Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Challenges Facing Learning at Rural Schools: A Review of Related Literature

Profile image of Elock E Shikalepo

The standard of education at most rural schools worldwide has been reported as low, owing to the geography of the rural areas and the rural-based dynamics which conflicted with learning endeavours. The purpose of this study was to review literatures related to the challenges and difficulties that faced learning at rural schools, and explain the intensity to which these challenges influenced learning at rural schools. The aim was to make necessary recommendations on how the challenges can be dealt with so that they do not continue to deteriorate learning at rural schools. Different sources of literature were reviewed, and data was analysed thematically and discussed within the context of learning at rural areas, which was the focus of the study. The study found out that learning at rural schools was characterised by numerous challenges. Impoverished and malnourished conditions of learners in rural environments were a result of poor families who were often unemployed and unable to provide basic necessities for their families.Malnourished learners failed to grasp the learning contents due to lack of concentration. In addition, minimum parental involvement in learning alongside low value attached to education by rural parents and guardians, resulted in low learners' enrollment and high drop-out rates among rural schools, which then compromised the quality of learning. The shortage of resources, as diverse as human resources, buildings and learning aids also compromised the quality of learning at rural schools. School authorities should implement the necessary measures to minimise the detrimental effects of these challenges on learning at rural schools, to enable learners to learn optimally with improved school performance.

Related Papers

Elock E Shikalepo

Traditionally, it has been difficult attracting and retaining teachers and other professionals to teach at school located in rural areas. Consequently, teaching at rural schools continues to deteriorate as the problem of attracting and retaining qualified teachers for quality teaching still remains.The purpose of this study was to review literature related to the challenges that faced teaching at rural schools, and explain the intensity to which these challenges influenced the quality of teaching at rural schools. The aim was to make necessary recommendations on how the challenges can be dealt with, so that they do not continue to deteriorate teaching at rural schools. Different sources of literature were reviewed, and data was analysed thematically and discussed within the context of teaching at rural areas, which was the focus of the study. The study found out that teaching was defined by the struggle to cope with the absence of basic teaching resources, overloaded with teaching and administrative duties, under-funding to schools and poor teacher salaries.In addition, most teachers were not competent in improvising instructional and teaching materials in the absence of sufficiency resources, which has rendered teaching ineffective. Rural school teachers felt isolated, as financial, recreational and health service centres were not easily accessible, which caused low teacher morale, and minimised teaching effectiveness.It was established that most teachers at rural schools were not well paid compared to their counterparts in other professions with comparable levels of education, experience and input towards their work. This disparities demoralised teachers and negatively shaped their teaching output. School authorities should implement the necessary measures to minimise the detrimental effects of these challenges on teaching at rural schools, to enable teachers to teach optimally and improve school performance.

review of related literature about lack of education

Mediterranean Journal of Social Sciences

Pierre du Plessis

This Chapter discusses the teaching and learning processes as happening in a rural context. The Chapter begins by explaining optimal learning and the conditions considered as supportive for optimal learning to take place. The Chapter then explains what constitutes a good teacher by outlining characteristics of a good teacher, which is succeeded by an explanation of living and working in a rural environment in Namibia. The Chapters ends with a discussion of the conditions that characterised teaching and learning at rural schools.

The purpose of this study was to establish the factors that characterised rural areas and how these factors influenced teaching and learning activities. A case study design was employed as a methodology for the study, consisting of five rural schools. The collected data was analysed by establishing themes and emerging categories. The major findings of the study revealed that commuting, climatic changes, hygiene, facilities and literacy levels, were the major factors that shaped rural areas. The study concluded that these factors have negatively influenced teaching and learning activities. The study recommended that educational stakeholders should confront these factors to mitigate their detrimental effects on teaching and learning at rural schools.

mzie ndzimakhwe

Vidywarta Publication

Samruddhi Gole

Education is the key to social change. In its broadest sense, education is simply one the aspect of socialization: It involves the acquisition of knowledge and the learning of skills. Education is interlinked with employment and availability of job opportunities. In India, a person aged 7 years and above who can both read and write with understanding in any language has been taken as literate. But the addition of numbers in a literacy rate won’t put India on the highest ladder of economic growth. Learning outcomes is as important as enrollment in educational institutions. Though the eye catchy numbers of Student enrollment, students learning outcomes are not at the expected level, basically in rural India. Also, there is no alternative available in villages to get a good education. In a rural India, 6 out of 10 educational institutions lack basic resources and most of the time teachers are not ready to do a job in villages where basic facilities are in scarcity. The proposed study investigated the linkage between the availability of infrastructural facilities and trained teacher in educational institutions in the rural part of India and students learning outcomes. Most of the students don’t complain about the situation they keep going with learning. They continue with the education but the impact of scarcity of resources and unavailability of a well-trained teacher is worst. The original research for this paper has drawn upon schools from rural Maharashtra. Data for the research paper has been taken from the NCERT- National Achievement Survey, Gross Enrollment Report- Government of India, National Education Policy 2016 and Budget of Maharashtra Government.

Siti Nurohqomariyyah

Nuroh Qomariyyah

Journal of Education, Teaching and Social Studies

Michael Rajter

This paper is significant because it looks at different aspects of minorities in rural poverty. The issue at hand is one that is not often studied or written about, therefore leaving those students at a great disadvantage. Article reviews and analysis show that minorities in rural poverty are a group unto themselves and must be treated accordingly. Teachers in these situations must (a) forget about generalized views on minorities and/or poverty and concentrate on becoming poverty-aware and (b) must connect and build relationships with their students.

Paula Beckman

Global Education Review is a publication of The School of Education at Mercy College, New York. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Beckman, Paula J. & Gallo, Jessica (2015). Rural education in a global context. Global Education Review, 2(4). 1-4 Rural Education in a Global Context

Barbora Podešvová

RELATED PAPERS

Martin Krózser

Javier Guillem

Keith R . Davis

Revista U.D.C.A Actualidad & Divulgación Científica

IVÁN MELÉNDEZ GÉLVEZ

Bosco Emmanuel

Ewa Bednarczyk

THE LAW AND THE BUSINESS IN THE CONTEMPORARY SOCIETY: Conference proceedings of the 3-rd National Scientific Conference

Antoaneta Stoyanova

SDÜ Tıp Fakültesi Dergisi

Ferdi Başkurt

October 1, 2006 / Vol. 31, No. 19 / OPTICS LETTERS

Loviana Manullang

International journal of clinical and experimental pathology

Vinicius Simoes Campos

AIDS Research and Human Retroviruses

G. Pollakis

Current Research in Psychology and Behavioral Science (CRPBS)

Neuroscience Letters

Vania Apkarian

Asian Pacific Journal of Health Sciences

Cemil Kutsal

International Journal of Energy Economics and Policy

Đạt Trần Minh

Revista Brasileira de Epidemiologia

Paulo Hilário Nascimento Saldiva

Peter Heltzel

transcript Verlag eBooks

David Eldridge

Transactions of the American Mathematical Society

Anne Shepler

Diego Angel Muñoz Marin

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Motivation-Achievement Cycles in Learning: a Literature Review and Research Agenda

  • Review Article
  • Open access
  • Published: 05 May 2021
  • Volume 34 , pages 39–71, ( 2022 )

Cite this article

You have full access to this open access article

review of related literature about lack of education

  • TuongVan Vu   ORCID: orcid.org/0000-0001-6700-2439 1 , 2 ,
  • Lucía Magis-Weinberg 3 ,
  • Brenda R. J. Jansen 4 ,
  • Nienke van Atteveldt 1 , 2 ,
  • Tieme W. P. Janssen 1 , 2 ,
  • Nikki C. Lee 1 , 2 ,
  • Han L. J. van der Maas 4 ,
  • Maartje E. J. Raijmakers 1 , 2 ,
  • Maien S. M. Sachisthal 4 &
  • Martijn Meeter 1 , 2  

43k Accesses

50 Citations

26 Altmetric

Explore all metrics

The question of how learners’ motivation influences their academic achievement and vice versa has been the subject of intensive research due to its theoretical relevance and important implications for the field of education. Here, we present our understanding of how influential theories of academic motivation have conceptualized reciprocal interactions between motivation and achievement and the kinds of evidence that support this reciprocity. While the reciprocal nature of the relationship between motivation and academic achievement has been established in the literature, further insights into several features of this relationship are still lacking. We therefore present a research agenda where we identify theoretical and methodological challenges that could inspire further understanding of the reciprocal relationship between motivation and achievement as well as inform future interventions. Specifically, the research agenda includes the recommendation that future research considers (1) multiple motivation constructs, (2) behavioral mediators, (3) a network approach, (4) alignment of intervals of measurement and the short vs. long time scales of motivation constructs, (5) designs that meet the criteria for making causal, reciprocal inferences, (6) appropriate statistical models, (7) alternatives to self-reports, (8) different ways of measuring achievement, and (9) generalizability of the reciprocal relations to various developmental, ethnic, and sociocultural groups.

Similar content being viewed by others

review of related literature about lack of education

The Other Half of the Story: the Role of Social Relationships and Social Contexts in the Development of Academic Motivation

review of related literature about lack of education

Moderation of the Big-Fish-Little-Pond Effect: Juxtaposition of Evolutionary (Darwinian-Economic) and Achievement Motivation Theory Predictions Based on a Delphi Approach

review of related literature about lack of education

Student Motivation and Self-Beliefs

Avoid common mistakes on your manuscript.

Introduction

In most countries, motivation for school clearly declines throughout school time (Martin, 2009 ; OECD, 2016 ; Scherrer & Preckel, 2019 ) with individual heterogeneity in changes depending on specific motivation constructs across academic domains (Gaspard et al., 2020 ; Scherrer & Preckel, 2019 ). Given this undesirable decline and the fact that motivation can be targeted by interventions, motivation has long been a central focus of educational psychology. The influence of motivation on achievement is well-documented (Burnette et al., 2013 ; Gottfried et al., 2013 ; Greene & Azevedo, 2007 ; Valentine et al., 2004 ). Yet the reverse relation is also often found, as achievement can affect motivation through experiences of success or failure (Garon-Carrier et al., 2016 ; Guay et al., 2003 ; Jansen et al., 2013 ). A common view is that both the “motivation → achievement” and “achievement → motivation” links exist and that motivation and achievement influence each other in a reciprocal manner over time (Huang, 2011 ; Marsh & Craven, 2006 ; Marsh & Martin, 2011 ; Möller et al., 2009 ).

Researchers have been studying this reciprocal relationship between motivation and achievement for at least 20 years (Marsh et al., 1999 ). However, further insights into the nature of the relationship are currently lacking; features such as the direction of causality, behavioral mediating pathways, possible effect of the time scale, and generalizations to different motivation constructs and population groups are currently not well understood. These issues are important not just from a scientific viewpoint, but also from a practical viewpoint. To be able to design the most effective interventions aimed at improving achievement and motivation, we need to improve our understanding of the reciprocity to identify the best timing, duration, content, and appropriate target variables of such interventions, as well as other contextual factors contributing to their success.

Our objective is to summarize the current understanding of motivation-achievement interactions (drawing mainly from the academic motivation literature) and to identify the theoretical and methodological challenges that could inspire further advances to understand such specific features of this reciprocal relationship. While an exhaustive review of the literature is beyond the scope of the current paper (see the Special Issue on Prominent Motivation Theories: The Past, Present, and Future on Contemporary Educational Psychology, edited by Wigfield and Koenka, 2020 ), we start with a summary of how influential theories of academic motivation have conceptualized reciprocity between motivation and achievement, and the types of empirical evidence that have been found in support of the reciprocal relationships. In our current understanding, we have found areas of consensus, but have also identified sizable gaps. This leads to a recommended research agenda for future empirical studies on the reciprocal relations between motivation and academic achievement and suggestions on how these insights could inform future interventions.

Reciprocal Relations in Theories of Academic Motivation

Commonalities between theories.

Individual differences in academic achievement are partly the result of differences in motivation for learning (Arens et al., 2017 ; Burnette et al., 2013 ; Eccles & Wigfield, 2002 ; Guay et al., 2003 ; Huang, 2011 ; Marsh & Craven, 2006 ; Marsh & Martin, 2011 ; Robbins et al., 2004 ; Seaton et al., 2014 ). This robust finding has spawned a wealth of theories on academic motivation and how to stimulate it. These theories differ in both substance and focus, but also have many common elements. Figure 1 represents an attempt to synthesize, for the purposes of this paper, some of the commonalities of well-established theories that have had an impact in the field of academic motivation (leaning strongly on the seminal review of Eccles & Wigfield, 2002 and adding theories that have gained traction since). Our goal is not to comprehensively review and synthesize the existing theories (although this is an urgent task, Koenka, 2020 ), but rather to illustrate how the commonalities between the theories suggest a framework in which the reciprocal relationships between motivation and achievement can be studied and understood.

figure 1

The motivation-achievement cycle, a summary model of motivation-achievement interactions, capturing some of the commonalities within prominent theories of academic motivation. Blue boxes denote motivation constructs, green (dotted) arrows behavioral intermediaries (quality of learning and quantity of learning), and yellow boxes and arrows denote achievement-related constructs (flow and perceived performance). Gray arrows denote outside influences that are themselves not part of motivation-achievement interactions (e.g., cultural and social influences that affect both expectancies and values)

Motivation has up to 102 definitions (Kleinginna & Kleinginna, 1981 ), but is often seen as a condition that energizes (or de-energizes) behaviors. In many theories, motivation results from what can be called an appraisal of the behavior that one is motivated to perform (the word appraisal is rarely used with regard to motivation, but the processes described are akin to those captured in the emotion literature). In that appraisal, two elements are combined (Eccles & Wigfield, 2002 ): the value attached to the behavior and its outcomes, and the expectancy of the likelihood of certain outcomes of the behavior. These two sides, expectancy and value, are explicit in expectancy-value theory (Eccles & Wigfield, 2002 , 2020 ), attribution theory (Graham, 2020 ; Weiner, 2010 ), control-value theory (Pekrun, 2006 ; Pekrun et al., 2017 ), and Dweck’s integrative theory (Dweck, 2017 ).

