your data, you will need to write up your findings. Again, this can take some time, so factor this into your schedule.

Finally, you will need to proofread and edit your dissertation before submitting it. All told, a data analysis dissertation can take anywhere from several weeks to several months to complete, depending on the project’s complexity. Therefore, starting planning early and allowing enough time in your schedule to complete the task is important.

Essential Strategies for Data Analysis Dissertation

A.   Planning

The first step in any dissertation is planning. You must decide what you want to write about and how you want to structure your argument. This planning will involve deciding what data you want to analyze and what methods you will use for a data analysis dissertation.

B.   Prototyping

Once you have a plan for your dissertation, it’s time to start writing. However, creating a prototype is important before diving head-first into writing your dissertation. A prototype is a rough draft of your argument that allows you to get feedback from your advisor and committee members. This feedback will help you fine-tune your argument before you start writing the final version of your dissertation.

C.   Executing

After you have created a plan and prototype for your data analysis dissertation, it’s time to start writing the final version. This process will involve collecting and analyzing data and writing up your results. You will also need to create a conclusion section that ties everything together.

D.   Presenting

The final step in acing your data analysis dissertation is presenting it to your committee. This presentation should be well-organized and professionally presented. During the presentation, you’ll also need to be ready to respond to questions concerning your dissertation.

Data Analysis Tools

Numerous suggestive tools are employed to assess the data and deduce pertinent findings for the discussion section. The tools used to analyze data and get a scientific conclusion are as follows:

a.     Excel

Excel is a spreadsheet program part of the Microsoft Office productivity software suite. Excel is a powerful tool that can be used for various data analysis tasks, such as creating charts and graphs, performing mathematical calculations, and sorting and filtering data.

b.     Google Sheets

Google Sheets is a free online spreadsheet application that is part of the Google Drive suite of productivity software. Google Sheets is similar to Excel in terms of functionality, but it also has some unique features, such as the ability to collaborate with other users in real-time.

c.     SPSS

SPSS is a statistical analysis software program commonly used in the social sciences. SPSS can be used for various data analysis tasks, such as hypothesis testing, factor analysis, and regression analysis.

d.     STATA

STATA is a statistical analysis software program commonly used in the sciences and economics. STATA can be used for data management, statistical modelling, descriptive statistics analysis, and data visualization tasks.

SAS is a commercial statistical analysis software program used by businesses and organizations worldwide. SAS can be used for predictive modelling, market research, and fraud detection.

R is a free, open-source statistical programming language popular among statisticians and data scientists. R can be used for tasks such as data wrangling, machine learning, and creating complex visualizations.

g.     Python

A variety of applications may be used using the distinctive programming language Python, including web development, scientific computing, and artificial intelligence. Python also has a number of modules and libraries that can be used for data analysis tasks, such as numerical computing, statistical modelling, and data visualization.

Testimonials

Very satisfied students

This is our reason for working. We want to make all students happy, every day. Review us on Sitejabber

Tips to Compose a Successful Data Analysis Dissertation

a.   Choose a Topic You’re Passionate About

The first step to writing a successful data analysis dissertation is to choose a topic you’re passionate about. Not only will this make the research and writing process more enjoyable, but it will also ensure that you produce a high-quality paper.

Choose a topic that is particular enough to be covered in your paper’s scope but not so specific that it will be challenging to obtain enough evidence to substantiate your arguments.

b.   Do Your Research

data analysis in research is an important part of academic writing. Once you’ve selected a topic, it’s time to begin your research. Be sure to consult with your advisor or supervisor frequently during this stage to ensure that you are on the right track. In addition to secondary sources such as books, journal articles, and reports, you should also consider conducting primary research through surveys or interviews. This will give you first-hand insights into your topic that can be invaluable when writing your paper.

c.   Develop a Strong Thesis Statement

After you’ve done your research, it’s time to start developing your thesis statement. It is arguably the most crucial part of your entire paper, so take care to craft a clear and concise statement that encapsulates the main argument of your paper.

Remember that your thesis statement should be arguable—that is, it should be capable of being disputed by someone who disagrees with your point of view. If your thesis statement is not arguable, it will be difficult to write a convincing paper.

d.   Write a Detailed Outline

Once you have developed a strong thesis statement, the next step is to write a detailed outline of your paper. This will offer you a direction to write in and guarantee that your paper makes sense from beginning to end.

Your outline should include an introduction, in which you state your thesis statement; several body paragraphs, each devoted to a different aspect of your argument; and a conclusion, in which you restate your thesis and summarize the main points of your paper.

e.   Write Your First Draft

With your outline in hand, it’s finally time to start writing your first draft. At this stage, don’t worry about perfecting your grammar or making sure every sentence is exactly right—focus on getting all of your ideas down on paper (or onto the screen). Once you have completed your first draft, you can revise it for style and clarity.

And there you have it! Following these simple tips can increase your chances of success when writing your data analysis dissertation. Just remember to start early, give yourself plenty of time to research and revise, and consult with your supervisor frequently throughout the process.

How Does It Work ?

analysis of data thesis example

Fill the Form

analysis of data thesis example

Writer Starts Working

analysis of data thesis example

3+ Topics Emailed!

Studying the above examples gives you valuable insight into the structure and content that should be included in your own data analysis dissertation. You can also learn how to effectively analyze and present your data and make a lasting impact on your readers.

In addition to being a useful resource for completing your dissertation, these examples can also serve as a valuable reference for future academic writing projects. By following these examples and understanding their principles, you can improve your data analysis skills and increase your chances of success in your academic career.

You may also contact Premier Dissertations to develop your data analysis dissertation.

For further assistance, some other resources in the dissertation writing section are shared below;

How Do You Select the Right Data Analysis

How to Write Data Analysis For A Dissertation?

How to Develop a Conceptual Framework in Dissertation?

What is a Hypothesis in a Dissertation?

Get an Immediate Response

Discuss your requirments with our writers

WhatsApp Us Email Us Chat with Us

Get 3+ Free   Dissertation Topics within 24 hours?

Your Number

Academic Level Select Academic Level Undergraduate Masters PhD

Area of Research

admin farhan

admin farhan

Related posts.

Dissertation Interview Questions Everything You Need To Know

Dissertation Interview Questions | Everything You Need To Know

Conducting Interviews for Your Dissertation A Comprehensive Guide

Conducting Interviews for Your Dissertation | A Comprehensive Guide

Gibbs' Reflective Cycle

What is Gibbs’ Reflective Cycle and How Can It Benefit You? | Applications and Example

Comments are closed.

A Step-by-Step Guide to Dissertation Data Analysis

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

Writing a Dissertation Data Analysis the Right Way

Dissertation Data Analysis

Do you want to be a college professor? Most teaching positions at four-year universities and colleges require the applicants to have at least a doctoral degree in the field they wish to teach in. If you are looking for information about the dissertation data analysis, it means you have already started working on yours. Congratulations!

Truth be told, learning how to write a data analysis the right way can be tricky. This is, after all, one of the most important chapters of your paper. It is also the most difficult to write, unfortunately. The good news is that we will help you with all the information you need to write a good data analysis chapter right now. And remember, if you need an original dissertation data analysis example, our PhD experts can write one for you in record time. You’ll be amazed how much you can learn from a well-written example.

OK, But What Is the Data Analysis Section?

Don’t know what the data analysis section is or what it is used for? No problem, we’ll explain it to you. Understanding the data analysis meaning is crucial to understanding the next sections of this blog post.

Basically, the data analysis section is the part where you analyze and discuss the data you’ve uncovered. In a typical dissertation, you will present your findings (the data) in the Results section. You will explain how you obtained the data in the Methodology chapter.

The data analysis section should be reserved just for discussing your findings. This means you should refrain from introducing any new data in there. This is extremely important because it can get your paper penalized quite harshly. Remember, the evaluation committee will look at your data analysis section very closely. It’s extremely important to get this chapter done right.

Learn What to Include in Data Analysis

Don’t know what to include in data analysis? Whether you need to do a quantitative data analysis or analyze qualitative data, you need to get it right. Learning how to analyze research data is extremely important, and so is learning what you need to include in your analysis. Here are the basic parts that should mandatorily be in your dissertation data analysis structure:

  • The chapter should start with a brief overview of the problem. You will need to explain the importance of your research and its purpose. Also, you will need to provide a brief explanation of the various types of data and the methods you’ve used to collect said data. In case you’ve made any assumptions, you should list them as well.
  • The next part will include detailed descriptions of each and every one of your hypotheses. Alternatively, you can describe the research questions. In any case, this part of the data analysis chapter will make it clear to your readers what you aim to demonstrate.
  • Then, you will introduce and discuss each and every piece of important data. Your aim is to demonstrate that your data supports your thesis (or answers an important research question). Go in as much detail as possible when analyzing the data. Each question should be discussed in a single paragraph and the paragraph should contain a conclusion at the end.
  • The very last part of the data analysis chapter that an undergraduate must write is the conclusion of the entire chapter. It is basically a short summary of the entire chapter. Make it clear that you know what you’ve been talking about and how your data helps answer the research questions you’ve been meaning to cover.