Many other theories focus either on the value attached to behavior or on expectancies. Theories on the values side of the ledger (goal theories, flow theory, self-determination theory, individual differences theories, and interest theories) focus on interest, goals, needs for relatedness, competence, and autonomy. Theories on the expectancy side, notably self-efficacy theory, control theories, social-cognitive self-regulation theories, and the process-oriented metacognitive model, focus on how students’ beliefs (or perception ) about their competence and efficacy (i.e., academic self-concept, see below), expectancies for success or failure, and sense of control over achievement affect motivation. Different constructs have been studied that tap into these beliefs underlying one’s expectancies, such as academic self-concept, self-efficacy, locus of control, and perceived control.

A motivation construct frequently used to study the reciprocal motivation-achievement relationship is academic self-concept (hitherto, ASC, discussed in further details in section “Different motivation constructs” below) which is how individuals evaluate their ability specifically in an academic domain (Marsh & Craven, 2006 ; Marsh & Martin, 2011 ; Shavelson et al., 1976 ). ASC is a component distinct from physical, social, and emotional self-concepts within the multidimensional, hierarchical model of self-concept (Marsh & Craven, 2006 ; Marsh & Martin, 2011 ). ASC is itself also multidimensional and usually measured by the Self Description Questionnaire (Marsh et al., 1999 ; Marsh & O’Neill, 1984 ); its academic subscales tap into general academic self-concept, math self-concept, and verbal self-concept. Much empirical research on motivation-achievement interactions operationalizes motivation as ASC in a certain academic domain, most often in mathematics and verbal subjects such as language and reading (Guay et al., 2003 ; Seaton et al., 2014 ); for meta-analyses and reviews, see Burnette et al. ( 2013 ), Eccles and Wigfield ( 2002 ), Marsh and Craven ( 2006 ), Marsh and Martin ( 2011 ), and Robbins et al. ( 2004 ).

It is worth noting that many theories posit that beliefs about the self (including self-concept and self-esteem and mindset/implicit theory of self attributes) are important causes of human behavior and learning (Bandura, 1997 ; Carver & White, 1994 ; Deci & Ryan, 2000 ; Molden & Dweck, 2006 ). Although the idea that ASC or other beliefs about the self affect achievement has been challenged (see the discussion in Marsh & Craven, 2006 ), there has also been much empirical research in support of it (Burnette et al., 2013 ; Gottfried et al., 2013 ; Greene & Azevedo, 2007 ; and the meta-analyses of Huang, 2011 ; Valentine et al., 2004 ). One suggested pathway is that positive self-beliefs can lead to self-affirmative, self-regulatory, academic behaviors (or achievement behaviors , see below) such as exerting effort, demonstrating persistence, and selecting goals that are conducive to the achievement of academic goals.

Another pathway for beliefs about the self to act as a causal agent on academic achievement, according to self-worth theory (Covington, 2000 ), is that students with positive beliefs about themselves assign high and positive values to academic activities. Academic activities are then viewed as important, intrinsically interesting, of high expected utility and of low cost, which leads to high achievement (Valentine et al., 2004 ). Also, in self-determination theory, feelings of competence are a precursor of intrinsic motivation, again leading to a higher value being assigned to academic activities if one feels competent. This would then lead to behaviors that support later achievement. A recent study of more than 30,000 college students found that need for competence (relative to need for autonomy and relatedness) is the strongest predictor of perceived learning gains (Yu & Levesque-Bristol, 2020 ).

An appraisal of values and expectancies leads to the decision to engage (Cleary & Zimmerman, 2012 ; Kuhl, 1984 ; Schunk & DiBenedetto, 2020 ). According to the self-regulatory account of motivation (Cleary & Zimmerman, 2012 ; Schunk & DiBenedetto, 2020 ), students first identify values and expectancy of learning activities, then engage in self-regulatory processes (self-instruction, attention focusing, task strategies, etc.). Following their performance, students conduct self-evaluations, infer causal attributions, and make adaptive or maladaptive attributions of their successes and failures. This account stresses the importance of metacognition, where students who can monitor their learning processes can then maintain their engagement in the learning cycle.

The appraisal of values and expectancies can also trigger academic emotions, such as pride in achievement, hope, boredom, and enjoyment. Control-value theory (Pekrun, 2006 ; Pekrun et al., 2017 ) describes how such emotions codetermine what are termed achievement behaviors —behaviors that are conducive to the achievement of academic goals. In line with dominant theories of emotion (e.g. Frijda, 1988 ; Lazarus, 1999 ), Pekrun ( 2006 ) assumed that an appraisal of control of the learner and the value of learning activities lie at the basis of academic emotions. For example, if a learner values an academic outcome and believes it is somewhat under his or her control, he or she may feel the emotion of hope. While it is not certain that the same kinds of appraisal lie at the basis of both motivation and academic emotions, it would seem plausible and parsimonious. Indeed, Pekrun ( 2006 ) suggested that this is the case, though he cautioned that more research is needed.

Figure 1 may raise the question of what actually distinguishes motivation from emotions, since both seem to result from an appraisal of the situation, and both energize or de-energize certain behaviors. This is a valid question, and Kleinginna and Kleinginna ( 1981 ) already noted that a sharp line between motivation and emotion is difficult to draw (also see Berridge, 2018 ). Emotions will typically be more temporary than motivation, but this is a fuzzy distinction. Emotions and motivation may also interact. Emotions may for example make a learner assign more or less value to academic activities, or may change the learner’s expectations around their chances of success or failure, which then changes the appraisal that underlies motivation. Literature showing that emotions and academic achievement also form reciprocal relationships over time has recently emerged (Putwain et al., 2018 ).

Pathways from Motivation to Achievement and Vice Versa

While it is generally accepted that motivation affects achievement, it is not completely clear how . Theoretically, two routes can be discerned (see Fig. 1 ). The first is the quantity (frequency and intensity) of academic behaviors aimed at achievement (such as effort, persistence, etc.) (Cury et al., 2008 ; Dettmers et al., 2009 ; Doumen et al., 2014 ; Marsh et al., 2016 ; Pinxten et al., 2014 ; Plant et al., 2005 ; Trautwein et al., 2009 ). As a second route, higher levels of motivation could also be associated with higher quality of academic behaviors; for example, by adopting effective learning strategies, adaptive meta-cognitive strategies, spaced practice, elaboration, retrieval practice, interleaving, dual coding, and so on. Several theories of academic motivation support the idea that higher motivation leads to higher quality behaviors. Both intrinsic motivation (self-determination theory, Deci & Ryan, 2000 ) and interest (interest theories, Alexander et al., 1994 ) have been linked to deeper learning (Alexander et al., 1994 ; Schiefele, 1999 ; Scott Rigby et al., 1992 ). Positive academic motivations have also been suggested to facilitate creative learning strategies (control-value theory, Pekrun, 2006 ), and incremental implicit beliefs (growth mindset) to facilitate mastery-oriented strategies (Burnette et al., 2013 ).

Effects of achievement on motivation may also take two routes. The first is through perceived achievement. Many theories, such as self-efficacy theory (Bandura, 1997 ), expectancy-value theory (Eccles & Wigfield, 2002 ), control theories (Skinner, 1995 ), and attribution theory (Weiner, 2010 ) explicitly suggest that past achievement leads a learner to experience feelings of self-efficacy and perception of control. What matters most in this regard is the learner’s own evaluation of this outcome, for which we use the term perceived performance in Fig. 1 . High perceived performance will thus change the expectancies of learners (i.e., make them trust that good outcomes are attainable), but it may also alter the value attached to learning activities. For example, in self-determination theory, the feeling of competence (strengthened by positive perceived achievement) is a basic need that increases the intrinsic value of learning.

The second route from achievement to motivation is central to flow theory (Csikzentmihalyi, 1990 ). An activity in which the learner is holistically immersed can generate a feeling of flow, which is rewarding in its own right and alters the value attached to the academic behaviors.

External Factors Affecting Motivation, Effort, and Achievement

Figure 1 suggests a positive feedback loop, with motivation feeding achievement, and achievement feeding motivation—an idea that is alluded to in some theories (Cleary & Zimmerman, 2012 ; Eccles & Wigfield, 2002 ; Schunk & DiBenedetto, 2020 ). Most explicit in this regard is the self-regulatory account of motivation (Cleary & Zimmerman, 2012 ) where the pathway between self-regulation and achievement is a cyclical feedback loop. Schunk and DiBenedetto ( 2020 ) suggest an iterative process between perceived progress, self-efficacy, and goal pursuit. Bandura’s social cognitive theory also stresses the reciprocity of the interactions between behavioral, environmental, and personal factors (Bandura, 1997 ). Crucially, this raises the question of how such a positive feedback loop could get started, and how, once started, it could lead to any other outcome than either perfect motivation and achievement, or negative motivation and failure. The answer to those questions may rest in the external influences on motivation and achievement. These are indicated in Fig. 1 by the gray arrows:

Extrinsic rewards and requirements tied to achievement, e.g., schools or parents, may change the value attributed to academic behavior, and so change motivation. Although this has been described in self-determination theory as potentially detracting from intrinsic motivation (Deci & Ryan, 2000 ), it may also jolt a motivation-achievement cycle that would otherwise not start (Hidi & Harackiewicz, 2001 ). Supporting autonomy and creating relatedness are other ways in which external actors can increase the value attached to learning, increasing motivation and achievement (Deci & Ryan, 2000 ).

Cultural norms (described in control theories and control-value theory, Pekrun, 2006 ; Skinner, 1995 ), social learning, and verbal persuasion by others (social cognitive theory, Bandura, 1997 ) can alter the expectations, values, and attributional processes of learners (expectancy-value theory, attribution theories, Eccles & Wigfield, 2020 ; Graham, 2020 ), and therefore keep a motivation-achievement cycle going that would otherwise falter or not start up.

Effort is not only a result of the learner’s motivation but also of outside requirements (e.g., deadlines and exams set by the educational institution, Kerdijk et al., 2015 ). Such outside requirements can lead to achievement in the absence of strong motivation.

Quality of learning is not only affected by motivation but also by the abilities of the learner and the quality of teaching, instructions, and study materials. Thus, achievement can increase in the absence of stronger motivation, because of better support for learning.

Perceived achievement is not only determined by true achievement but also by elements of educational design, such as the form in which feedback is given (e.g., a grade that either accentuates the ranking of the student or the degree to which the study material was mastered, or feedback on effort instead of performance, De Kraker-Pauw et al., 2017 ). Perceived achievement is also subject to interpretative, comparison, and attributional processes (described in attribution theories, Graham, 2020 ; Weiner, 2010 ). This means that true high achievement can still fail to support motivation (e.g., when a sibling performs even better), or low achievement can be viewed in such a way so as to not be detrimental for motivation.

Such external factors are not only important for a complete causal understanding of motivation-achievement interactions (i.e., highly relevant for educational researchers) but also because they offer entry points for interventions that enhance motivation, achievement, or both (i.e., highly relevant for educators).

What Avenues for Empirical Research Have Been Explored?

Figure 1 shows that theories of academic achievement imply a reciprocal relationship between motivation and achievement. A comprehensive review of studies is beyond the scope of this manuscript (see narrative reviews and meta-analyses) (Huang, 2011 ; Marsh & Craven, 2006 ; Scharmer, 2020 ; Valentine et al., 2004 ; Valentine & Dubois, 2005 ), but we will review the kinds of evidence that have been brought to bear in support of such reciprocal relationships. Analyzing this evidence allows future directions on the field to be charted.

The earliest support for the relationship between motivation (focusing specifically on self-concepts and other self beliefs) and academic achievement comes from cross-sectional and correlational studies, reviewed by Hansford and Hattie ( 1982 ). These studies established a relationship between self-concepts and academic achievement, but no causal paths. Subsequent work set out to investigate the causal and temporal ordering of the effects using structural equation models (SEMs) and longitudinal data (e.g., Marsh et al., 1999 ). To date, the majority of evidence for the reciprocal relationship between self-concept and achievement has come from such time-series or cross-sectional data collected at schools, to which various SEMs have been fitted (see Marsh & Craven, 2006 for a narrative review and Huang, 2011 for a meta-analysis of such studies).

More recent studies showcase impressive efforts of researchers to use large sample sizes and longitudinal data of up to six waves, allowing changes in motivation and achievement of students to be tracked across their school career (e.g., Marsh et al., 2018 ; Murayama et al., 2013 ). A recent meta-analysis (Scharmer, 2020 ), which includes such studies that were published between 2011 and August 2020, showed that overall, the pooled effect of achievement on motivation was twice (β = .12) the pooled effect of motivation on achievement (β = .06), though both are what is conventionally considered a small effect. These findings are in line with Valentine and DuBois ( 2005 ) who found that academic achievement had a stronger effect on self-belief than vice versa. In contrast, Huang ( 2011 )’s meta-analysis found a slightly larger effect of self-concept on achievement than the other way around. Valentine and DuBois ( 2005 )’s findings were also more similar to Scharmer’s ( 2020 ) in terms of the size of the effects (achievement on self-belief: β = 0.08; self-belief on achievement: β = 0.15). Huang ( 2011 ), however, found considerably larger ranges of effects overall (achievement on self-concept: β = 0.19–0.25; self-concept on achievement: β = 0.20–0.27).

There have also been interventions and randomized controlled field studies in which either self-concept or other motivation constructs were manipulated (e.g., Savi et al., 2018 ; Vansteenkiste et al., 2004 ), thereby allowing for causal inferences. The meta-analysis of these studies by Lazowski and Hulleman ( 2016 ) showed that, while interventions targeting motivation usually led to positive outcomes on achievement (medium effect size; average Cohen’s d of 0.49), it did not matter which theory was at the basis of the intervention— all theories of motivation performed about equally well. However, experimental studies that look at the reverse causal path, manipulating achievement (or the perception of achievement) to affect motivation, are scarce. One example is an intervention study by Betz and Schifano ( 2000 ) where students were ensured of successful completion of a task followed by affirmation of their accomplishments with applause and verbal praise. This resulted in an increase in self-efficacy (a motivation construct highly related to ASC, Bong & Skaalvik, 2003 ). Nevertheless, to the best of our knowledge, few studies have done both: combining experimental manipulation and longitudinal design to investigate reciprocal motivation-achievement relations (an exception that we are aware of is Bejjani et al., 2019 which will be discussed later).

Research Agenda

The overview given above suggests that empirical evidence for reciprocal relations between motivation and achievement exists. However, several features of such relationships are still poorly understood. Also, some doubts about the robustness of the effects have recently surfaced (which we discuss in detail in section “Choice of appropriate statistical models” below). In other words, there are still unanswered theoretical and empirical questions about the reciprocal relationship between motivation and academic achievement. Below, we outline these issues and a research agenda for future research that can answer these remaining questions. These are organized into questions pertaining to theoretical lacunae, methodological challenges, and questions about the scope of theories and the generalizability of empirical results.

Theoretical Lacunae

Multiple motivation constructs.

First, as we presented above, many motivation theories have implicitly or explicitly conceptualized the relationship between a plethora of motivation constructs and achievement as reciprocal. However, to date, a large amount of empirical research on reciprocal motivation-achievement interactions has mainly studied ASC (Arens et al., 2019 ; Brunner et al., 2010 ; Chen et al., 2013 ; Dicke et al., 2018 ; Gottfried et al., 2013 ; Grygiel et al., 2017 ; Guay et al., 2003 ; Guo et al., 2015 ; Möller et al., 2011 ; Niepel et al., 2014a , 2014b ; Retelsdorf et al., 2014 ; Viljaranta et al., 2014 ; Walgermo et al., 2018 ; for meta-analyses and reviews, see Marsh & Craven, 2006 ; Marsh & Martin, 2011 ; Valentine et al., 2004 ; Valentine & Dubois, 2005 ) . This raises the question of whether findings generalize to other motivation constructs that are related yet could also have a distinctive reciprocal relationship with academic achievement.

Moreover, although the studies involving ASC were groundbreaking attempts to show reciprocal relations, there are several reasons why future studies should contemplate using different motivation constructs other than ASC. First and foremost, ASC and achievement are highly intertwined, as items in ASC questionnaires usually ask students to report on their achievement (e.g., “I get good marks in most academic subjects,” “I learn quickly in most academic subjects” (Marsh & O’Neill, 1984 ). Fulmer and Frijters ( 2009 , p. 228) in their critique of how motivation is measured in educational psychology also made the point that “self-report measures confound the measurement of motivation with other variables, such as ability and attention.”

Second, a meta-analysis investigating mean-level changes of a number of important motivation constructs concluded that the decline in motivation shows non-trivial differences across these constructs (Scherrer & Preckel, 2019 ). An important implication of this finding is that more attention should be paid to differentiation among multiple motivation constructs in future empirical studies.

Third, ASC might also be less malleable than other motivation constructs since general self-concept is relatively stable—especially for those at lower levels (Scherbaum et al., 2006 ). Research into the Big-Fish-Little-Pond phenomenon (i.e., students in high-achieving classes having lower ASC than those with comparable aptitude in regular classes) suggests that domain-specific ASC (more so than general ASC) is influenced by social comparison (Fang et al., 2018 ; Marsh et al., 2018 ). Nevertheless, it may be hard to manipulate ASC in a randomized controlled trial (although it has been indirectly done by affirming general self-esteem and personal values, Cohen et al., 2009 ). Other motivation constructs that can be modified through external influences (e.g., situational interest, perceived control, etc.) might yield useful guidance for designing interventions.

Furthermore, the heavy focus on ASC may reflect an emphasis on a cognitive, intrapsychological theoretical view of motivation while losing sight of social, contextual, historical, and environmental factors that arguably also play important roles (see the Special Issue on Prominent Motivation Theories: The Past, Present, and Future on Contemporary Educational Psychology, edited by Wigfield and Koenka, 2020 ). Last but not least, ASC is mainly self-reported and, despite the availability of well-constructed measures, it suffers from all the caveats inherent to self-report measures (see section “Alternatives to self-reports” below).

Given that there are other well-studied motivation constructs such as achievement goals, self-efficacy, interest, and intrinsic motivation (Scherrer et al., 2020 ; Scherrer & Preckel, 2019 ), further research with multiple non-ASC motivation constructs included as concomitant predictors of academic achievement is therefore much needed. In recent investigations of the reciprocal relationship between motivation and achievement, motivation constructs other than ASC have started to be included (e.g., self-efficacy in Grigg et al., 2018 ; Schöber et al., 2018 ; achievement goals in Scherrer et al., 2020 ; intrinsic motivation in Hebbecker et al., 2019 ; and interest in Höft & Bernholt, 2019 ). Yet, these studies are still small in number. Twenty-four out of 41 studies included in the meta-analysis of Scharmer ( 2020 ) still used ASC as the main motivation construct of interest.

Behaviors as Mediating Factors in the Motivation → Achievement Link

As mentioned above, theories of academic motivation imply several pathways through which motivation influences achievement and vice versa (see Fig. 1 ). For the motivation → achievement link, the rationale is that motivation leads to active and effortful commitment to learning (e.g., E. Skinner et al., 1990 ), implying that motivation constructs that are beliefs about competence and efficacy influence achievement by inducing self-regulatory, academic behaviors. In a similar vein, the volition theory of motivation (Eccles & Wigfield, 2002 ; Kuhl, 1984 ) posits that motivational beliefs only lead to the decision to act. Once the individual engages in action, volitional processes are required and determine whether the intention is fulfilled. Thus, self-regulatory processes theoretically mediate the link between beliefs and accomplishment of the task.

However, there is a relative paucity of empirical research and especially longitudinal studies that include measures of such regulatory processes. Usually, when studies found reciprocal relations between ASC and other motivation constructs and achievement, they left unanswered which pathways mediate the link between such beliefs and achievement (Marsh & Martin, 2011 ). To our knowledge, initial attempts to study mediating processes in longitudinal designs (Marsh et al., 2016 ; Pinxten et al., 2014 ; Trautwein et al., 2009 ) yielded mixed findings with regards to the role of effort in the relationship between ASC and academic achievement. This may be due to the fact that there are multiple operationalizations and evaluations of the construct effort (Massin, 2017 ), which may have varying relations with academic achievement. Specifically, Marsh et al. ( 2016 ) and Pinxten et al. ( 2014 ) measured subjective effort—i.e., students were asked to rate their own effort expenditure. Students might perceive that having to try hard (i.e., expending a great deal of effort) is indicative of a lack of academic ability (Baars et al., 2020 ). Subjective effort, as opposed to objective effort, might therefore have a very different relation to motivation and achievement.

In non-longitudinal studies looking at the relations between academic motivation and achievement, the evidence on behavioral mediators also shows differentiation related to how effort is measured. When effort is measured as quality of learning (e.g., selecting adaptive goals, adopting higher-quality learning strategies, etc.), there is some evidence for a positive link between academic achievement and effort (Trigwell et al., 2013 ). However, when effort is measured as a quantity of learning (such as study time, practice time, time-on-task, persistence, etc.), this relationship seems either weak or only significant after controlling for quality of learning (Cury et al., 2008 ; Dettmers et al., 2009 ; Doumen et al., 2014 ; Plant et al., 2005 ) or even negative (the labour-in-vain effect, Koriat et al., 2006 ; Nelson & Leonesio, 1988 ; Undorf & Ackerman, 2017 ). This provides suggestions for future attempts to parse the mediating factors in the motivation → achievement link in reciprocal relations between these two constructs. It is most fruitful to measure subjective and objective measures of quantity and quality of learning (and use triangulation of methods, as strongly suggested by Scheiter et al., 2020 ) and compare their effects on academic achievement.

Irrespective of what operationalization is chosen, it is important to note that it is not trivial to evaluate and conceptualize effort (see extensive discussions in Baars et al., 2020 ; Scheiter et al., 2020 ). Is effort the allocation of cognitive control, i.e., mental effort (Kool & Botvinick, 2018 ), or the intention to think deeply, regardless of the amount of time spent (Haynes et al., 2016 ), or a preference for thinking hard (Beck, 1990 ), a decision process rather than a capacity or resource that is physically limited (Gendolla & Richter, 2010 )? Yet, only by measuring regulatory processes that mediate the motivation → achievement pathway, we can make progress in understanding the underlying mechanism of mutual influences between motivation and achievement.

Mutualistic Perspective and the Network Approach

Next, studies have typically investigated relations between one or a small number of motivation constructs (e.g., ASC and interest, Walgermo et al., 2018 ). The discussion above and Fig. 1 show that multiple motivation constructs are linked to academic achievement, which may also all be mutually related. Like many topics in psychology, there is a huge overlap in terms and variables in the literature on motivation and achievement; the same construct may have different names, or different constructs go under the same name (this is known as Jingle-Jangle fallacies; e.g., Marsh et al., 2003 ). One possible solution to the Jingle-Jangle fallacies with regard to motivation was proposed by Marsh et al. ( 2003 ), who presented a factor model with two higher-order factors (dubbed learning and performance ) that explained relations between motivation constructs. In this approach, assumptions on the number of factors and factor structure are necessary.

The network approach is different; it does not assume an a priori structure of motivation factors. Instead, it uses the (bidirectional) partial correlations between variables in empirical data and in doing so clusters of variables which can be interpreted as constructs may emerge. The idea of a network of mutual relations to model psychological constructs was introduced by van der Maas and colleagues (van der Maas et al., 2006 , 2017 ) as an explanation for the positive correlations (the positive manifold) between intelligence sub-test scores. This led to a productive area of research with applications in many areas of psychology (Dalege et al., 2016 ; Robinaugh et al., 2020 ; Sachisthal et al., 2019 , 2020 ; Zwicker et al., 2020 ). The general hypothesis in psychological network models is that correlations between observed behaviors, such as cognitive functions, psychopathological symptoms, and attitudes (or, motivation constructs ), are not due to unobserved common causes, but to a network of interacting psychological, social, and/or biological factors. These observed behaviors are the nodes in the network and the partial correlations are the edges.

An example of how such a network approach can be applied to the area of motivation can be found in a study of interest in science (Sachisthal et al., 2019 ). This study included measures of students’ value of science, their science engagement, and achievement. The correlations between these measures were modeled as a network, within which clusters of variables emerged. These can be seen as empirically derived constructs, replacing the at times arbitrary theoretical separation between (motivation) constructs. Given that in motivation research many constructs with considerable overlap exist (Anderman, 2020 ; Hattie et al., 2020 ), such empirically derived concepts may prove especially relevant.

Within this network, variables with the strongest direct relationships can be identified. A positive change in a central variable should lead to a positive change throughout the network and these central variables may differ between contexts. For example, enjoyment emerged as the central node in the network of Dutch students, whereas engagement behaviors emerged as central in the network of Colombian students and therefore different approaches for increasing science interest are advised for the two countries (Sachisthal et al., 2019 ). Central variables may be efficient intervention targets as interventions informed by network analyses have been shown to be highly effective as these central variables were later shown to be predictive of subsequent behaviors (e.g., Sachisthal et al., 2020 ). Moreover, further support for this assumption comes from a recent study by Zwicker et al. ( 2020 ) who identified guilt as the central node in the network of attitude and environmental behaviors. They then successfully manipulated guilt which increased willingness to engage in such behaviors.

In sum, these works exemplify how network approaches can be used (1) to model distinctive but highly related motivation and achievement constructs simultaneously and map their relations and (2) to derive hypotheses about which included constructs may be efficient targets for interventions (see Borsboom, 2017 , for an overview). Moreover, the fact that network analyses found different central variables in different populations also showcases how such an approach can flexibly capture interactions between motivation factors in real life. Last but not least, at a more abstract level, a mutualistic network approach can potentially solve the question of the mechanisms of the impact of motivation on achievement (also raised in Hattie et al., 2020 as an important avenue for future research). Specifically, how clusters of motivation constructs, behavior, and achievement interact with one another can be modeled, and how reciprocal relations between them arise over time. This can only be achieved when multiple motivation constructs are measured in one single study (as argued above in section “Multiple motivation constructs”).