Dissertation Data Analysis Methods

If you are reading this, it means you need some data analysis help. Fortunately, our writers are experts when it comes to the discussion chapter of a dissertation, the most important part of your paper. To make sure you write it correctly, you need to first ensure you learn about the various data analysis methods that are available to you. Here is what you can – and should – do during the data analysis phase of the paper:

  • Validate the data. This means you need to check for fraud (were all the respondents really interviewed?), screen the respondents to make sure they meet the research criteria, check that the data collection procedures were properly followed, and then verify that the data is complete (did each respondent receive all the questions or not?). Validating the data is no as difficult as you imagine. Just pick several respondents at random and call them or email them to find out if the data is valid.
For example, an outlier can be identified using a scatter plot or a box plot. Points (values) that are beyond an inner fence on either side are mild outliers, while points that are beyond an outer fence are called extreme outliers.
  • If you have a large amount of data, you should code it. Group similar data into sets and code them. This will significantly simplify the process of analyzing the data later.
For example, the median is almost always used to separate the lower half from the upper half of a data set, while the percentage can be used to make a graph that emphasizes a small group of values in a large set o data.
ANOVA, for example, is perfect for testing how much two groups differ from one another in the experiment. You can safely use it to find a relationship between the number of smartphones in a family and the size of the family’s savings.

Analyzing qualitative data is a bit different from analyzing quantitative data. However, the process is not entirely different. Here are some methods to analyze qualitative data:

You should first get familiar with the data, carefully review each research question to see which one can be answered by the data you have collected, code or index the resulting data, and then identify all the patterns. The most popular methods of conducting a qualitative data analysis are the grounded theory, the narrative analysis, the content analysis, and the discourse analysis. Each has its strengths and weaknesses, so be very careful which one you choose.

Of course, it goes without saying that you need to become familiar with each of the different methods used to analyze various types of data. Going into detail for each method is not possible in a single blog post. After all, there are entire books written about these methods. However, if you are having any trouble with analyzing the data – or if you don’t know which dissertation data analysis methods suits your data best – you can always ask our dissertation experts. Our customer support department is online 24 hours a day, 7 days a week – even during holidays. We are always here for you!

Tips and Tricks to Write the Analysis Chapter

Did you know that the best way to learn how to write a data analysis chapter is to get a great example of data analysis in research paper? In case you don’t have access to such an example and don’t want to get assistance from our experts, we can still help you. Here are a few very useful tips that should make writing the analysis chapter a lot easier:

  • Always start the chapter with a short introductory paragraph that explains the purpose of the chapter. Don’t just assume that your audience knows what a discussion chapter is. Provide them with a brief overview of what you are about to demonstrate.
  • When you analyze and discuss the data, keep the literature review in mind. Make as many cross references as possible between your analysis and the literature review. This way, you will demonstrate to the evaluation committee that you know what you’re talking about.
  • Never be afraid to provide your point of view on the data you are analyzing. This is why it’s called a data analysis and not a results chapter. Be as critical as possible and make sure you discuss every set of data in detail.
  • If you notice any patterns or themes in the data, make sure you acknowledge them and explain them adequately. You should also take note of these patterns in the conclusion at the end of the chapter.
  • Do not assume your readers are familiar with jargon. Always provide a clear definition of the terms you are using in your paper. Not doing so can get you penalized. Why risk it?
  • Don’t be afraid to discuss both the advantage and the disadvantages you can get from the data. Being biased and trying to ignore the drawbacks of the results will not get you far.
  • Always remember to discuss the significance of each set of data. Also, try to explain to your audience how the various elements connect to each other.
  • Be as balanced as possible and make sure your judgments are reasonable. Only strong evidence should be used to support your claims and arguments. Weak evidence just shows that you did not do your best to uncover enough information to answer the research question.
  • Get dissertation data analysis help whenever you feel like you need it. Don’t leave anything to chance because the outcome of your dissertation depends in large part on the data analysis chapter.

Finally, don’t be afraid to make effective use of any quantitative data analysis software you can get your hands on. We know that many of these tools can be quite expensive, but we can assure you that the investment is a good idea. Many of these tools are of real help when it comes to analyzing huge amounts of data.

Final Considerations

Finally, you need to be aware that the data analysis chapter should not be rushed in any way. We do agree that the Results chapter is extremely important, but we consider that the Discussion chapter is equally as important. Why? Because you will be explaining your findings and not just presenting some results. You will have the option to talk about your personal opinions. You are free to unleash your critical thinking and impress the evaluation committee. The data analysis section is where you can really shine.

Also, you need to make sure that this chapter is as interesting as it can be for the reader. Make sure you discuss all the interesting results of your research. Explain peculiar findings. Make correlations and reference other works by established authors in your field. Show your readers that you know that subject extremely well and that you are perfectly capable of conducting a proper analysis no matter how complex the data may be. This way, you can ensure that you get maximum points for the data analysis chapter. If you can’t do a great job, get help ASAP!

Need Some Assistance With Data Analysis?

If you are a university student or a graduate, you may need some cheap help with writing the analysis chapter of your dissertation. Remember, time saving is extremely important because finishing the dissertation on time is mandatory. You should consider our amazing services the moment you notice you are not on track with your dissertation. Also, you should get help from our dissertation writing service in case you can’t do a terrific job writing the data analysis chapter. This is one of the most important chapters of your paper and the supervisor will look closely at it.

Why risk getting penalized when you can get high quality academic writing services from our team of experts? All our writers are PhD degree holders, so they know exactly how to write any chapter of a dissertation the right way. This also means that our professionals work fast. They can get the analysis chapter done for you in no time and bring you back on track. It’s also worth noting that we have access to the best software tools for data analysis. We will bring our knowledge and technical know-how to your project and ensure you get a top grade on your paper. Get in touch with us and let’s discuss the specifics of your project right now!

Leave a Reply Cancel reply

How do I write a dissertation data analysis plan?

How do I do dissertation data analysis?

Data Analysis Plan Overview

Dissertation methodologies require a data analysis plan . Your dissertation data analysis plan should clearly state the statistical tests and assumptions of these tests to examine each of the research questions, how scores are cleaned and created, and the desired sample size for that test. The selection of statistical tests depend on two factors: (1) how the research questions and hypotheses are phrased and (2) the level of measurement of the variables. For example, if the question examines the impact of variable x on variable y, we are talking about regressions, if the question seeks associations or relationships, we are into correlation and chi-square tests, if differences are examined, then t-tests and ANOVA’s are likely the correct test.

request a consultation

Discover How We Assist to Edit Your Dissertation Chapters

Aligning theoretical framework, gathering articles, synthesizing gaps, articulating a clear methodology and data plan, and writing about the theoretical and practical implications of your research are part of our comprehensive dissertation editing services.

  • Bring dissertation editing expertise to chapters 1-5 in timely manner.
  • Track all changes, then work with you to bring about scholarly writing.
  • Ongoing support to address committee feedback, reducing revisions.

Level of Measurement

The level of measurement is the second factor used in selecting the correct statistical test. If the research question will examine the impact of X on Y variable, and that outcome variable Y is scale, a linear regression is the correct test. For example, what is the impact of Income on Savings (as a scale variable), the linear regression is the test.  If that outcome variable Y is ordinal, then an ordinal regression is the correct test (e.g., what is the impact of Income on Savings (with Savings as an ordinal $0-$100, $101-$1000, $1001-$10,000, variable), then an ordinal regression is the correct test. If the research question examines relationships, and the X and Y variable are categorical, then chi-square is the appropriate test. The main point is that both the phasing of the research question and the level of measurement of the variables dictate the selection of the test. This video on decision trees may be useful.

Statistical Assumptions in Data Analysis Plan

Part of the data analysis plan is to document the assumptions of a particular statistical test. Most assumptions fall into the normality, homogeneity of variance, and outlier bucket of assumptions. Other tests have additional assumptions. For example, in a linear regression with several predictors, the variance inflation factor needs to be assessed to determine that the predictors are not too highly correlated. This data analysis plan video may be helpful.

Composite Scores and Data Cleaning

Data analysis plans should discuss any reverse coding of the variables and the creation of composite or subscale scores. Before creating composite scores, alpha reliability should be planned to be examined. Data cleaning procedure should be documented.  For example, the removal of outliers, transforming variables to meet normality assumption, etc. 

Sample Size and Power Analysis

After selecting the appropriate statistical tests, data analysis plans should follow-up with a power analysis. The power analysis determines the sample size for a statistical test, given an alpha of .05, a given effect size (small, medium, or large) at a power of .80 (that is, an 80% chance of detecting differences or relationships if in fact difference are present in the data. This power analysis video may be helpful.

How do I make a data analysis for my bachelor, master or PhD thesis?

A data analysis is an evaluation of formal data to gain knowledge for the bachelor’s, master’s or doctoral thesis. The aim is to identify patterns in the data, i.e. regularities, irregularities or at least anomalies.

Data can come in many forms, from numbers to the extensive descriptions of objects. As a rule, this data is always in numerical form such as time series or numerical sequences or statistics of all kinds. However, statistics are already processed data.

Data analysis requires some creativity because the solution is usually not obvious. After all, no one has conducted an analysis like this before, or at least you haven't found anything about it in the literature.

The results of a data analysis are answers to initial questions and detailed questions. The answers are numbers and graphics and the interpretation of these numbers and graphics.

What are the advantages of data analysis compared to other methods?

  • Numbers are universal
  • The data is tangible.
  • There are algorithms for calculations and it is easier than a text evaluation.
  • The addressees quickly understand the results.
  • You can really do magic and impress the addressees.
  • It’s easier to visualize the results.

What are the disadvantages of data analysis?

  • Garbage in, garbage out. If the quality of the data is poor, it’s impossible to obtain reliable results.
  • The dependency in data retrieval can be quite annoying. Here are some tips for attracting participants for a survey.
  • You have to know or learn methods or find someone who can help you.
  • Mistakes can be devastating.
  • Missing substance can be detected quickly.
  • Pictures say more than a thousand words. Therefore, if you can’t fill the pages with words, at least throw in graphics. However, usually only the words count.

Under what conditions can or should I conduct a data analysis?

  • If I have to.
  • You must be able to get the right data.
  • If I can perform the calculations myself or at least understand, explain and repeat the calculated evaluations of others.
  • You want a clear personal contribution right from the start.

How do I create the evaluation design for the data analysis?

The most important thing is to ask the right questions, enough questions and also clearly formulated questions. Here are some techniques for asking the right questions:

Good formulation: What is the relationship between Alpha and Beta?

Poor formulation: How are Alpha and Beta related?

Now it’s time for the methods for the calculation. There are dozens of statistical methods, but as always, most calculations can be done with only a handful of statistical methods.

  • Which detailed questions can be formulated as the research question?
  • What data is available? In what format? How is the data prepared?
  • Which key figures allow statements?
  • What methods are available to calculate such indicators? Do my details match? By type (scales), by size (number of records).
  • Do I not need to have a lot of data for a data analysis?

It depends on the media, the questions and the methods I want to use.

A fixed rule is that I need at least 30 data sets for a statistical analysis in order to be able to make representative statements about the population. So statistically it doesn't matter if I have 30 or 30 million records. That's why statistics were invented...

What mistakes do I need to watch out for?

  • Don't do the analysis at the last minute.
  • Formulate questions and hypotheses for evaluation BEFORE data collection!
  • Stay persistent, keep going.
  • Leave the results for a while then revise them.
  • You have to combine theory and the state of research with your results.
  • You must have the time under control

Which tools can I use?

You can use programs of all kinds for calculations. But asking questions is your most powerful aide.

Who can legally help me with a data analysis?

The great intellectual challenge is to develop the research design, to obtain the data and to interpret the results in the end.

Am I allowed to let others perform the calculations?

That's a thing. In the end, every program is useful. If someone else is operating a program, then they can simply be seen as an extension of the program. But this is a comfortable view... Of course, it’s better if you do your own calculations.

A good compromise is to find some help, do a practical calculation then follow the calculation steps meticulously so next time you can do the math yourself. Basically, this functions as a permitted training. One can then justify each step of the calculation in the defense.

What's the best place to start?

Clearly with the detailed questions and hypotheses. These two guide the entire data analysis. So formulate as many detailed questions as possible to answer your main question or research question. You can find detailed instructions and examples for the formulation of these so-called detailed questions in the Thesis Guide.

How does the Aristolo Guide help with data evaluation for the bachelor’s or master’s thesis or dissertation?

The Thesis Guide or Dissertation Guide has instructions for data collection, data preparation, data analysis and interpretation. The guide can also teach you how to formulate questions and answer them with data to create your own experiment. We also have many templates for questionnaires and analyses of all kinds. Good luck writing your text! Silvio and the Aristolo Team PS: Check out the Thesis-ABC and the Thesis Guide for writing a bachelor or master thesis in 31 days.

Thesis-Banner-English-1

  • Privacy Policy

Research Method

Home » Documentary Analysis – Methods, Applications and Examples

Documentary Analysis – Methods, Applications and Examples

Table of Contents

Documentary Analysis

Documentary Analysis

Definition:

Documentary analysis, also referred to as document analysis , is a systematic procedure for reviewing or evaluating documents. This method involves a detailed review of the documents to extract themes or patterns relevant to the research topic .

Documents used in this type of analysis can include a wide variety of materials such as text (words) and images that have been recorded without a researcher’s intervention. The domain of document analysis, therefore, includes all kinds of texts – books, newspapers, letters, study reports, diaries, and more, as well as images like maps, photographs, and films.

Documentary analysis provides valuable insight and a unique perspective on the past, contextualizing the present and providing a baseline for future studies. It is also an essential tool in case studies and when direct observation or participant observation is not possible.

The process usually involves several steps:

  • Sourcing : This involves identifying the document or source, its origin, and the context in which it was created.
  • Contextualizing : This involves understanding the social, economic, political, and cultural circumstances during the time the document was created.
  • Interrogating : This involves asking a series of questions to help understand the document better. For example, who is the author? What is the purpose of the document? Who is the intended audience?
  • Making inferences : This involves understanding what the document says (either directly or indirectly) about the topic under study.
  • Checking for reliability and validity : Just like other research methods, documentary analysis also involves checking for the validity and reliability of the documents being analyzed.

Documentary Analysis Methods

Documentary analysis as a qualitative research method involves a systematic process. Here are the main steps you would generally follow:

Defining the Research Question

Before you start any research , you need a clear and focused research question . This will guide your decision on what documents you need to analyze and what you’re looking for within them.

Selecting the Documents

Once you know what you’re looking for, you can start to select the relevant documents. These can be a wide range of materials – books, newspapers, letters, official reports, diaries, transcripts of speeches, archival materials, websites, social media posts, and more. They can be primary sources (directly from the time/place/person you are studying) or secondary sources (analyses created by others).

Reading and Interpreting the Documents

You need to closely read the selected documents to identify the themes and patterns that relate to your research question. This might involve content analysis (looking at what is explicitly stated) and discourse analysis (looking at what is implicitly stated or implied). You need to understand the context in which the document was created, the author’s purpose, and the audience’s perspective.

Coding and Categorizing the Data

After the initial reading, the data (text) can be broken down into smaller parts or “codes.” These codes can then be categorized based on their similarities and differences. This process of coding helps in organizing the data and identifying patterns or themes.

Analyzing the Data

Once the data is organized, it can be analyzed to make sense of it. This can involve comparing the data with existing theories, examining relationships between categories, or explaining the data in relation to the research question.

Validating the Findings

The researcher needs to ensure that the findings are accurate and credible. This might involve triangulating the data (comparing it with other sources or types of data), considering alternative explanations, or seeking feedback from others.

Reporting the Findings

The final step is to report the findings in a clear, structured way. This should include a description of the methods used, the findings, and the researcher’s interpretations and conclusions.

Applications of Documentary Analysis

Documentary analysis is widely used across a variety of fields and disciplines due to its flexible and comprehensive nature. Here are some specific applications:

Historical Research

Documentary analysis is a fundamental method in historical research. Historians use documents to reconstruct past events, understand historical contexts, and interpret the motivations and actions of historical figures. Documents analyzed may include personal letters, diaries, official records, newspaper articles, photographs, and more.

Social Science Research

Sociologists, anthropologists, and political scientists use documentary analysis to understand social phenomena, cultural practices, political events, and more. This might involve analyzing government policies, organizational records, media reports, social media posts, and other documents.

Legal Research

In law, documentary analysis is used in case analysis and statutory interpretation. Legal practitioners and scholars analyze court decisions, statutes, regulations, and other legal documents.

Business and Market Research

Companies often analyze documents to gather business intelligence, understand market trends, and make strategic decisions. This might involve analyzing competitor reports, industry news, market research studies, and more.

Media and Communication Studies

Scholars in these fields might analyze media content (e.g., news reports, advertisements, social media posts) to understand media narratives, public opinion, and communication practices.

Literary and Film Studies

In these fields, the “documents” might be novels, poems, films, or scripts. Scholars analyze these texts to interpret their meaning, understand their cultural context, and critique their form and content.

Educational Research

Educational researchers may analyze curricula, textbooks, lesson plans, and other educational documents to understand educational practices and policies.

Health Research

Health researchers may analyze medical records, health policies, clinical guidelines, and other documents to study health behaviors, healthcare delivery, and health outcomes.