Time Scale of the Interactions (Short vs. Long Cycle)

Another gap in the literature that we identified is that much research on the reciprocity between motivation and achievement has been done with data collected at large time intervals, which reflect changes that happen over months or years (e.g., Harackiewicz et al., 2008 ; Marsh et al., 2005 , 2016 ; Nuutila et al., 2018 ). For example, it is common for studies to include data collected per academic semester or year (e.g., Gottfried et al., 2013 ); sometimes, other time intervals have been used, such as weeks (e.g., Yeager et al., 2014 ). However, theories of motivation such as self-determination theory or expectancy-value theory are not formulated with an explicit time scale, and the interactions they describe seem framed in terms that suggest that the effects of motivation constructs happen without delays (i.e., on a time scale of seconds). Recent accounts of motivation are situated ones, which also call attention to fine-grained, moment-to-moment fluctuations that occur during learning engagement (Schunk & DiBenedetto, 2020 ). This raises the question how such fast dynamics can be captured if constructs are measured with large time lags in between.

It is possible that there are interactions between motivation and achievement at both short and long timescales, and that these are qualitatively different. We will refer to these hypothetical interactions at different time scales as short (or fast) and long (or slow) cycles between motivation and achievement. Some constructs may change in slower cycles (e.g., achievement goal orientation, mindset, academic self-concept) than others (e.g., autonomy, or even faster: emotions). In research focusing on interest and achievement emotions, for instance, a stable, so-called trait level (e.g., individual interest) is often distinguished from a shorter, task-dependent state level (e.g., situational interest) (see Hidi & Renninger, 2006 ; Renninger & Hidi, 2011 for interest; Pekrun, 2006 for achievement emotions). Nesselroade’s ( 1991 ) model of within-person psychological change also distinguishes between state and trait. The former is rapid and potentially more easily reversed than the latter. Developmental processes are thought to underlie trait constructs, for instance suggesting that the repeated experience of a positive state (i.e., enjoyment) will lead to a positive trait value. While it has been suggested that reciprocal relations play a more central role on the trait level—e.g., explaining the stronger relations between emotion antecedents and emotions (Bieg et al., 2013 ), studies investigating reciprocal relations are still missing at a state (or task) level . Furthermore, the difference between slow and fast change is also more salient for certain constructs than for others. For example, in one rare study where the within-task changes in multiple motivation constructs was studied, researchers found that while students’ self-efficacy generally grew throughout the progress of a task, interest did not (Niemivirta & Tapola, 2007 ). This suggests that when studies do not consider fast vs. long cycles of constructs, the effects of a faster changing variable on a slowly changing variable can be missed.

The remedy to these problems is to consider using data collected at either diverse time intervals or with theoretically informed time intervals to capture the ebbs and flows of the relations between constructs over time and their corresponding short and long cycles (Duff et al., 2015 ; McNeish & Hamaker, 2019 ). In addition, special attention should be paid to “short cycles”—especially since fast-changing constructs may be more effective targets for interventions. Intensive longitudinal designs can help uncover potential “real-time” causal variance attributable to a construct that would be missed when it is measured at relatively lengthy intervals such as one academic semester or year (McNeish & Hamaker, 2019 ). This may also help when developmental trajectories are characterized by non-linear trends that cannot be captured by low-frequent measurements (McNeish & Hamaker, 2019 ). A deliberate choice of time intervals and the use of non-questionnaire measures will also be helpful in this respect (see section “Alternatives to self-reports” below).

A related but distinguishable issue is the stability of the reciprocal relation between motivation and achievement. Whether or not reciprocal effects of motivation and achievement are stable across school careers is a question with significant theoretical and practical consequences (Marsh et al., 2018 ). Two recent studies found motivation declines to be associated with particular academic stages, for example some constructs such as achievement goal orientation specifically dropped in the transition to secondary school (Scherrer et al., 2020 ). The Scherrer et al. ( 2020 ) data are however among the first longitudinal attempts that can reveal how such declines could potentially impact the reciprocity between motivation and achievement. Theoretically, one could assume that the impact of motivation on achievement is low early in a new environment (e.g., a school transition) where learners experience considerable uncertainty regarding their competence and academic standing (Eccles et al., 1993 ; Valentine et al., 2004 ). When the learning environment is stable, the impact of achievement on subsequent motivation might be more substantial. Some support for such a pattern is provided in Scherrer et al. ( 2020 ) who found the reciprocal effects only in later time points and not in earlier time points after transition into secondary school. However, these studies were not designed specifically to test the transition vs. non-transition contrast, prompting the need for subsequent longitudinal studies that focus on the effect of school transition (to our knowledge, Rudolph et al., 2001 is among the first but only has two waves of data).

Methodological Challenges

When extant research finds the relationships between motivation and achievement, the interpretation with regards to causal relations remains difficult due to the lack of experimental manipulation (Granger, 1980 ; Holland, 1986 ; Marsh et al., 2018 ; Mega et al., 2014 ). In almost every study investigating reciprocal motivation and achievement relations, the need for experimental designs in which either motivation or achievement is manipulated is raised as a suggestion for future research (Marsh et al., 2016 , 2018 ; Mega et al., 2014 ; Pinxten et al., 2014 ). The term “effect” in many existing studies is used only in “conventional statistical sense and standard path analytic terminology, as representing a relation that is not necessarily causal” (Marsh et al., 2018 , p. 268).

Research that aims to establish causality in the reciprocal relationship between motivation and achievement would need to meet three preconditions. The first precondition of causality is order , that is “x must precede y temporally” (Antonakis et al., 2010 , p. 1087). Causality of reciprocal effects requires both orders (x precedes y, y precedes x), as well as alternations of x and y (x precedes y, which is again followed by x). The pale blue (with solid outline) squares in Fig. 2 show this alteration of measurements of motivation and achievement. The top pale blue rectangle starts with motivation, whereas the bottom starts with achievement. The second precondition is correlation : “x must be reliably correlated with y (beyond chance)” (Antonakis et al., 2010 , p. 1087).

figure 2

Representation of three types of study designs that can investigate the relationships between motivation and academic achievement. (1) The gray box shows that to establish that motivation causes academic achievement (top) or vice versa (bottom), experimental manipulation is needed, intervening on the predictor at time point 1, which influences the outcome at time point 2 and so on. The straight thin arrows are the cross-lagged relations and the curved arrows the autoregressive relations. (2) The light blue boxes (top and bottom) illustrate the types of design where reciprocity but not necessary causal effects between motivation and achievement can be established. (3) The green boxes (top and bottom) show the type of design that can investigate both reciprocity and causality between motivation and achievement (i.e., a study where experimental manipulation is included and reciprocal relationships are measured). t time-point, M motivation, A achievement

Several studies with high quality and quantity of longitudinal data meet these two pre-conditions (e.g., Arens et al., 2017 ; Bossaert et al., 2011 ; Chamorro-Premuzic et al., 2010 ; Chen et al., 2013 ; Collie et al., 2015 ; Dicke et al., 2018 ; Grygiel et al., 2017 ; Hebbecker et al., 2019 ; Höft & Bernholt, 2019 ; Marsh et al., 2016 , 2018 ; Miyamoto et al., 2018 ). In these studies, autoregressive paths (the curved arrows in Fig. 2 , which go from measurement of a variable at one time point to the measurement of the same variable at the next time point) and cross-lagged paths (the straight arrows in Fig. 2 , which go from measurement of a variable at one time point to the measurement of a different variable at a later time point) are found. In other words, autoregressive paths represent the direct effects of variables on themselves over time and cross-lagged paths the direct effects of two variables on each other over time. Such cross-lagged paths show the reciprocity between the variables but not necessarily causality in these relations (Usami et al., 2019 ). Correlation between different variables, measured at different time points, is a necessary but not sufficient requirement of causality in mutual relations. Establishing causality of reciprocal effects requires the experimental manipulation of at least one of the two variables.

Importantly, to our knowledge, no studies of the mutual relations between motivation and achievement also satisfy the third precondition of causality, that is the manipulation of x has an effect on y at a later time point, followed by (a) repeated measure(s) of x (and y) (Antonakis et al., 2010 ). In Fig. 2 , manipulation is indicated by the thick arrow. In the upper panel of Fig. 2 , the manipulation of motivation affects achievement in the gray (with dash outline) part of the figure. If the manipulation is followed by an alteration of the variables with cross-relations, the findings would support causality of motivation in reciprocal relations between motivation and achievement. We searched for such studies in meta-analyses of interventions (Harackiewicz et al., 2014 ; Lazowski & Hulleman, 2016 ; Sisk et al., 2018 ), in the latest meta-analysis of longitudinal studies (Huang, 2011 ) and Scharmer ( 2020 ). We encountered two studies that contained both an experimental manipulation of a motivation construct and subsequent multiple, alternate measurements of motivation and performance. Cohen et al. ( 2009 ) found that structured writing assignments to prompt African American students to reflect on their personal values (i.e., self-affirmation interventions) resulted in improved academic achievement (GPA), as well as self-perception and an increased rate of remediation, in the following school year for low-achieving African Americans. Yeager et al. ( 2019 ), in a large-scale mindset intervention, also had more than one wave of manipulated motivation and measurement of achievement. Although the authors discuss the role of a recursive process Yeager & Walton, 2011 ) , neither of these interventions modeled reciprocal effects between motivation and performance (Cohen et al., 2009 ; Yeager et al., 2019 ).

In the lower panel of Fig. 2 , the arrow indicates manipulation of achievement. A manipulation of achievement that affects motivation, which is again cross-related to achievement, would support a causal effect of achievement in reciprocal relations between achievement and motivation. However, it is hard to manipulate achievement independently from motivation. For example, manipulations of instruction, modeling, practice, and self-correction may all affect achievement, but they may do so partly by making the material more appealing, raising motivation at the same time or before achievement is raised. New manipulations are needed that raise, for example, perceived performance without raising performance per se, as a way to circumvent such issues. For causal inferences, experiments would ideally include (double-blinded) random assignment, which is possible in the lab but poses important practical problems in the classroom (cf. Savi et al., 2018 ). In sum, future research with the types of studies that can investigate both reciprocity and causality between motivation and achievement would be highly valuable.

Choice of Appropriate Statistical Models

Although the existence of the reciprocal relationship between motivation and performance is generally agreed upon, there are also empirical works that fail to establish such a relationship (Fraine et al., 2007 ) or cast doubts on the robustness of the reciprocal effects (Burns et al., 2020 ; Ehm et al., 2019 ). Such studies most importantly also point out that the choice of sophisticated statistical models to investigate such relationships can have implications for the conclusion drawn (e.g., Burns et al., 2020 ; Ehm et al., 2019 ). Ehm et al. ( 2019 ) specifically found that although a cross-lagged panel model (CLPM) supported reciprocal motivation-achievement relations, other models did not—such as the random-intercept CLPM, which Hamaker et al. ( 2015 ) showed to be more effective than CLPM in explicitly modeling within- and between-individual changes across time. In addition, as Usami et al. ( 2019 )—in their comprehensive unified framework of longitudinal models—demonstrated, it is important to identify the existence of third time-varying or time invariant variables (such as stable traits) that can have a causal effect on the longitudinal relationship but are yet accounted for in a model. Substantial knowledge about such confounders will help researchers select the correct statistical model. Again, this issue is closely related to the short vs. long cycle of the constructs discussed above.

Alternatives to Self-Reports

Most studies investigating reciprocal relationship between motivation and achievement have measured motivation through questionnaires probing ASC (e.g., the Academic Self-Description Questionnaire by Marsh & O’Neill, 1984 ). Despite their evident psychometric benefits, self-reports (including questionnaires) of motivation suffer from many inherent caveats. Fulmer and Frijters ( 2009 ) list several that are relevant. First of all, questionnaires are subjective and rely on the assumption that motives are consciously accessible, declarative, and communicable to other people, while as discussed above, motivation arises from partially inaccessible and non-declarative cognition and emotions. Students may also differ in their capacity to reliably answer the questions (e.g., consider alexithymia—a psychological trait that is characterized by difficulties with verbalization of one’s own emotions and psychological introspection, Lumley et al., 2005 ). Second, the lack of rigor in the conceptualization of motivation constructs often becomes apparent when using questionnaires (we discuss concrete issues related to ASC in the Different Motivation Constructs section). This is closely related to the Jingle-Jangle Fallacies discussed in Marsh et al. ( 2003 , p. 192). Third, questionnaires might not measure reliably motivation constructs that are not trait-like and subject to temporal and situational fluctuations (e.g., situational interest) (also see our discussion of this point in Time scale of the relations section above). In practice, self-reports cannot be sampled with high frequency during learning (see process-oriented measures below). Fourth, questionnaires are problematic from a developmental perspective because, across age groups, there might be varying factor structures in empirical data. Furthermore, some children may be too young to process some motivation constructs. Finally, self-reports are sensitive to demand characteristics and a tendency to give socially desirable answers (e.g. students who are familiar with the implicit theory of intelligence might tend to report that they endorse a growth mindset, Lüftenegger & Chen, 2017 ).