Examples of Documentary Analysis

Some Examples of Documentary Analysis might be:

  • Example 1 : A historian studying the causes of World War I might analyze diplomatic correspondence, government records, newspaper articles, and personal diaries from the period leading up to the war.
  • Example 2 : A policy analyst trying to understand the impact of a new public health policy might analyze the policy document itself, as well as related government reports, statements from public health officials, and news media coverage of the policy.
  • Example 3 : A market researcher studying consumer trends might analyze social media posts, customer reviews, industry reports, and news articles related to the market they’re studying.
  • Example 4 : An education researcher might analyze curriculum documents, textbooks, and lesson plans to understand how a particular subject is being taught in schools. They might also analyze policy documents to understand the broader educational policy context.
  • Example 5 : A criminologist studying hate crimes might analyze police reports, court records, news reports, and social media posts to understand patterns in hate crimes, as well as societal and institutional responses to them.
  • Example 6 : A journalist writing a feature article on homelessness might analyze government reports on homelessness, policy documents related to housing and social services, news articles on homelessness, and social media posts from people experiencing homelessness.
  • Example 7 : A literary critic studying a particular author might analyze their novels, letters, interviews, and reviews of their work to gain insight into their themes, writing style, influences, and reception.

When to use Documentary Analysis

Documentary analysis can be used in a variety of research contexts, including but not limited to:

  • When direct access to research subjects is limited : If you are unable to conduct interviews or observations due to geographical, logistical, or ethical constraints, documentary analysis can provide an alternative source of data.
  • When studying the past : Documents can provide a valuable window into historical events, cultures, and perspectives. This is particularly useful when the people involved in these events are no longer available for interviews or when physical evidence is lacking.
  • When corroborating other sources of data : If you have collected data through interviews, surveys, or observations, analyzing documents can provide additional evidence to support or challenge your findings. This process of triangulation can enhance the validity of your research.
  • When seeking to understand the context : Documents can provide background information that helps situate your research within a broader social, cultural, historical, or institutional context. This can be important for interpreting your other data and for making your research relevant to a wider audience.
  • When the documents are the focus of the research : In some cases, the documents themselves might be the subject of your research. For example, you might be studying how a particular topic is represented in the media, how an author’s work has evolved over time, or how a government policy was developed.
  • When resources are limited : Compared to methods like experiments or large-scale surveys, documentary analysis can often be conducted with relatively limited resources. It can be a particularly useful method for students, independent researchers, and others who are working with tight budgets.
  • When providing an audit trail for future researchers : Documents provide a record of events, decisions, or conditions at specific points in time. They can serve as an audit trail for future researchers who want to understand the circumstances surrounding a particular event or period.

Purpose of Documentary Analysis

The purpose of documentary analysis in research can be multifold. Here are some key reasons why a researcher might choose to use this method:

  • Understanding Context : Documents can provide rich contextual information about the period, environment, or culture under investigation. This can be especially useful for historical research, where the context is often key to understanding the events or trends being studied.
  • Direct Source of Data : Documents can serve as primary sources of data. For instance, a letter from a historical figure can give unique insights into their thoughts, feelings, and motivations. A company’s annual report can offer firsthand information about its performance and strategy.
  • Corroboration and Verification : Documentary analysis can be used to validate and cross-verify findings derived from other research methods. For example, if interviews suggest a particular outcome, relevant documents can be reviewed to confirm the accuracy of this finding.
  • Substituting for Other Methods : When access to the field or subjects is not possible due to various constraints (geographical, logistical, or ethical), documentary analysis can serve as an alternative to methods like observation or interviews.
  • Unobtrusive Method : Unlike some other research methods, documentary analysis doesn’t require interaction with subjects, and therefore doesn’t risk altering the behavior of those subjects.
  • Longitudinal Analysis : Documents can be used to study change over time. For example, a researcher might analyze census data from multiple decades to study demographic changes.
  • Providing Rich, Qualitative Data : Documents often provide qualitative data that can help researchers understand complex issues in depth. For example, a policy document might reveal not just the details of the policy, but also the underlying beliefs and attitudes that shaped it.

Advantages of Documentary Analysis

Documentary analysis offers several advantages as a research method:

  • Unobtrusive : As a non-reactive method, documentary analysis does not require direct interaction with human subjects, which means that the research doesn’t affect or influence the subjects’ behavior.
  • Rich Historical and Contextual Data : Documents can provide a wealth of historical and contextual information. They allow researchers to examine events and perspectives from the past, even from periods long before modern research methods were established.
  • Efficiency and Accessibility : Many documents are readily accessible, especially with the proliferation of digital archives and databases. This accessibility can often make documentary analysis a more efficient method than others that require data collection from human subjects.
  • Cost-Effective : Compared to other methods, documentary analysis can be relatively inexpensive. It generally requires fewer resources than conducting experiments, surveys, or fieldwork.
  • Permanent Record : Documents provide a permanent record that can be reviewed multiple times. This allows for repeated analysis and verification of the data.
  • Versatility : A wide variety of documents can be analyzed, from historical texts to contemporary digital content, providing flexibility and applicability to a broad range of research questions and fields.
  • Ability to Cross-Verify (Triangulate) Data : Documentary analysis can be used alongside other methods as a means of triangulating data, thus adding validity and reliability to the research.

Limitations of Documentary Analysis

While documentary analysis offers several benefits as a research method, it also has its limitations. It’s important to keep these in mind when deciding to use documentary analysis and when interpreting your findings:

  • Authenticity : Not all documents are genuine, and sometimes it can be challenging to verify the authenticity of a document, particularly for historical research.
  • Bias and Subjectivity : All documents are products of their time and their authors. They may reflect personal, cultural, political, or institutional biases, and these biases can affect the information they contain and how it is presented.
  • Incomplete or Missing Information : Documents may not provide all the information you need for your research. There may be gaps in the record, or crucial information may have been omitted, intentionally or unintentionally.
  • Access and Availability : Not all documents are readily available for analysis. Some may be restricted due to privacy, confidentiality, or security considerations. Others may be difficult to locate or access, particularly historical documents that haven’t been digitized.
  • Interpretation : Interpreting documents, particularly historical ones, can be challenging. You need to understand the context in which the document was created, including the social, cultural, political, and personal factors that might have influenced its content.
  • Time-Consuming : While documentary analysis can be cost-effective, it can also be time-consuming, especially if you have a large number of documents to analyze or if the documents are lengthy or complex.
  • Lack of Control Over Data : Unlike methods where the researcher collects the data themselves (e.g., through experiments or surveys), with documentary analysis, you have no control over what data is available. You are reliant on what others have chosen to record and preserve.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Histogram

Histogram – Types, Examples and Making Guide

Framework Analysis

Framework Analysis – Method, Types and Examples

Cluster Analysis

Cluster Analysis – Types, Methods and Examples

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Discriminant Analysis

Discriminant Analysis – Methods, Types and...

Descriptive Statistics

Descriptive Statistics – Types, Methods and...

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

analysis of data thesis example

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

What is data analysis in research?

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Why analyze data in research?

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Types of data in research

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Finding patterns in the qualitative data

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

Methods used for data analysis in qualitative research

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.
Choosing the right software can be tough. Whether you’re a researcher, business leader, or marketer, check out the top 10  qualitative data analysis software  for analyzing qualitative data.

Data analysis in quantitative research

Preparing data for analysis.

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

Methods used for data analysis in quantitative research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.

Considerations in research data analysis

  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

SWOT analysis

SWOT Analysis: What It Is And How To Do It?

Sep 27, 2024

SurveySparrow vs surveymonkey

SurveySparrow vs SurveyMonkey: Choosing the Right Survey Tool

Sep 26, 2024

User Behavior Analytics

User Behavior Analytics: What it is, Importance, Uses & Tools

Wufoo vs Google Forms

Wufoo vs Google Forms: Best Survey and + Form Builder

Sep 25, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Cookies & Privacy
  • GETTING STARTED
  • Introduction
  • FUNDAMENTALS

analysis of data thesis example

Getting to the main article

Choosing your route

Setting research questions/ hypotheses

Assessment point

Building the theoretical case

Setting your research strategy

Data collection

Data analysis

Data analysis techniques

In STAGE NINE: Data analysis , we discuss the data you will have collected during STAGE EIGHT: Data collection . However, before you collect your data, having followed the research strategy you set out in this STAGE SIX , it is useful to think about the data analysis techniques you may apply to your data when it is collected.

The statistical tests that are appropriate for your dissertation will depend on (a) the research questions/hypotheses you have set, (b) the research design you are using, and (c) the nature of your data. You should already been clear about your research questions/hypotheses from STAGE THREE: Setting research questions and/or hypotheses , as well as knowing the goal of your research design from STEP TWO: Research design in this STAGE SIX: Setting your research strategy . These two pieces of information - your research questions/hypotheses and research design - will let you know, in principle , the statistical tests that may be appropriate to run on your data in order to answer your research questions.

We highlight the words in principle and may because the most appropriate statistical test to run on your data not only depend on your research questions/hypotheses and research design, but also the nature of your data . As you should have identified in STEP THREE: Research methods , and in the article, Types of variables , in the Fundamentals part of Lærd Dissertation, (a) not all data is the same, and (b) not all variables are measured in the same way (i.e., variables can be dichotomous, ordinal or continuous). In addition, not all data is normal , nor is the data when comparing groups necessarily equal , terms we explain in the Data Analysis section in the Fundamentals part of Lærd Dissertation. As a result, you might think that running a particular statistical test is correct at this point of setting your research strategy (e.g., a statistical test called a dependent t-test ), based on the research questions/hypotheses you have set, but when you collect your data (i.e., during STAGE EIGHT: Data collection ), the data may fail certain assumptions that are important to such a statistical test (i.e., normality and homogeneity of variance ). As a result, you have to run another statistical test (e.g., a Wilcoxon signed-rank test instead of a dependent t-test ).

At this stage in the dissertation process, it is important, or at the very least, useful to think about the data analysis techniques you may apply to your data when it is collected. We suggest that you do this for two reasons:

REASON A Supervisors sometimes expect you to know what statistical analysis you will perform at this stage of the dissertation process

This is not always the case, but if you have had to write a Dissertation Proposal or Ethics Proposal , there is sometimes an expectation that you explain the type of data analysis that you plan to carry out. An understanding of the data analysis that you will carry out on your data can also be an expected component of the Research Strategy chapter of your dissertation write-up (i.e., usually Chapter Three: Research Strategy ). Therefore, it is a good time to think about the data analysis process if you plan to start writing up this chapter at this stage.

REASON B It takes time to get your head around data analysis

When you come to analyse your data in STAGE NINE: Data analysis , you will need to think about (a) selecting the correct statistical tests to perform on your data, (b) running these tests on your data using a statistics package such as SPSS, and (c) learning how to interpret the output from such statistical tests so that you can answer your research questions or hypotheses. Whilst we show you how to do this for a wide range of scenarios in the in the Data Analysis section in the Fundamentals part of Lærd Dissertation, it can be a time consuming process. Unless you took an advanced statistics module/option as part of your degree (i.e., not just an introductory course to statistics, which are often taught in undergraduate and master?s degrees), it can take time to get your head around data analysis. Starting this process at this stage (i.e., STAGE SIX: Research strategy ), rather than waiting until you finish collecting your data (i.e., STAGE EIGHT: Data collection ) is a sensible approach.

Final thoughts...

Setting the research strategy for your dissertation required you to describe, explain and justify the research paradigm, quantitative research design, research method(s), sampling strategy, and approach towards research ethics and data analysis that you plan to follow, as well as determine how you will ensure the research quality of your findings so that you can effectively answer your research questions/hypotheses. However, from a practical perspective, just remember that the main goal of STAGE SIX: Research strategy is to have a clear research strategy that you can implement (i.e., operationalize ). After all, if you are unable to clearly follow your plan and carry out your research in the field, you will struggle to answer your research questions/hypotheses. Once you are sure that you have a clear plan, it is a good idea to take a step back, speak with your supervisor, and assess where you are before moving on to collect data. Therefore, when you are ready, proceed to STAGE SEVEN: Assessment point .

  • How it works

researchprospect post subheader

Chapter 4 – Data Analysis and Discussion (example)

Disclaimer: This is not a sample of our professional work. The paper has been produced by a student. You can view samples of our work here . Opinions, suggestions, recommendations and results in this piece are those of the author and should not be taken as our company views.

Type of Academic Paper – Dissertation Chapter

Academic Subject – Marketing

Word Count – 2964 words

Reliability Analysis

Before conducting any analysis on the data, all the data’s reliability was analyzed based on Cronbach’s Alpha value. The reliability analysis was performed on the complete data of the questionnaire. The reliability of the data was found to be (0.922), as shown in the results of the reliability analysis provided below in table 4.1. However, the complete results output of the reliability analysis is given in the appendix.

Reliability Analysis (N=200)

Cronbach’s Alpha No. of Items
.922 29

The Cronbach’s Alpha value between (0.7-1.0) is considered to have excellent reliability. The Cronbach’s Alpha value of the data was found to be (0.922); therefore, this indicated that the questionnaire data had excellent reliability. All of the 29 items of the questionnaire had excellent reliability, and if they are taken for further analysis, they can generate results with 92.2% reliability.

Frequency Distribution Analysis

First of all, the frequency distribution analysis was performed on the demographic variables using SPSS to identify the respondents’ demographic composition. Section 1 of the questionnaire had 5 demographic questions to identify; gender, age group, annual income, marital status, and education level of the research sample. The frequency distribution results shown in table 4.2 below indicated that there were 200 respondents in total, out of which 50% were male, and 50% were female. This shows that the research sample was free from gender-based biases as males and females had equal representation in the sample.

Moreover, the frequency distribution analysis suggested three age groups; ‘20-35’, ‘36-60’ and ‘Above 60’. 39% of the respondents belonged to the ‘20-35’ age group, while 56.5% of the respondents belonged to the ‘36-60’ age group and the remaining 4.5% belonged to the age group of ‘Above 60’.

Furthermore, the annual income level was divided into four categories. The income values were in GBP. It was found that 13% of the respondents had income ‘up to 30000’, 27% had income between ‘31000 to 50000’, 52.5% had income between ‘51000 to 100000’, and 7.5% had income ‘Above 100000’. This suggests that most of the respondents had an annual income between ‘31000 to 50000’ GBP.

The frequency distribution analysis indicated that 61% of respondents were single, while 39% were married, as indicated in table 4.2. This means that most of the respondents were single. Based on frequency distribution, it was also found that the education level of the respondents was analyzed using four categories of education level, namely; diploma, graduate, master, and doctorate. The results depicted that 37% of the respondents were diploma holders, 46% were graduates, 16% had master-level education, while only 2% had a doctorate. This suggests that most of the respondents were either graduate or diploma holders.

Frequency Distribution of the Demographic Characteristics of the respondents (N=200)

Information of Participants (N=200)
Gender

Age group

Annual income

Marital status

Education level

Multiple Regression Analysis

The hypotheses were tested using linear multiple regression analysis to determine which of the dependent variables had a significant positive effect on the customer loyalty of the five-star hotel brands. The results of the regression analysis are summarized in the following table 4.3. However, the complete SPSS output of the regression analysis is given in the appendix. Table 4.3

Multiple regression analysis showing the predictive values of dependent variables (Brand image, corporate identity, public relation, perceived quality, and trustworthiness) on customer loyalty (N=200)

Source R R2 Adjusted R2 β Significance t
Regression (ANOVA) .948 .899 .897 .000
Constant -382 .005 -.2.866
Brand image .074 .046 2.012
Corporate identity .020 .482 .704
Public relation .014 .400 .843
Perceived quality .991 .000 21.850
Trustworthiness -.010 .652 -.452

Predictors: (Constant), Trustworthiness, Public Relation, Brand Image, Corporate Identity, Perceived Quality Dependent Variable: Customer Loyalty

The significance value (p-value) of ANOVA was found to be (0.000) as shown in the above

table, which was less than 0.05. This suggested that the model equation was significantly fitted

on the data. Moreover, the adjusted R-Square value was (0.897), which indicated that the model’s predictors explained 89.7% variation in customer loyalty.

Furthermore, the presence of the significant effect of the 5 predicting variables on customer loyalty was identified based on their sig. Values. The effect of a predicting variable is significant if its sig. Value is less than 0.05 or if its t-Statistics value is greater than 2. It was found that the variable ‘brand image’ had sig. Value (0.046), the variable ‘corporate identity had sig. Value (0.482), the variable ‘public relation’ had sig. Value (0.400), while the variable ‘perceived quality’ had sig. value (0.000), and the variable ‘trustworthiness’ had sig. value (0.652).

Hire an Expert Dissertation Chapter Writer

Orders completed by our expert writers are

  • Formally drafted in an academic style
  • Free Amendments and 100% Plagiarism Free – or your money back!
  • 100% Confidential and Timely Delivery!
  • Free anti-plagiarism report
  • Appreciated by thousands of clients. Check client reviews

Hire an Expert Dissertation Chapter Writer

Hypotheses Assessment

Based on the regression analysis, it was found that brand image and perceived quality have a significant positive effect on customer loyalty. In contrast, corporate identity, public relations, and trustworthiness have an insignificant effect on customer loyalty. Therefore the two hypotheses; H1 and H4 were accepted, however the three hypotheses; H2, H3, and H5 were rejected as indicated in table 4.4.

Hypothesis Assessment Summary Table (N=200)

Hypotheses Sig. value t-Statistics Empirical
conclusion
H1: Brand image has a significant positive effect
on customer loyalty.
.046 2.012 Accepted
H2: Corporate identity has a significant positive
effect on customer loyalty.
.482 .704 Rejected
H3: Public relation has a significant positive effect on customer loyalty. .400 .843 Rejected
H4: Perceived quality has a significant positive
effect on customer loyalty.
.000 21.850 Accepted
H5: Trustworthiness has a significant positive
effect on customer loyalty.
.652 -.452 Rejected

The insignificant variables (corporate identity, public relation and trustworthiness) were excluded from equation 1. After excluding the insignificant variables from the model equation 1, the final equation becomes as follows;

Customer loyalty                 = α + 0.074 (Brand image) + 0.991 (Perceived quality) + €

The above equation suggests that a 1 unit increase in brand image is likely to result in 0.074 units increase customer loyalty. In comparison, 1 unit increase in perceived quality can result in 0.991 units increase in customer loyalty.