Most recent discussions of motivation-achievement interactions emphasize the need for alternative methods to self-report questionnaires. These alternatives include experience sampling, daily diaries, think-aloud protocols, observations, and structured interviews (Eccles & Wigfield, 2020 ). These alternatives have their strengths, but some limitations remain, such as the subjective nature of these measures and a possible high demand on research participants’ cognitive resources when a large number of measures are administered during a session. In addition, some demand frequent small breaks during a task to report internal states, which may interfere with the flow of the task.

Several alternative methods are available to observe and measure motivation or engagement “online” during learning, for example by using frequent choices of learners or video observations (Järvenoja et al., 2018 ). With the development of new technologies, it is now also possible to collect such data longitudinally on a large scale. For example, MathGarden, an online math learning tool, provides access to math learning data of thousands of students. Motivation is indexed by the frequency and length of voluntary, self-initiated practice, and can be linked to learning and performance (Hofman et al., 2018 ). Other promising process-oriented measures are eye-tracking and facial emotional expressions (D’Mello et al., 2008 ; Grafsgaard et al., 2014 , 2011 ; Nye et al., 2018 ; van Amelsvoort & Krahmer, 2009 ).

Another process-oriented approach uses physiology for high-frequency and non-interfering measures of motivational states. We will briefly discuss the use of autonomic nervous system (ANS) and central nervous system (CNS) measures. ANS techniques can be used to measure arousal , which is defined as higher activation of the sympathetic relative to the parasympathetic system. Motivated and effortful behavior is accompanied by increased arousal, and thus ANS techniques can provide an index of motivation. Popular techniques are electrodermal activity (EDA), electrocardiograms (ECG), and impedance cardiography (ICG). Sympathetic arousal measured with EDA has been associated with emotion, cognition, and attention (Critchley, 2002 ). Sympathetic arousal can also be measured with pre-ejection period (Tavakolian, 2016 )—which is the time in between “the electrical depolarization of the left ventricle and the beginning of the ventricular ejection” (Lanfranchi et al., 2017 , p. 145). One shared challenge with EDA and ECG is that arousal is a “fuzzy” construct, meaning many things, yet nothing specific (Mendes, 2016 ). A common factor that elicits EDA is subjective salience or motivational importance . Pre-ejection period is often used as an index for effort mobilization in studies investigating motivational intensity theory (Brehm & Self, 1989 ). Suppression of parasympathetic activity, which can be measured as reduction in high frequency heart rate variability, has been associated with effortful control (Spangler & Friedman, 2015 ) and emotion regulation (Beauchaine, 2015 ), but a recent meta-analysis supports a more general role in top-down self-regulation (Holzman & Bridgett, 2017 ).

A CNS measure of motivational states can be provided by electroencephalography (EEG). Higher mental effort/workload has been associated with attenuated parietal alpha activity (Brouwer et al., 2012 , 2014 ; Fink et al., 2005 ), higher frontal theta activity (Cavanagh & Frank, 2014 ; Klimesch, 2012 ), and a higher theta/alpha ratio. Another useful EEG index of motivation is asymmetrical frontal activity, which has been proposed to index motivational direction . Approach and avoidance motivation are respectively related to greater left and right frontal activity (Kelley et al., 2017 ).

It should be noted that none of these process-oriented measures has currently been established as reliable enough to replace verbal reports. A standard conclusion is that “more research is needed” (Holzman & Bridgett, 2017 ). A constructive way forward, which Fulmer and Frijters ( 2009 ) and Scheiter et al. ( 2020 ) strongly advocate, is to triangulate multiple methods, including self-reported and process-oriented measures. Given that physiological measures are relatively new, triangulation can help establish their reliability and validity. For example, EEG could be measured along with behavioral process-oriented task measures of effort. This allows testing whether fluctuations in theta and alpha activities are due to subjective effort mobilization and not due to other processes such as emotional arousal. Such triangulation studies can point the way to reliable online measures of motivation that do not rely exclusively on self-reports.

Measuring Achievement

While achievement is a less-fraught construct than motivation, it still presents its own challenges. First, achievement is nearly always bound to a specific domain, for example mathematics (Arens et al., 2017 ) or reading skill (Ehm et al., 2019 ; Sewasew & Koester, 2019 ). It is unclear whether findings generalize from one domain to others. It is possible that there are quantitative or even qualitative differences between domains in how motivation and achievement interact, for example as a function of the feeling of flow that is or is not associated with performance within the domain.

A second aspect of achievement that may affect results is the type of measurement used. Achievement can be measured using standardized tests and grades in schools (Arens et al., 2017 ; Marsh et al., 2016 ), but for example also through teacher or self-assessment (Chamorro-Premuzic et al., 2010 ). These tend to vary substantially in reliability and validity and yield different results (e.g., stronger reciprocity for school grades than for test scores; Marsh et al., 2016 ). Moreover, in longitudinal studies, it is often difficult to assess whether performance at different moments in time truly reflects the same skill. For example, studies of reading skill may assess basic letter decoding skills in a first wave, and complex reading comprehension in the last (Sewasew & Schroeders, 2019 ). Such changes in tested skills are likely to lead to a lower stability of scores, and skew estimates of change over time. This consideration would speak for designs (discussed above) with shorter periods between measurement waves, where the same measures can be used in different waves.

A third aspect of achievement which may be important is that achievement can be construed as mastery of skills, which usually grows over time, or as performance relative to peers, which by definition cannot grow for all students. Studies typically use raw test scores as a dependent measure to assess this (Huang, 2011 ; Scharmer, 2020 ), which reflect mastery of skills. What is communicated to students, on the other hand, tends to be performance relative to peers (e.g., rankings or grades, which tend to be age-normed either explicitly or implicitly). This implies that perceived performance (see Fig. 1 ) will be based on relative performance, and not on the absolute achievement that researchers tend to study.

Scope of the Theories and Generalizability of Findings

Studies investigating motivation-achievement interactions have often studied the development of these processes separately during childhood, adolescence, and early adulthood. It is therefore unclear whether results can be generalized across developmental stages. Furthermore, as in many subfields of psychology, the majority of research in this area has been conducted in Western, educated, industrialized, rich, and democratic (WEIRD) societies (Henrich et al., 2010 ), where, for example, rates of schooling are much higher than other places (e.g. the Global South). Here, we outline considerations of generalizability across developmental stages and ethnic and sociocultural settings.

Generalization Across Developmental Stages

Childhood and adolescent development is characterized by rather different trajectories for academic achievement (with a general pattern of improvement with age) than for academic motivation (with a general pattern of decrease during adolescence, as well as diversification in sources of motivation) (Scherrer et al., 2020 ; Scherrer & Preckel, 2019 ). As a result, we can speculate that the reciprocal relationships between motivation and achievement will change with age. Below, we first highlight findings on changes in motivation across development, and next describe the consequences of developmental differences on reciprocal relations between motivation and achievement, as a function of age, developmental, and academic stages (such as puberty or school grade).

The way in which value guides goal pursuit transforms profoundly from childhood to adolescence to adulthood (Davidow et al., 2018 ), and is reflected in changes in reward sensitivity and cognitive control. At the individual level, motivational beliefs related to competence, control and agency, intrinsic and extrinsic motivation, and subjective task value undergo significant changes throughout the lifespan (Wigfield et al., 1998 , 2019 ). Social cognitive accounts often postulate that the development of more sophisticated cognitive capacities with age allows adolescents to improve performance but also to be more aware of their own abilities and those of their peers (Dweck, 2000 , Scherrer and Preckel, 2019 ). As children go through school, previously held optimistic beliefs on competency become more realistic or even pessimistic (Fredricks & Eccles, 2002 ; Jacobs et al., 2002 ; Scherrer & Preckel, 2019 ; Watt, 2004 ). A meta-analysis by Scherrer and Preckel ( 2019 ) found a small but significant overall decrease in several motivation constructs including academic self-concept, intrinsic motivation, mastery, and performance-approach achievement goals over the course of elementary and secondary school. However, for several other constructs, including self-esteem, academic self-efficacy, and performance-avoidance achievement goals, there was no consistent developmental trend across empirical studies. Overall, this heterogeneity in developmental patterns of various motivation constructs suggests that the reciprocal interactions with achievement may also follow different trajectories across development and still need to be investigated.

Beyond the individual level, social influences on learning and motivation within the family, peer, and school contexts (see Fig. 1 ) also play a significant role in the changes in motivation and achievement (Nolen & Ward, 2008 ; Wigfield et al., 1998 ). Sensitivity to social context continues to develop through childhood and adolescence, transforming through the different school stages (Ladd et al., 2009 ). Broadly speaking, motivation for academic activities decreases between childhood and adolescence, and motivation reorients toward social and novel situations (Crone & Dahl, 2012 ). According to the stage-environment fit account, the decline in academic motivation in adolescents is driven by a mismatch between their newly developed needs and their social settings (Scherrer et al., 2020 ; Scherrer & Preckel, 2019 ). Specifically, the transition to middle and high schools is usually accompanied by changes in peer relationships, friendship, and teacher-student relationships, an increase in normative and performance-focused evaluation and a decrease in perceived autonomy. Adolescence is especially characterized by heightened social influences on motivation (Casey, 2015 ): social interactions become increasingly important and peer affiliation motivation peaks (Brown & Larson, 2009 ).

Indeed, peer relationships show a stronger influence on academic self-concept for seventh graders, compared to fifth graders (Molloy et al., 2011 ). As children transition into middle school, there is increased competition for grades and typically a larger pool of peers that serve as a reference group (Molloy et al., 2011 ). During adolescence, same-aged peers in school can motivate academic achievement to a larger extent, and a stronger focus on performance rather than mastery goals is sometimes empirically observed (Maehr & Zusho, 2009 , but see Scherrer et al., 2020 ; Scherrer & Preckel, 2019 where meta-analytic findings point to declines in both mastery and performance goals).

In sum, individual developmental changes in self-concept, self-regulation, social influence, and the values attributed to certain academic goals suggest that reciprocal motivation-achievement relations from one age group cannot be readily generalized to other ages (Marsh & Martin, 2011 ). Qualitative and quantitative differences in the reciprocal relationship between motivation and achievement thus seem plausible, but the lack of developmentally appropriate measures complicates comparisons across different stages (Fulmer & Frijters, 2009 ). Populations of different ages have distinct motivation factor structures (Rao & Sachs, 1999 ) and young children do not yet have the cognitive and memory capacity to process some motivation constructs and contextual references (Fulmer & Frijters, 2009 ).

Taken together, it is critical to understand how changes in motivation interact with changes in abilities, and affect behavior across different age groups and school career. The literature would greatly benefit from an integration of research across a broader age range, and identifying continuities and discontinuities in the reciprocal relationship between motivation and performance across development. One way to do this is to leverage accelerated longitudinal designs, with multiple measurements of cohorts with different starting ages and differentiation between multiple motivation constructs (Guay et al., 2003 ; Marsh & Martin, 2011 ; Scherrer & Preckel, 2019 ).

Generalization Across Sociocultural Settings

The reciprocal relationship between motivation and achievement may also take different shapes across contexts, as students belong to different ethnic, gender, socioeconomic (SES), and cultural groups. However, the majority of current research on the reciprocal relations between motivation and academic achievement has suffered from what can be considered a sampling bias problem (Pollet & Saxton, 2019 ), i.e., conducted using homogenous samples in terms of ethnicity (Marsh & Martin, 2011 ) and cultural background (Henrich et al., 2010 ). In the meta-analysis by Valentine et al. ( 2004 ), which showed that samples from non-Western countries tended to have larger effect sizes than those from Western countries, there were only four non-Western samples out of a total of 60 samples. In her meta-analysis of Scharmer ( 2020 ), 90% of samples were collected in WEIRD countries (Australia, USA, and Western Europe, with fully half using German samples). This is problematic, given that even within WEIRD samples, motivation of students from different groups (e.g., African Americans vs. European Americans) is influenced by different factors, and may contribute differently to their academic achievement (Cohen et al., 2009 ). Ten years later, the remark of Marsh and Martin ( 2011 ) thus still stands that it is premature to conclude that the reciprocal relationship between motivation and achievement is universal.

Demonstrating this across diverse populations is important for three reasons. Firstly, even the same motivation construct might contribute differently to achievement across groups. For example, Chiu and Klassen ( 2010 ), using PISA data and a very large and diverse sample ( N participant = 88,590, N country = 34), found a positive link between mathematics self-concept and mathematics achievement, but this relationship was moderated by cross-country differences in cultural orientations (specifically, degree of egalitarianism, rigidity in gender roles, aversion to uncertainty). As mentioned above, Sachisthal et al. ( 2019 ) also showed that across populations different motivation constructs are central in the network of constructs.

Second, it is not unlikely that different groups have diverging motivation constructs. For instance, general self-concept is conceptualized differently across cultures (Becker et al., 2012 ; Taras et al., 2010 ; Vignoles et al., 2016 ). Thus, the extent to which academic self-concept contributes to a general sense of self likely differs across groups (Hansford & Hattie, 1982 ). Chen and Wong ( 2015 ) also found that Chinese students assigned different meanings to performance-approach and performance-avoidance goals than what is usually found in Western populations. As a result, interventions may need to target different factors in different sociocultural settings.