Cross Tabulation Analysis

To further explore the results, the demographic variables’ data were cross-tabulated against the respondents’ responses regarding customer loyalty using SPSS. In this regards the five demographic variables; gender, age group, annual income, marital status and education level were cross-tabulated against the five questions regarding customer loyalty to know the difference between the customer loyalty of five-star hotels of UK based on demographic differences. The results of the cross-tabulation analysis are given in the appendix. The results are graphically presented in bar charts too, which are also given in the appendix.

Cross Tabulation of Gender against Customer Loyalty

The gender was cross-tabulated against question 1 to 5 of the questionnaire to identify the gender differences between male and female respondents’ responses regarding customer loyalty of five-star hotels of the UK. The results indicated that out of 100 males, 57% were extremely agreed that they stay at one hotel, while out of 100 females, 80% were extremely agreed they stay at one hotel. This shows that in comparison with a male, females were more agreed that they stayed at one hotel and were found to be more loyal towards their respective hotel brands.

The cross-tabulation results further indicated that out of 100 males, 53% agreed that they always say positive things about their respective hotel brand to other people. In contrast, out of 100 females, 77% were extremely agreed. Based on the results, the females were found to be in more agreement than males that they always say positive things about their respective hotel brand to other people.

It was further found that out of 100 males, 53% were extremely agreed that they recommend their hotel brand to others, however, out of 100 females, 74% were extremely agreed to this statement. This result also suggested that females were more in agreement than males to recommend their hotel brand to others.

Moreover, it was found that out of 100 males, 54% were extremely agreed that they don’t seek alternative hotel brands, while out of 100 females, 79% were extremely agreed to this statement. This result also suggested that females were more agreed than males that they don’t seek alternative hotel brands, and so were found to be more loyal than males.

Furthermore, it was identified that out of 100 male respondents 56% were extremely agreed that they would continue to go to the same hotel irrespective of the prices, however out of 100 females 79% were extremely agreed. Based on this result, it was clear that females were more agreed than males that they would continue to go to the same hotel irrespective of the prices, so females were found to be more loyal than males.

After cross tabulating ‘gender’ against the response of the 5 questions regarding customer loyalty the females were found to be more loyal customers of the five-star hotel brands than males as they were found to be more in agreement than the man that they stay at one hotel, always say positive things about their hotel brand to other people, recommend their hotel brand to others, don’t seek alternative hotel brands and would continue to go to the same hotel irrespective of the prices.

Cross Tabulation of Age Group against Customer Loyalty

Afterward, the second demographic variable, ‘age groups’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify the difference between the customer loyalty of customers of different age groups. The results indicated that out of 78 respondents between 20 to 35 years of age, 61.5% were extremely agreed that they stayed at one hotel. While out of 113 respondents who were between 36 to 60 years of age, 72.6% were extremely agreed that they always stay at one hotel. However, out of 9 respondents who were above 60 years of age, 77.8% agreed that they always stay at one hotel. This indicated that customers of 36-60 and above 60 age groups were more loyal to their hotel brands as they were keener to stay at a respective hotel brand.

Content removed…

Cross Tabulation of Annual Income against Customer Loyalty

The third demographic variable, ‘annual income’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify which of the customers were most loyal based on their respective annual income levels. The results indicated that out of 26 respondents who had annual income up to 30000 GBP, 84.6% were extremely agreed that they always stay at one hotel. However, out of 54 respondents who had annual income from 31000 to 50000 GBP, 98.1% agreed that they always stay at one hotel. Although out of 105 respondents had annual income from 50000 to 100000 GBP, 49.5% were extremely agreed that they always stay at one hotel. While out of 10 respondents who had annual income from 50000 to 1000000 GBP, 66.7% agreed that they always stay at one hotel. This indicated that customers of annual income levels from 31000 to 50000 GBP were more loyal to their hotel brands than the customers having other annual income levels.

Cross Tabulation of Marital Status against Customer Loyalty

Furthermore, the fourth demographic variable the ‘marital status’ was cross-tabulated against questions 1 to 5 of the questionnaire to understand the difference between married and unmarried respondents regarding customer loyalty of five-star hotels of the UK. The cross-tabulation analysis results indicated that out of 122 single respondents, 59.8% were extremely agreed that they stay at one hotel. However, out of 78 married respondents, around 82% of respondents agreed that they stay at one hotel. Thus, the married customers were more loyal to their hotel brands than unmarried customers because, in comparison, married customers prefer to stay at one hotel brand.

To proceed with the cross-tabulation results, out of 122 single respondents, 55.7% were extremely agreed upon always saying positive things about their hotel brands to other people. On the other hand, out of 78 married respondents, 79.5% were extremely agreed. Hence, upon evaluating the results, it can be said that married customers have more customer loyalty as they are in more agreement than singles. They always give positive feedback regarding their respective hotel brand to other people.

Cross Tabulation of Education Level against Customer Loyalty

Subsequently, the fifth demographic variable, ‘education level’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify which of the customers were most loyal based on their respective education levels. The results indicated that out of 50 respondents who were diploma holders, 67.6% were extremely agreed that they always stay at one hotel. While out of 64 respondents who were graduates, 69.6% were extremely agreed that they always stay at one hotel. Although out of 22 respondents who were masters, 68.8% were extremely agreed that they always stay at one hotel. However, out of 2 respondents with doctorates, 50% were extremely agreed to always stay at one hotel. This indicated that customers who were graduates were more loyal than the customers with diplomas, masters, or doctorates.

Moreover, 66.2% of the diploma holders were extremely agreed that they always say positive things about their hotel brand to other people. In comparison, 64.1% of the respondents who were graduates were extremely agreed. However, 65.5% of the respondents who had masters were extremely agreed, and 50% of the respondents who had doctorates agreed with the statement. Based on this result customers having masters were the most loyal customers of their respective five-star hotel brands.

Need a Dissertation Chapter On a Similar Topic?

In this subsection, the findings of this study are compared and contrasted with the literature to identify which of the past research supports the present research findings. This present study based on regression analysis suggested that brand image can have a significant positive effect on the customer loyalty of five-star hotels in the UK. This finding was supported by the research of Heung et al. (1996), who also suggested that the hotel’s brand image can play a vital role in preserving a high ratio of customer loyalty.

Moreover, this present study also suggested that perceived quality was the second factor that was found to have a significant positive effect on customer loyalty. The perceived quality was evaluated based on; service quality, comfort, staff courtesy, customer satisfaction, and service quality expectations. In this regard, Tat and Raymond (2000) research supports the findings of this study. The staff service quality was found to affect customer loyalty and the level of satisfaction. Teas (1994) had also found service quality to affect customer loyalty. However, Teas also found that staff empathy (staff courtesy) towards customers can also affect customer loyalty. The research of Rowley and Dawes (1999) also supports the finding of this present study. The users’ expectations about the quality and nature of the services affect customer loyalty. A study by Oberoi and Hales (1990) was found to agree with the present study’s findings, as they had found the quality of staff service to affect customer loyalty.

Summary of the Findings

  • The brand image was found to have a significant positive effect on customer loyalty. Therefore customer loyalty is likely to increase with the increase in brand image.
  • The corporate identity was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in corporate identity.
  • Public relations was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in public relations.
  • Perceived quality was found to have a significant positive effect on customer loyalty. Therefore customer loyalty is likely to increase with the increase in perceived quality.
  • Trustworthiness was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in trustworthiness.
  • The female customers were found to be more loyal customers of the five-star hotel brands than male customers.
  • The customers of age from 36 to 60 years were more loyal to their hotel brands than the customers of age from 20 to 35 and above 60.
  • The customers who had annual income from 31000 to 50000 were more loyal customers of their respective hotel brands than those who had an annual income level of less than 31000 or more than 50000.
  • The married respondents had more customer loyalty than unmarried customers, towards five-star hotel brands of the UK.

The customers who had bachelor degrees and the customers who had master degrees were more loyal to the customers who had a diploma or doctorate.

Bryman, A., Bell, E., 2015. Business Research Methods. Oxford University Press.

Daum, P., 2013. International Synergy Management: A Strategic Approach for Raising Efficiencies in the Cross-border Interaction Process. Anchor Academic Publishing (aap_verlag).

Dümke, R., 2002. Corporate Reputation and its Importance for Business Success: A European

Perspective and its Implication for Public Relations Consultancies. diplom.de.

Guetterman, T.C., 2015. Descriptions of Sampling Practices Within Five Approaches to Qualitative Research in Education and the Health Sciences. Forum Qualitative Sozialforschung /

Forum: Qualitative Social Research 16.

Haq, M., 2014. A Comparative Analysis of Qualitative and Quantitative Research Methods and a Justification for Adopting Mixed Methods in Social Research (PDF Download Available).

ResearchGate 1–22. doi:http://dx.doi.org/10.13140/RG.2.1.1945.8640

Kelley, ., Clark, B., Brown, V., Sitzia, J., 2003. Good practice in the conduct and reporting of survey research. Int J Qual Health Care 15, 261–266. doi:10.1093/intqhc/mzg031

Lewis, S., 2015. Qualitative Inquiry and Research Design: Choosing Among Five Approaches.

Health Promotion Practice 16, 473–475. doi:10.1177/1524839915580941

Saunders, M., 2003. Research Methods for Business Students. Pearson Education India.

Saunders, M.N.K., Tosey, P., 2015. Handbook of Research Methods on Human Resource

Development. Edward Elgar Publishing.

DMCA / Removal Request

If you are the original writer of this Dissertation Chapter and no longer wish to have it published on the www.ResearchProspect.com then please:

Request The Removal Of This Dissertation Chapter

Frequently Asked Questions

How to write the results chapter of a dissertation.

To write the Results chapter of a dissertation:

  • Present findings objectively.
  • Use tables, graphs, or charts for clarity.
  • Refer to research questions/hypotheses.
  • Provide sufficient details.
  • Avoid interpretation; save that for the Discussion chapter.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Do Thematic Analysis | Step-by-Step Guide & Examples

How to Do Thematic Analysis | Step-by-Step Guide & Examples

Published on September 6, 2019 by Jack Caulfield . Revised on June 22, 2023.

Thematic analysis is a method of analyzing qualitative data . It is usually applied to a set of texts, such as an interview or transcripts . The researcher closely examines the data to identify common themes – topics, ideas and patterns of meaning that come up repeatedly.

There are various approaches to conducting thematic analysis, but the most common form follows a six-step process: familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. Following this process can also help you avoid confirmation bias when formulating your analysis.

This process was originally developed for psychology research by Virginia Braun and Victoria Clarke . However, thematic analysis is a flexible method that can be adapted to many different kinds of research.

Table of contents

When to use thematic analysis, different approaches to thematic analysis, step 1: familiarization, step 2: coding, step 3: generating themes, step 4: reviewing themes, step 5: defining and naming themes, step 6: writing up, other interesting articles.

Thematic analysis is a good approach to research where you’re trying to find out something about people’s views, opinions, knowledge, experiences or values from a set of qualitative data – for example, interview transcripts , social media profiles, or survey responses .

Some types of research questions you might use thematic analysis to answer:

  • How do patients perceive doctors in a hospital setting?
  • What are young women’s experiences on dating sites?
  • What are non-experts’ ideas and opinions about climate change?
  • How is gender constructed in high school history teaching?

To answer any of these questions, you would collect data from a group of relevant participants and then analyze it. Thematic analysis allows you a lot of flexibility in interpreting the data, and allows you to approach large data sets more easily by sorting them into broad themes.

However, it also involves the risk of missing nuances in the data. Thematic analysis is often quite subjective and relies on the researcher’s judgement, so you have to reflect carefully on your own choices and interpretations.

Pay close attention to the data to ensure that you’re not picking up on things that are not there – or obscuring things that are.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

analysis of data thesis example

Once you’ve decided to use thematic analysis, there are different approaches to consider.

There’s the distinction between inductive and deductive approaches:

  • An inductive approach involves allowing the data to determine your themes.
  • A deductive approach involves coming to the data with some preconceived themes you expect to find reflected there, based on theory or existing knowledge.

Ask yourself: Does my theoretical framework give me a strong idea of what kind of themes I expect to find in the data (deductive), or am I planning to develop my own framework based on what I find (inductive)?

There’s also the distinction between a semantic and a latent approach:

  • A semantic approach involves analyzing the explicit content of the data.
  • A latent approach involves reading into the subtext and assumptions underlying the data.

Ask yourself: Am I interested in people’s stated opinions (semantic) or in what their statements reveal about their assumptions and social context (latent)?

After you’ve decided thematic analysis is the right method for analyzing your data, and you’ve thought about the approach you’re going to take, you can follow the six steps developed by Braun and Clarke .

The first step is to get to know our data. It’s important to get a thorough overview of all the data we collected before we start analyzing individual items.

This might involve transcribing audio , reading through the text and taking initial notes, and generally looking through the data to get familiar with it.

Next up, we need to code the data. Coding means highlighting sections of our text – usually phrases or sentences – and coming up with shorthand labels or “codes” to describe their content.

Let’s take a short example text. Say we’re researching perceptions of climate change among conservative voters aged 50 and up, and we have collected data through a series of interviews. An extract from one interview looks like this:

Coding qualitative data
Interview extract Codes
Personally, I’m not sure. I think the climate is changing, sure, but I don’t know why or how. People say you should trust the experts, but who’s to say they don’t have their own reasons for pushing this narrative? I’m not saying they’re wrong, I’m just saying there’s reasons not to 100% trust them. The facts keep changing – it used to be called global warming.

In this extract, we’ve highlighted various phrases in different colors corresponding to different codes. Each code describes the idea or feeling expressed in that part of the text.

At this stage, we want to be thorough: we go through the transcript of every interview and highlight everything that jumps out as relevant or potentially interesting. As well as highlighting all the phrases and sentences that match these codes, we can keep adding new codes as we go through the text.

After we’ve been through the text, we collate together all the data into groups identified by code. These codes allow us to gain a a condensed overview of the main points and common meanings that recur throughout the data.

Prevent plagiarism. Run a free check.

Next, we look over the codes we’ve created, identify patterns among them, and start coming up with themes.

Themes are generally broader than codes. Most of the time, you’ll combine several codes into a single theme. In our example, we might start combining codes into themes like this:

Turning codes into themes
Codes Theme
Uncertainty
Distrust of experts
Misinformation

At this stage, we might decide that some of our codes are too vague or not relevant enough (for example, because they don’t appear very often in the data), so they can be discarded.

Other codes might become themes in their own right. In our example, we decided that the code “uncertainty” made sense as a theme, with some other codes incorporated into it.

Again, what we decide will vary according to what we’re trying to find out. We want to create potential themes that tell us something helpful about the data for our purposes.

Now we have to make sure that our themes are useful and accurate representations of the data. Here, we return to the data set and compare our themes against it. Are we missing anything? Are these themes really present in the data? What can we change to make our themes work better?

If we encounter problems with our themes, we might split them up, combine them, discard them or create new ones: whatever makes them more useful and accurate.

For example, we might decide upon looking through the data that “changing terminology” fits better under the “uncertainty” theme than under “distrust of experts,” since the data labelled with this code involves confusion, not necessarily distrust.

Now that you have a final list of themes, it’s time to name and define each of them.

Defining themes involves formulating exactly what we mean by each theme and figuring out how it helps us understand the data.

Naming themes involves coming up with a succinct and easily understandable name for each theme.

For example, we might look at “distrust of experts” and determine exactly who we mean by “experts” in this theme. We might decide that a better name for the theme is “distrust of authority” or “conspiracy thinking”.

Finally, we’ll write up our analysis of the data. Like all academic texts, writing up a thematic analysis requires an introduction to establish our research question, aims and approach.

We should also include a methodology section, describing how we collected the data (e.g. through semi-structured interviews or open-ended survey questions ) and explaining how we conducted the thematic analysis itself.

The results or findings section usually addresses each theme in turn. We describe how often the themes come up and what they mean, including examples from the data as evidence. Finally, our conclusion explains the main takeaways and shows how the analysis has answered our research question.

In our example, we might argue that conspiracy thinking about climate change is widespread among older conservative voters, point out the uncertainty with which many voters view the issue, and discuss the role of misinformation in respondents’ perceptions.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Measures of central tendency
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Discourse analysis
  • Cohort study
  • Peer review
  • Ethnography

Research bias

  • Implicit bias
  • Cognitive bias
  • Conformity bias
  • Hawthorne effect
  • Availability heuristic
  • Attrition bias
  • Social desirability bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Caulfield, J. (2023, June 22). How to Do Thematic Analysis | Step-by-Step Guide & Examples. Scribbr. Retrieved September 25, 2024, from https://www.scribbr.com/methodology/thematic-analysis/

Is this article helpful?