Finally, there might be culture-dependent or population-specific pathways connecting the relationship between motivation and achievement. For example, culture is likely to have a strong influence on attributional processes (see extensive theoretical discussion in Graham, 2020 ; empirical data in Chiu & Klassen, 2010 ) and implicit theory of intelligence (W. W. Chen & Wong, 2015 ). Chiu and Klassen ( 2010 ) found that calibration of mathematics self-concept (i.e., the degree to which judgments of one’s competence in a domain accurately reflect actual performance) was positively related to mathematics achievement. However, this link was significantly stronger in places where the prevailing culture was more egalitarian or more tolerant of uncertainty.

Such findings suggest differences between sociocultural contexts are not just gradual but also likely to be qualitative. This would threaten the generalizability of findings (Henrich et al., 2010 ). Note that many of the empirical studies cited in this section are non-longitudinal. Reciprocal relationships between motivation and achievement may look different from what we currently know when representative samples are included. It is thus highly relevant for future motivation research to increase ethnic, and other group diversity in their studies. This can be done by better sampling within geographical boundaries (Pollet & Saxton, 2019 ) and by reaching out to under-researched territories such as in Africa, Middle East, Southeast Asia, Central Asia, and South America.

Diversifying study populations can be tough, but is essential for new understanding of human universals and specifics in motivation. For example, collecting experimental data across countries offers alternative perspectives to experimental set-ups and findings, which subsequently prompt researchers to rethink the constructs of interest and their operationalizations (Vu et al., 2017 ). Nevertheless, there are innovative solutions to overcome practical difficulties, including collaborating with researchers who reside in places where certain specificity and universality in motivation constructs can be expected (as outlined in some of the examples above) and making use of networks of researchers such as Psychological Science Accelerator to get access to multiple laboratories and populations across the world ( https://psysciacc.wordpress.com/ ).

Discussion and Conclusions

We have summarized theories of motivation and analyzed these specifically with regards to how they conceptualize reciprocal interactions between motivation and achievement. This led to a summary of pathways between motivation and achievement, depicted in Fig. 1 . The common denominator between theories suggested reciprocal positive influences of motivation on achievement and vice versa, which has been supported by much previous research. We reviewed the strengths of the underlying data, but also limitations and gaps in the evidence. This led to a research agenda consisting of the following recommendations for future studies on the relationship between motivation and performance: (1) include multiple motivation constructs (on top of ASC), (2) investigate behavioral mediators, (3) consider a network approach, (4) align frequency of measurement to expected change rate in intended constructs and include multiple time scales to better understand influences across time-scales, (5) check whether designs meet the criteria for measuring causal, reciprocal inferences, (6) choose an appropriate statistical model, (7) apply alternatives to self-reports, (8) consider various ways of measuring achievement, and (9) strive for generalization of the findings to various age, ethnic, and sociocultural groups.

One of the hardest problems to solve is the lack of studies that allow for firm causal inferences. Most studies contain sophisticated statistical analyses of longitudinal data. While impressive, the underlying data remains correlational in nature and susceptible to explanations in terms of the presence of a (time-varying or time-invariant) third variable (or variables) that is not accounted for in a model, yet does have a causal effect on the outcomes. Usami et al. ( 2019 ) outline three assumptions that need to be checked when making causality inferences in the context of longitudinal designs. These are the assumptions of consistency, of positivity after controlling for confounders, and of no unobserved confounders (see full the discussion in Usami et al., 2019 ). In our view, the trickiest is the third assumption: “the relation between x and y must not be explained by other causes”(Antonakis et al., 2010 , p. 1087; Usami et al., 2019 ). There seems to be no way to conclusively rule out the presence of such confounders. Substantial knowledge about potential confounders and their characteristics, and using that knowledge to select the most appropriate cross-lagged model, is necessary.

We argued that the strongest support for causal claims on motivation-achievement relations would be studies manipulating either motivation or achievement at one time point and studying the effects on motivation-achievement interactions across subsequent time points. Such studies do not yet exist to our knowledge. Many studies do show effects of manipulations affecting motivation thereby having an effect on achievement, but these studies have not looked at longitudinal interactions. The other pathway (i.e., achievement → motivation) has not been studied extensively, because of difficulties identifying manipulations that would directly affect achievement but not motivation.

A way to work around this problem is to manipulate perceived achievement, instead of true achievement (our lab study, manuscript in preparation). In this experiment, participants perform a learning task that lasts an hour. Their motivation and achievement are measured at multiple consecutive time points. Halfway through the experiment, a manipulation of perceived feedback is introduced: participants receive rigged feedback that their achievement has dropped to below peer average. The causal relations between motivation and achievement can be examined because manipulated perceived achievement leads to corresponding changes in motivational beliefs, to changes in motivational behaviors and eventually, to changes in actual achievement across multiple consecutive time points. Another example of manipulation of achievement can be found in Bejjani et al. ( 2019 ) where they used a feedback manipulation (a competence-threatening IQ score) to study its effect on subsequent motivation and learning.

Furthermore, we have argued that motivation can best be seen as a constellation of highly related, multidimensional constructs, and manipulations of motivation may directly or indirectly influence achievement and vice versa. An innovative method to study the motivation-achievement relationship can be a network approach, where observational and interventional data are used to estimate a causal graph. The idea is that to estimate causal relations, one variable can be manipulated at a time, and its effects on other variables can be observed. The network approach is also beneficial in the classroom context where there are many variables to take into account which cannot be independently manipulated (Yeager & Walton, 2011 ).

Our discussion of various theories of motivation in education showed how densely motivation and performance are interlinked. They can best be seen as a cycle of mutually reinforcing relations. While a cycle suggests a closed loop, we list several options for outside intervention, which are represented by the gray arrows in Fig. 1 . Some of these are well-researched practical interventions, such as autonomy support and training in helpful attributions (Hulleman et al., 2010 ). Others are excellent avenues for future research. For example, designing how feedback reaches the learner offers opportunities for motivation support. Research has shown how to provide negative feedback in a way that does not lower a learner’s motivation (Fong et al., 2019 ), how peer comparison can be harnessed for motivation (Mumm & Mutlu, 2011 ), or how feedback can be given without giving away that errors have been made (Narciss & Huth, 2006 ). It is our impression that this research has so far not reached all classrooms.

In conclusion, this view of a cycle between motivation and achievement, as shown in Fig. 1 , has intuitive appeal and fits well with theories of academic motivation. However, empirical evidence for a cycle is far from complete. The research agenda we have presented contains important challenges for future research aimed at elucidating how motivation and achievement exactly interact, and whether a cycle and a network of constructs are good ways of conceptualizing these interactions. As academic motivation typically drops considerably in adolescence and may be lower for some groups (e.g., through the effects of SES, stereotype threat, and the likes), such evidence is necessary for gaining knowledge on how to best intervene in the cycle, and bring out the best in each student.

Alexander, P. A., Kulikowich, J. M., & Jetton, T. L. (1994). The role of subject-matter knowledge and interest in the processing of linear and nonlinear texts. Review of Educational Research, 64 (2), 201–252. https://doi.org/10.2307/1170694 .

Article   Google Scholar  

Anderman, E. M. (2020). Achievement motivation theory: Balancing precision and utility. Contemporary Educational Psychology, 61 , 101864. https://doi.org/10.1016/j.cedpsych.2020.101864 .

Antonakis, J., Bendahan, S., Jacquart, P., & Lalive, R. (2010). On making causal claims: A review and recommendations. The Leadership Quarterly, 21 (6), 1086–1120. https://doi.org/10.1016/j.leaqua.2010.10.010 .

Arens, A. K., Marsh, H. W., Pekrun, R., Lichtenfeld, S., Murayama, K., & vom Hofe, R. (2017). Math self-concept, grades, and achievement test scores: Long-term reciprocal effects across five waves and three achievement tracks. Journal of Educational Psychology , 109 (5), 621–634. https://doi.org/10.1037/edu0000163

Arens, A. K., Schmidt, I., & Preckel, F. (2019). Longitudinal relations among self-concept, intrinsic value, and attainment value across secondary school years in three academic domains. Journal of Educational Psychology, 111 (4), 663–684. https://doi.org/10.1037/edu0000313 .

Baars, M., Wijnia, L., de Bruin, A., & Paas, F. (2020). The relation between students’ effort and monitoring judgments during learning: A meta-analysis. Educational Psychology Review, 32 (4), 979–1002. https://doi.org/10.1007/s10648-020-09569-3 .

Bandura, A. (1997). Self-efficacy: The exercise of control . Henry Holt & Co..

Beauchaine, T. P. (2015). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3 , 43–47. https://doi.org/10.1016/j.copsyc.2015.01.017 .

Beck, R. C. (1990). Motivation . Prentice Hall.

Becker, M., Vignoles, V. L., Owe, E., Brown, R., Smith, P. B., Easterbrook, M., Herman, G., de Sauvage, I., Bourguignon, D., Torres, A., Camino, L., Lemos, F. C. S., Ferreira, M. C., Koller, S. H., González, R., Carrasco, D., Cadena, M. P., Lay, S., Wang, Q., Bond, M. H., Trujillo, E. V., Balanta, P., Valk, A., Mekonnen, K. H., Nizharadze, G., Fülöp, M., Regalia, C., Manzi, C., Brambilla, M., Harb, C., Aldhafri, S., Martin, M., Macapagal, M. E. J., Chybicka, A., Gavreliuc, A., Buitendach, J., Gallo, I. S., Özgen, E., Güner, Ü. E., & Yamakoğlu, N. (2012). Culture and the distinctiveness motive: Constructing identity in individualistic and collectivistic contexts. Journal of Personality and Social Psychology, 102 (4), 833–855. https://doi.org/10.1037/a0026853 .

Bejjani, C., DePasque, S., & Tricomi, E. (2019). Intelligence mindset shapes neural learning signals and memory. Biological Psychology, 146 , 107715. https://doi.org/10.1016/j.biopsycho.2019.06.003 .

Berridge, K. C. (2018). Evolving concepts of emotion and motivation. Frontiers in Psychology, 9 , 1647. https://doi.org/10.3389/fpsyg.2018.01647 .

Betz, N. E., & Schifano, R. S. (2000). Evaluation of an intervention to increase realistic self-efficacy and interests in college women. Journal of Vocational Behavior, 56 (1), 35–52. https://doi.org/10.1006/jvbe.1999.1690 .

Bieg, M., Goetz, T., & Hubbard, K. (2013). Can I master it and does it matter? An intraindividual analysis on control–value antecedents of trait and state academic emotions. Learning and Individual Differences, 28 , 102–108. https://doi.org/10.1016/j.lindif.2013.09.006 .

Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really? Educational Psychology Review, 15 (1), 1–40. https://doi.org/10.1023/A:1021302408382 .

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16 (1), 5–13. https://doi.org/10.1002/wps.20375 .

Bossaert, G., Doumen, S., Buyse, E., & Verschueren, K. (2011). Predicting children’s academic achievement after the transition to first grade: A two-year longitudinal study. Journal of Applied Developmental Psychology, 32 (2), 47–57. https://doi.org/10.1016/j.appdev.2010.12.002 .

Brehm, J. W., & Self, E. S. (1989). The intensity of motivation. Annual Review of Psychology, 40 , 109–131. https://doi.org/10.1146/annurev.ps.40.020189.000545 .

Brouwer, A.-M., Hogervorst, M. A., van Erp, J. B. F., Heffelaar, T., Zimmerman, P. H., & Oostenveld, R. (2012). Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of Neural Engineering, 9 (4), 045008. https://doi.org/10.1088/1741-2560/9/4/045008 .

Brouwer, A.-M., Hogervorst, M. A., Holewijn, M., & van Erp, J. B. F. (2014). Evidence for effects of task difficulty but not learning on neurophysiological variables associated with effort. International Journal of Psychophysiology, 93 (2), 242–252. https://doi.org/10.1016/j.ijpsycho.2014.05.004 .

Brown, B. B., & Larson, J. (2009). Peer Relationships in Adolescence. In R. M. Lerner & L. Steinberg (Eds.), Handbook of Adolescent Psychology (Vol. 2). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470479193.adlpsy002004

Brunner, M., Keller, U., Dierendonck, C., Reichert, M., Ugen, S., Fischbach, A., & Martin, R. (2010). The structure of academic self-concepts revisited: The nested Marsh/Shavelson model. Journal of Educational Psychology, 102 (4), 964–981. https://doi.org/10.1037/a0019644 .

Burnette, J. L., O’Boyle, E. H., VanEpps, E. M., Pollack, J. M., & Finkel, E. J. (2013). Mind-sets matter: A meta-analytic review of implicit theories and self-regulation. Psychological Bulletin, 139 (3), 655–701. https://doi.org/10.1037/a0029531 .

Burns, R. A., Crisp, D. A., & Burns, R. B. (2020). Re-examining the reciprocal effects model of self-concept, self-efficacy, and academic achievement in a comparison of the cross-lagged panel and random-intercept cross-lagged panel frameworks. British Journal of Educational Psychology, 90 (1), 77–91. https://doi.org/10.1111/bjep.12265 .

Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67 (2), 319–333. https://doi.org/10.1037/0022-3514.67.2.319 .

Casey, B. J. (2015). Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annual Review of Psychology, 66 (1), 295–319. https://doi.org/10.1146/annurev-psych-010814-015156 .