Jack Caulfield

Jack Caulfield

Other students also liked, what is qualitative research | methods & examples, inductive vs. deductive research approach | steps & examples, critical discourse analysis | definition, guide & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Purdue University Graduate School

DATA DRIVEN TECHNIQUES FOR THE ANALYSIS OF ORAL DOSAGE DRUG FORMULATIONS

This thesis focusses on developing novel data driven oral drug formulation analysis methods by employing technologies such as Fourier transform analysis and generative adversarial learning. Data driven measurements have been addressing challenges in advanced manufacturing and analysis for pharmaceutical development for the last two decade. Data science combined with analytical chemistry holds the future to solving key problems in the next wave of industrial research and development. Data acquisition is expensive in the realm of pharmaceutical development, and how to leverage the capability of data science to extract information in data deprived circumstances is a key aspect for improving such data driven measurements. Among multiple measurement techniques, chemical imaging is an informative tool for analyzing oral drug formulations. However, chemical imaging can often fall into data deprived situations, where data could be limited from the time-consuming sample preparation or related chemical synthesis. An integrated imaging approach, which folds data science techniques into chemical measurements, could lead to a future of informative and cost-effective data driven measurements. In this thesis, the development of data driven chemical imaging techniques for the analysis of oral drug formulations via Fourier transformation and generative adversarial learning are elaborated. Chapter 1 begins with a brief introduction of current techniques commonly implemented within the pharmaceutical industry, their limitations, and how the limitations are being addressed. Chapter 2 discusses how Fourier transform fluorescence recovery after photobleaching (FT-FRAP) technique can be used for monitoring the phase separated drug-polymer aggregation. Chapter 3 follows the innovation presented in Chapter 1 and illustrates how analysis can be improved by incorporating diffractive optical elements in the patterned illumination. While previous chapters discuss dynamic analysis aspects of drug product formulation, Chapter 4 elaborates on the innovation in composition analysis of oral drug products via use of novel generative adversarial learning methods for linear analyses.

NSF award (CHE-2004046, CHE-2305178,CHE-GOALI-1710475, CCF-1763896)

Nsf center for bioanalytic metrology (iip-1916691), nsf intern award (iip-2129760), degree type.

  • Doctor of Philosophy

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Additional committee member 2, additional committee member 3, additional committee member 4, usage metrics.

  • Analytical spectrometry
  • Applications in life sciences
  • Medical physics

CC BY 4.0

IMAGES

  1. SOLUTION: Thesis chapter 4 analysis and interpretation of data sample

    analysis of data thesis example

  2. Writing the Best Dissertation Data Analysis Possible

    analysis of data thesis example

  3. Chapter 3

    analysis of data thesis example

  4. 25 Thesis Statement Examples (2024)

    analysis of data thesis example

  5. ⭐ Data gathering procedure thesis example. Data Collection. 2022-10-25

    analysis of data thesis example

  6. SOLUTION: Thesis chapter 4 analysis and interpretation of data sample

    analysis of data thesis example

VIDEO

  1. CHAPTER-4 OF A THESIS

  2. How to Analysis Hydrological Data for Project Design or Masters Thesis

  3. [n] Thesis meaning (statement) with 5 examples

  4. Chapter 2

  5. thesis defense most common questions Urdu / Hindi/ English

  6. How to Write a Thesis: Step-by-Step Guide with Example

COMMENTS

  1. PDF CHAPTER 4: ANALYSIS AND INTERPRETATION OF RESULTS

    The analysis and interpretation of data is carried out in two phases. The. first part, which is based on the results of the questionnaire, deals with a quantitative. analysis of data. The second, which is based on the results of the interview and focus group. discussions, is a qualitative interpretation.

  2. How to Write a Results Section

    How to Write a Results Section | Tips & Examples. Published on August 30, 2022 by Tegan George. Revised on July 18, 2023. A results section is where you report the main findings of the data collection and analysis you conducted for your thesis or dissertation. You should report all relevant results concisely and objectively, in a logical order.

  3. Analysing and Interpreting Data in Your ...

    Definition and Scope of Data Analysis in the Context of a Dissertation. Data analysis in a dissertation involves systematically applying statistical or logical techniques to describe and evaluate data. This process transforms raw data into meaningful information, enabling researchers to draw conclusions and support their hypotheses.

  4. PDF Chapter 4 DATA ANALYSIS AND RESEARCH FINDINGS

    4.1 INTRODUCTION. This chapter describes the analysis of data followed by a discussion of the research findings. The findings relate to the research questions that guided the study. Data were analyzed to identify, describe and explore the relationship between death anxiety and death attitudes of nurses in a private acute care hospital and to ...

  5. Dissertation Results/Findings Chapter (Quantitative)

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

  6. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  7. 11 Tips For Writing a Dissertation Data Analysis

    And place questionnaires, copies of focus groups and interviews, and data sheets in the appendix. On the other hand, one must put the statistical analysis and sayings quoted by interviewees within the dissertation. 8. Thoroughness of Data. It is a common misconception that the data presented is self-explanatory.

  8. Raw Data to Excellence: Master Dissertation Analysis

    The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.

  9. A Step-by-Step Guide to Dissertation Data Analysis

    A. Planning. The first step in any dissertation is planning. You must decide what you want to write about and how you want to structure your argument. This planning will involve deciding what data you want to analyze and what methods you will use for a data analysis dissertation. B. Prototyping.

  10. Writing the Best Dissertation Data Analysis Possible

    The very last part of the data analysis chapter that an undergraduate must write is the conclusion of the entire chapter. It is basically a short summary of the entire chapter. Make it clear that you know what you've been talking about and how your data helps answer the research questions you've been meaning to cover.

  11. PDF Chapter 6: Data Analysis and Interpretation 6.1. Introduction

    interpretation of qualitative data collected for this thesis. 6.2.1 Analysis of qualitative data Qualitative data analysis can be described as the process of making sense from research participants‟ views and opinions of situations, corresponding patterns, themes, categories and ... data analysis well, when he provides the following ...

  12. PDF CHAPTER 4 QUALITATIVE DATA ANALYSIS

    4.1 INTRODUCTION. In this chapter, I describe the qualitative analysis of the data, including the practical steps involved in the analysis. A quantitative analysis of the data follows in Chapter 5. In the qualitative phase, I analyzed the data into generative themes, which will be described individually. I describe how the themes overlap.

  13. How to Use Quantitative Data Analysis in a Thesis

    For example, if you're writing a paper on the differences between corporate charitable donation strategies, your thesis statement might read something like this: It is not known what the differences in charitable donation strategies are in four U.S. corporations. ... Applying Quantitative Data Analysis to Your Thesis Statement. It's ...

  14. Dissertation Data Analysis Plan

    Dissertation methodologies require a data analysis plan. Your dissertation data analysis plan should clearly state the statistical tests and assumptions of these tests to examine each of the research questions, how scores are cleaned and created, and the desired sample size for that test. The selection of statistical tests depend on two factors ...

  15. How to make a data analysis in a bachelor, master, PhD thesis?

    A data analysis is an evaluation of formal data to gain knowledge for the bachelor's, master's or doctoral thesis. The aim is to identify patterns in the data, i.e. regularities, irregularities or at least anomalies. Data can come in many forms, from numbers to the extensive descriptions of objects. As a rule, this data is always in ...

  16. The Beginner's Guide to Statistical Analysis

    This article is a practical introduction to statistical analysis for students and researchers. We'll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables. Example: Causal research question.

  17. Documentary Analysis

    Longitudinal Analysis: Documents can be used to study change over time. For example, a researcher might analyze census data from multiple decades to study demographic changes. Providing Rich, Qualitative Data: Documents often provide qualitative data that can help researchers understand complex issues in depth. For example, a policy document ...

  18. (PDF) CHAPTER FOUR DATA ANALYSIS AND PRESENTATION OF ...

    CHAPTER FOUR. DATA ANALYSIS AND PRESENTATION OF RES EARCH FINDINGS 4.1 Introduction. The chapter contains presentation, analysis and dis cussion of the data collected by the researcher. during the ...

  19. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  20. Step 7: Data analysis techniques for your dissertation

    As you should have identified in STEP THREE: Research methods, and in the article, Types of variables, in the Fundamentals part of Lærd Dissertation, (a) not all data is the same, and (b) not all variables are measured in the same way (i.e., variables can be dichotomous, ordinal or continuous). In addition, not all data is normal, nor is the ...

  21. PDF Chapter 3 Data analysis, findings and literature review

    The Creswell's method has been elaborated in detail in chapter 2. This method is based on three stage analysis, that is data reduction, data display and conclusion drawing. The researcher analysed the data using Creswell's (1994:155) eight-step and Appleton's (1995:995) three-stage method (cited in Miles & Huberman's 1994:324). The eight ...

  22. Chapter 4

    The income values were in GBP. It was found that 13% of the respondents had income 'up to 30000', 27% had income between '31000 to 50000', 52.5% had income between '51000 to 100000', and 7.5% had income 'Above 100000'. This suggests that most of the respondents had an annual income between '31000 to 50000' GBP.

  23. How to Do Thematic Analysis

    How to Do Thematic Analysis | Step-by-Step Guide & Examples. Published on September 6, 2019 by Jack Caulfield.Revised on June 22, 2023. Thematic analysis is a method of analyzing qualitative data.It is usually applied to a set of texts, such as an interview or transcripts.The researcher closely examines the data to identify common themes - topics, ideas and patterns of meaning that come up ...

  24. Data Driven Techniques for The Analysis of Oral Dosage Drug Formulations

    In this thesis, the development of data driven chemical imaging techniques for the analysis of oral drug formulations via Fourier transformation and generative adversarial learning are elaborated. Chapter 1 begins with a brief introduction of current techniques commonly implemented within the pharmaceutical industry, their limitations, and how ...