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18 (8), 414–421. https://doi.org/10.1016/j.tics.2014.04.012 .

Chamorro-Premuzic, T., Harlaar, N., Greven, C. U., & Plomin, R. (2010). More than just IQ: A longitudinal examination of self-perceived abilities as predictors of academic performance in a large sample of UK twins. Intelligence, 38 (4), 385–392. https://doi.org/10.1016/j.intell.2010.05.002 .

Chen, W. W., & Wong, Y. L. (2015). Chinese mindset: Theories of intelligence, goal orientation and academic achievement in Hong Kong students. Educational Psychology, 35 (6), 714–725. https://doi.org/10.1080/01443410.2014.893559 .

Chen, S.-K., Yeh, Y.-C., Hwang, F.-M., & Lin, S. S. J. (2013). The relationship between academic self-concept and achievement: A multicohort–multioccasion study. Learning and Individual Differences, 23 , 172–178. https://doi.org/10.1016/j.lindif.2012.07.021 .

Chiu, M. M., & Klassen, R. M. (2010). Relations of mathematics self-concept and its calibration with mathematics achievement: Cultural differences among fifteen-year-olds in 34 countries. Learning and Instruction, 20 (1), 2–17. https://doi.org/10.1016/j.learninstruc.2008.11.002 .

Cleary, T. J., & Zimmerman, B. J. (2012). A cyclical self-regulatory account of student engagement: Theoretical foundations and applications. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of Research on Student Engagement (pp. 237–257). Springer US. https://doi.org/10.1007/978-1-4614-2018-7_11 .

Cohen, G. L., Garcia, J., Purdie-Vaughns, V., Apfel, N., & Brzustoski, P. (2009). Recursive processes in self-affirmation: Intervening to close the minority achievement gap. Science, 324 (5925), 400–403. https://doi.org/10.1126/science.1170769 .

Collie, R. J., Martin, A. J., Malmberg, L.-E., Hall, J., & Ginns, P. (2015). Academic buoyancy, student’s achievement, and the linking role of control: A cross-lagged analysis of high school students. British Journal of Educational Psychology, 85 (1), 113–130. https://doi.org/10.1111/bjep.12066 .

Covington, M. V. (2000). Goal theory, motivation, and school achievement: An integrative review. Annual Review of Psychology, 51 (1), 171–200. https://doi.org/10.1146/annurev.psych.51.1.171 .

Critchley, H. D. (2002). Review: Electrodermal responses: What happens in the brain. The Neuroscientist, 8 (2), 132–142. https://doi.org/10.1177/107385840200800209 .

Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13 (9), 636–650. https://doi.org/10.1038/nrn3313 .

Csikzentmihalyi, M. (1990). Flow: The psychology of optimal experience . Harper & Row.

Cury, F., Fonseca, D. D., Zahn, I., & Elliot, A. (2008). Implicit theories and IQ test performance: A sequential mediational analysis. Journal of Experimental Social Psychology, 44 (3), 783–791. https://doi.org/10.1016/j.jesp.2007.07.003 .

D’Mello, S. K., Craig, S. D., Witherspoon, A., McDaniel, B., & Graesser, A. (2008). Automatic detection of learner’s affect from conversational cues. User Modeling and User-Adapted Interaction, 18 (1–2), 45–80. https://doi.org/10.1007/s11257-007-9037-6 .

Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. J. (2016). Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model. Psychological Review, 123 (1), 2–22. https://doi.org/10.1037/a0039802 .

Davidow, J. Y., Insel, C., & Somerville, L. H. (2018). Adolescent development of value-guided goal pursuit. Trends in Cognitive Sciences, 22 (8), 725–736. https://doi.org/10.1016/j.tics.2018.05.003 .

De Kraker-Pauw, E., Van Wesel, F., Krabbendam, L., & Van Atteveldt, N. (2017). Teacher mindsets concerning the malleability of intelligence and the appraisal of achievement in the context of feedback. Frontiers in Psychology, 8 , 1594. https://doi.org/10.3389/fpsyg.2017.01594 .

Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11 (4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01 .

Dettmers, S., Trautwein, U., & Lüdtke, O. (2009). The relationship between homework time and achievement is not universal: Evidence from multilevel analyses in 40 countries. School Effectiveness and School Improvement, 20 (4), 375–405. https://doi.org/10.1080/09243450902904601 .

Dicke, T., Marsh, H. W., Parker, P. D., Pekrun, R., Guo, J., & Televantou, I. (2018). Effects of school-average achievement on individual self-concept and achievement: Unmasking phantom effects masquerading as true compositional effects. Journal of Educational Psychology, 110 (8), 1112–1126. https://doi.org/10.1037/edu0000259 .

Doumen, S., Broeckmans, J., & Masui, C. (2014). The role of self-study time in freshmen’s achievement. Educational Psychology, 34 (3), 385–402. https://doi.org/10.1080/01443410.2013.785063 .

Duff, D., Tomblin, J. B., & Catts, H. (2015). The influence of reading on vocabulary growth: A case for a Matthew effect. Journal of Speech, Language, and Hearing Research, 58 (3), 853–864. https://doi.org/10.1044/2015_JSLHR-L-13-0310 .

Dweck, C. S. (2000). Self-theories: Their role in motivation, personality and development . Psychology Press.

Dweck, C. S. (2017). From needs to goals and representations: Foundations for a unified theory of motivation, personality, and development. Psychological Review, 124 (6), 689–719. https://doi.org/10.1037/rev0000082 .

Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53 (1), 109–132. https://doi.org/10.1146/annurev.psych.53.100901.135153 .

Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemporary Educational Psychology, 61 , 101859. https://doi.org/10.1016/j.cedpsych.2020.101859 .

Eccles, J. S., Wigfield, A., Midgley, C., Reuman, D., Iver, D. M., & Feldlaufer, H. (1993). Negative effects of traditional middle schools on students’ motivation. The Elementary School Journal, 93 (5), 553–574. https://doi.org/10.1086/461740 .

Ehm, J.-H., Hasselhorn, M., & Schmiedek, F. (2019). Analyzing the developmental relation of academic self-concept and achievement in elementary school children: Alternative models point to different results. Developmental Psychology, 55 (11), 2336–2351. https://doi.org/10.1037/dev0000796 .

Fang, J., Huang, X., Zhang, M., Huang, F., Li, Z., & Yuan, Q. (2018). The big-fish-little-pond effect on academic self-concept: A meta-analysis. Frontiers in Psychology, 9 , 1569. https://doi.org/10.3389/fpsyg.2018.01569 .

Fink, A., Grabner, R. H., Neuper, C., & Neubauer, A. C. (2005). EEG alpha band dissociation with increasing task demands. Cognitive Brain Research, 24 (2), 252–259. https://doi.org/10.1016/j.cogbrainres.2005.02.002 .

Fong, C. J., Patall, E. A., Vasquez, A. C., & Stautberg, S. (2019). A meta-analysis of negative feedback on intrinsic motivation. Educational Psychology Review, 31 (1), 121–162. https://doi.org/10.1007/s10648-018-9446-6 .

Fraine, B., Damme, J., & Onghena, P. (2007). A longitudinal analysis of gender differences in academic self-concept and language achievement: A multivariate multilevel latent growth approach. Contemporary Educational Psychology, 32 , 132–150. https://doi.org/10.1016/j.cedpsych.2006.10.005 .

Fredricks, J. A., & Eccles, J. S. (2002). Children’s competence and value beliefs from childhood through adolescence: Growth trajectories in two male-sex-typed domains. Developmental Psychology, 38 (4), 519–533. https://doi.org/10.1037/0012-1649.38.4.519 .

Frijda, N. (1988). The law of emotion. American Psychologist, 43 (5), 349–358. https://doi.org/10.1037//0003-066x.43.5.349 .

Fulmer, S. M., & Frijters, J. C. (2009). A review of self-report and alternative approaches in the measurement of student motivation. Educational Psychology Review, 21 (3), 219–246. https://doi.org/10.1007/s10648-009-9107-x .

Garon-Carrier, G., Boivin, M., Guay, F., Kovas, Y., Dionne, G., Lemelin, J.-P., Séguin, J. R., Vitaro, F., & Tremblay, R. E. (2016). Intrinsic motivation and achievement in mathematics in elementary school: A longitudinal investigation of their association. Child Development, 87 (1), 165–175. https://doi.org/10.1111/cdev.12458 .

Gaspard, H., Lauermann, F., Rose, N., Wigfield, A., & Eccles, J. S. (2020). Cross-domain trajectories of students’ ability self-concepts and intrinsic values in math and language arts. Child Development, 91 (5), 1800–1818. https://doi.org/10.1111/cdev.13343 .

Gendolla, G. H. E., & Richter, M. (2010). Effort mobilization when the self is involved: Some lessons from the cardiovascular system. Review of General Psychology, 14 (3), 212–226. https://doi.org/10.1037/a0019742 .

Gottfried, A. E., Marcoulides, G. A., Gottfried, A. W., & Oliver, P. H. (2013). Longitudinal pathways from math intrinsic motivation and achievement to math course accomplishments and educational attainment. Journal of Research on Educational Effectiveness, 6 (1), 68–92. https://doi.org/10.1080/19345747.2012.698376 .

Grafsgaard, J. F., Boyer, K. E., Phillips, R., & Lester, J. C. (2011). Modeling confusion: Facial expression, task, and discourse in task-oriented tutorial dialogue. In G. Biswas, S. Bull, J. Kay, & A. Mitrovic (Eds.), International Conference on Artificial Intelligence in Education (6738th ed., pp. 98–105). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-21869-9_15 .

Grafsgaard, J. F., Wiggins, J. B., Boyer, K. E., Wiebe, E. N., & Lester, J. C. (2014). Predicting learning and affect from multimodal data streams in task-oriented tutorial dialogue. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (pp. 122–129). International Educational Data Mining Society. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.659.7572&rep=rep1&type=pdf . Accessed 10 July 2020.

Graham, S. (2020). An attributional theory of motivation. Contemporary Educational Psychology, 61 , 101861. https://doi.org/10.1016/j.cedpsych.2020.101861 .

Granger, C. W. J. (1980). Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control, 2 , 329–352. https://doi.org/10.1016/0165-1889(80)90069-x .

Greene, J. A., & Azevedo, R. (2007). A theoretical review of Winne and Hadwin’s model of self-regulated learning: New perspectives and directions. Review of Educational Research, 77 (3), 334–372. https://doi.org/10.3102/003465430303953 .

Grigg, S., Perera, H. N., McIlveen, P., & Svetleff, Z. (2018). Relations among math self efficacy, interest, intentions, and achievement: A social cognitive perspective. Contemporary Educational Psychology, 53 , 73–86. https://doi.org/10.1016/j.cedpsych.2018.01.007 .

Grygiel, P., Modzelewski, M., & Pisarek, J. (2017). Academic self-concept and achievement in Polish primary schools: Cross-lagged modelling and gender-specific effects. European Journal of Psychology of Education, 32 (3), 407–429. https://doi.org/10.1007/s10212-016-0300-2 .

Guay, F., Marsh, H. W., & Boivin, M. (2003). Academic self-concept and academic achievement: Developmental perspectives on their causal ordering. Journal of Educational Psychology, 95 (1), 124–136. https://doi.org/10.1037/0022-0663.95.1.124 .

Guo, J., Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2015). Directionality of the associations of high school expectancy-value, aspirations, and attainment: A longitudinal study. American Educational Research Journal, 52 (2), 371–402. https://doi.org/10.3102/0002831214565786 .

Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20 (1), 102–116. https://doi.org/10.1037/a0038889 .

Hansford, B. C., & Hattie, J. A. (1982). The relationship between self and achievement/performance measures. Review of Educational Research, 52 (1), 123–142. https://doi.org/10.3102/00346543052001123 .

Harackiewicz, J. M., Durik, A. M., Barron, K. E., Linnenbrink-Garcia, L., & Tauer, J. M. (2008). The role of achievement goals in the development of interest: Reciprocal relations between achievement goals, interest, and performance. Journal of Educational Psychology, 100 (1), 105–122. https://doi.org/10.1037/0022-0663.100.1.105 .

Harackiewicz, J. M., Tibbetts, Y., Canning, E., & Hyde, J. S. (2014). Harnessing values to promote motivation in education. In S. A. Karabenick & T. C. Urdan (Eds.), Advances in Motivation and Achievement (18th ed., pp. 71–105). Emerald Group Publishing Limited. https://doi.org/10.1108/S0749-742320140000018002 .

Hattie, J., Hodis, F. A., & Kang, S. H. K. (2020). Theories of motivation: Integration and ways forward. Contemporary Educational Psychology, 61 , 101865. https://doi.org/10.1016/j.cedpsych.2020.101865 .

Haynes, C., Thompson, J., Licklider, B., Hendrich, S., Thompson, K., & Wiersema, J. (2016). Mindset about intelligence and connections to student effort: Opportunities for learning and action. Natural Sciences Education, 45 (1), 1–10 nse2016.0004. https://doi.org/10.4195/nse2016.0004 .

Hebbecker, K., Förster, N., & Souvignier, E. (2019). Reciprocal effects between reading achievement and intrinsic and extrinsic reading motivation. Scientific Studies of Reading, 23 (5), 419–436. https://doi.org/10.1080/10888438.2019.1598413 .

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33 (2–3), 61–83. https://doi.org/10.1017/S0140525X0999152X .

Hidi, S., & Harackiewicz, J. M. (2001). Motivating the academically unmotivated: A critical issue for the 21st century. Review of Educational Research, 70 (2), 151–179. https://doi.org/10.3102/00346543070002151 .

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41 (2), 111–127. https://doi.org/10.1207/s15326985ep4102_4 .

Hofman, A., Jansen, B., de Mooij, S., Stevenson, C., & van der Maas, H. (2018). A solution to the measurement problem in the idiographic approach using computer adaptive practicing. Journal of Intelligence, 6 (1), 14. https://doi.org/10.3390/jintelligence6010014 .

Höft, L., & Bernholt, S. (2019). Longitudinal couplings between interest and conceptual understanding in secondary school chemistry: An activity-based perspective. International Journal of Science Education, 41 (5), 607–627. https://doi.org/10.1080/09500693.2019.1571650 .

Holland, P. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81 (396), 945–960. https://doi.org/10.1080/01621459.1986.10478354 .

Holzman, J. B., & Bridgett, D. J. (2017). Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience & Biobehavioral Reviews, 74 , 233–255. https://doi.org/10.1016/j.neubiorev.2016.12.032 .

Huang, C. (2011). Self-concept and academic achievement: A meta-analysis of longitudinal relations. Journal of School Psychology, 49 (5), 505–528. https://doi.org/10.1016/j.jsp.2011.07.001 .

Hulleman, C. S., Schrager, S. M., Bodmann, S. M., & Harackiewicz, J. M. (2010). A meta-analytic review of achievement goal measures: Different labels for the same constructs or different constructs with similar labels? Psychological Bulletin, 136 (3), 422–449. https://doi.org/10.1037/a0018947 .

Jacobs, J. E., Lanza, S., Osgood, D. W., Eccles, J. S., & Wigfield, A. (2002). Changes in children’s self-competence and values: Gender and domain differences across grades one through twelve. Child Development, 73 (2), 509–527. https://doi.org/10.1111/1467-8624.00421 .

Jansen, B. R. J., Louwerse, J., Straatemeier, M., Van der Ven, S. H. G., Klinkenberg, S., & Van der Maas, H. L. J. (2013). The influence of experiencing success in math on math anxiety, perceived math competence, and math performance. Learning and Individual Differences, 24 , 190–197. https://doi.org/10.1016/j.lindif.2012.12.014 .

Järvenoja, H., Järvelä, S., Törmänen, T., Näykki, P., Malmberg, J., Kurki, K., Mykkänen, A., & Isohätälä, J. (2018). Capturing motivation and emotion regulation during a learning process. Frontline Learning Research, 6 (3), 85–104. https://doi.org/10.14786/flr.v6i3.369 .

Kelley, N. J., Hortensius, R., Schutter, D. J. L. G., & Harmon-Jones, E. (2017). The relationship of approach/avoidance motivation and asymmetric frontal cortical activity: A review of studies manipulating frontal asymmetry. International Journal of Psychophysiology, 119 , 19–30. https://doi.org/10.1016/j.ijpsycho.2017.03.001 .

Kerdijk, W., Cohen-Schotanus, J., Mulder, B. F., Muntinghe, F. L. H., & Tio, R. A. (2015). Cumulative versus end-of-course assessment: Effects on self-study time and test performance. Medical Education, 49 (7), 709–716. https://doi.org/10.1111/medu.12756 .

Kleinginna, P. R., & Kleinginna, A. M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and Emotion, 5 (4), 345–379. https://doi.org/10.1007/BF00992553 .

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16 (12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007 .

Koenka, A. C. (2020). Academic motivation theories revisited: An interactive dialog between motivation scholars on recent contributions, underexplored issues, and future directions. Contemporary Educational Psychology, 61 , 101831. https://doi.org/10.1016/j.cedpsych.2019.101831 .

Kool, W., & Botvinick, M. (2018). Mental labour. Nature Human Behaviour, 2 (12), 899–908. https://doi.org/10.1038/s41562-018-0401-9 .

Koriat, A., Ma’ayan, H., & Nussinson, R. (2006). The intricate relationships between monitoring and control in metacognition: Lessons for the cause-and-effect relation between subjective experience and behavior. Journal of Experimental Psychology: General, 135 (1), 36–69. https://doi.org/10.1037/0096-3445.135.1.36 .

Kuhl, J. (1984). Volitional aspects of achievement motivation and learned helplessness: Toward a comprehensive theory of action control. In B. A. Maher & W. B. Maher (Eds.), Progress in Experimental Personality Research (13th ed., pp. 99–171). Elsevier. https://doi.org/10.1016/B978-0-12-541413-5.50007-3 .

Ladd, G. W., Herald-Brown, S. L., & Kochel, K. P. (2009). Peers and motivation. In K. R. Wenzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 323–348). Routledge/Taylor & Francis Group.

Lanfranchi, P. A., Pépin, J.-L., & Somers, V. K. (2017). Cardiovascular Physiology. In Principles and Practice of Sleep Medicine (pp. 142–154.e4). Elsevier. https://doi.org/10.1016/B978-0-323-24288-2.00014-3 .

Lazarus, R. S. (1999). Hope: An emotion and a vital coping resource against despair. Social Research, 66 (2), 653–678.

Google Scholar  

Lazowski, R. A., & Hulleman, C. S. (2016). Motivation interventions in education: A meta-analytic review. Review of Educational Research, 86 (2), 602–640. https://doi.org/10.3102/0034654315617832 .

Lüftenegger, M., & Chen, J. A. (2017). Conceptual issues and assessment of implicit theories. Zeitschrift für Psychologie, 225 (2), 99–106. https://doi.org/10.1027/2151-2604/a000286 .

Lumley, M. A., Gustavson, B. J., Partridge, R. T., & Labouvie-Vief, G. (2005). Assessing alexithymia and related emotional ability constructs using multiple methods: Interrelationships among measures. Emotion, 5 (3), 329–342. https://doi.org/10.1037/1528-3542.5.3.329 .

Maehr, M. L., & Zusho, A. (2009). Achievement goal theory: The past, present, and future. In K. R. Wenzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 77–104). Routledge/Taylor & Francis Group.

Marsh, H. W., & Craven, R. G. (2006). Reciprocal effects of self-concept and performance from a multidimensional perspective: Beyond seductive pleasure and unidimensional perspectives. Perspectives on Psychological Science, 1 (2), 133–163. https://doi.org/10.1111/j.1745-6916.2006.00010.x .

Marsh, H. W., & Martin, A. J. (2011). Academic self-concept and academic achievement: Relations and causal ordering. British Journal of Educational Psychology, 81 (1), 59–77. https://doi.org/10.1348/000709910X503501 .

Marsh, H. W., & O’Neill, R. (1984). Self description questionnaire III: The construct validity of multidimensional self-concept ratings by late adolescents. Journal of Educational Measurement, 21 (2), 153–174. https://doi.org/10.1111/j.1745-3984.1984.tb00227.x .

Marsh, H. W., Byrne, B. M., & Yeung, A. S. (1999). Causal ordering of academic self-concept and achievement: Reanalysis of a pioneering study and revised recommendations. Educational Psychologist, 34 (3), 155–167. https://doi.org/10.1207/s15326985ep3403_2 .

Marsh, H. W., Craven, R. G., Hinkley, J. W., & Debus, R. L. (2003). Evaluation of the big-two-factor theory of academic motivation orientations: An evaluation of Jingle-Jangle Fallacies. Multivariate Behavioral Research, 38 (2), 189–224. https://doi.org/10.1207/S15327906MBR3802_3 .

Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child Development, 76 (2), 397–416. https://doi.org/10.1111/j.1467-8624.2005.00853.x .

Marsh, H. W., Pekrun, R., Lichtenfeld, S., Guo, J., Arens, A. K., & Murayama, K. (2016). Breaking the double-edged sword of effort/trying hard: Developmental equilibrium and longitudinal relations among effort, achievement, and academic self-concept. Developmental Psychology, 52 (8), 1273–1290. https://doi.org/10.1037/dev0000146 .

Marsh, H. W., Pekrun, R., Murayama, K., Arens, A. K., Parker, P. D., Guo, J., & Dicke, T. (2018). An integrated model of academic self-concept development: Academic self-concept, grades, test scores, and tracking over 6 years. Developmental Psychology, 54 (2), 263–280. https://doi.org/10.1037/dev0000393 .

Martin, A. J. (2009). Motivation and engagement across the academic life span: A developmental construct validity study of elementary school, high school, and university/college students. Educational and Psychological Measurement, 69 (5), 794–824. https://doi.org/10.1177/0013164409332214 .

Massin, O. (2017). Towards a definition of efforts. Motivation Science, 3 (3), 230–259. https://doi.org/10.1037/mot0000066 .

McNeish, D., & Hamaker, E. L. (2019). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25 (5), 610–635. https://doi.org/10.31234/osf.io/j56bm .

Mega, C., Ronconi, L., & De Beni, R. (2014). What makes a good student? How emotions, self-regulated learning, and motivation contribute to academic achievement. Journal of Educational Psychology, 106 (1), 121–131. https://doi.org/10.1037/a0033546 .

Mendes, W. B. (2016). Comment: Looking for affective meaning in “Multiple Arousal” theory: A comment to Picard, Fedor, and Ayzenberg. Emotion Review, 8 (1), 77–79. https://doi.org/10.1177/1754073914565521 .

Miyamoto, A., Pfost, M., & Artelt, C. (2018). Reciprocal relations between intrinsic reading motivation and reading competence: A comparison between native and immigrant students in Germany: Reading Motivation and Reading Competence. Journal of Research in Reading, 41 (1), 176–196. https://doi.org/10.1111/1467-9817.12113 .

Molden, D. C., & Dweck, C. S. (2006). Finding “meaning” in psychology: A lay theories approach to self-regulation, social perception, and social development. American Psychologist, 61 (3), 192–203. https://doi.org/10.1037/0003-066X.61.3.192 .

Möller, J., Pohlmann, B., Köller, O., & Marsh, H. W. (2009). A meta-analytic path analysis of the Internal/External Frame of Reference model of academic achievement and academic self-concept. Review of Educational Research, 79 (3), 1129–1167. https://doi.org/10.3102/0034654309337522 .

Möller, J., Retelsdorf, J., Köller, O., & Marsh, H. W. (2011). The reciprocal Internal/External Frame of Reference model: An integration of models of relations between academic achievement and self-concept. American Educational Research Journal, 48 (6), 1315–1346. https://doi.org/10.3102/0002831211419649 .

Molloy, L. E., Gest, S. D., & Rulison, K. L. (2011). Peer influences on academic motivation: Exploring multiple methods of assessing youths’ most “influential” peer relationships. The Journal of Early Adolescence, 31 (1), 13–40. https://doi.org/10.1177/0272431610384487 .

Mumm, J., & Mutlu, B. (2011). Designing motivational agents: The role of praise, social comparison, and embodiment in computer feedback. Computers in Human Behavior, 27 (5), 1643–1650. https://doi.org/10.1016/j.chb.2011.02.002 .

Murayama, K., Pekrun, R., Lichtenfeld, S., & vom Hofe, R. (2013). Predicting long-term growth in students’ mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84 (4), 1475–1490. https://doi.org/10.1111/cdev.12036 .

Narciss, S., & Huth, K. (2006). Fostering achievement and motivation with bug-related tutoring feedback in a computer-based training for written subtraction. Learning and Instruction, 16 (4), 310–322. https://doi.org/10.1016/j.learninstruc.2006.07.003 .

Nelson, T. O., & Leonesio, R. J. (1988). Allocation of self-paced study time and the “Labor-in-Vain Effect.”. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14 (4), 676–686. https://doi.org/10.1037/0278-7393.14.4.676 .

Nesselroade, J. R. (1991). Interindividual differences in intraindividual change. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change: Recent advances, unanswered questions, future directions (pp. 92–105). American Psychological Association. https://doi.org/10.1037/10099-006 .

Niemivirta, M., & Tapola, A. (2007). Self-efficacy, interest, and task performance: Within-task changes, mutual relationships, and predictive effects. Zeitschrift Für Pädagogische Psychologie, 21 (3/4), 241–250. https://doi.org/10.1024/1010-0652.21.3.241 .

Niepel, C., Brunner, M., & Preckel, F. (2014a). The longitudinal interplay of students’ academic self-concepts and achievements within and across domains: Replicating and extending the reciprocal internal/external frame of reference model. Journal of Educational Psychology, 106 (4), 1170–1191. https://doi.org/10.1037/a0036307 .

Niepel, C., Brunner, M., & Preckel, F. (2014b). Achievement goals, academic self-concept, and school grades in mathematics: Longitudinal reciprocal relations in above average ability secondary school students. Contemporary Educational Psychology, 39 (4), 301–313. https://doi.org/10.1016/j.cedpsych.2014.07.002 .

Nolen, S., & Ward, C. (2008). Sociocultural and situative approaches to studying motivation. In In Advances in motivation and achievement (15th ed., pp. 425–460). Emerald Group Publishing Limited. https://doi.org/10.1016/S0749-7423(08)15013-0 .

Nuutila, K., Tuominen, H., Tapola, A., Vainikainen, M.-P., & Niemivirta, M. (2018). Consistency, longitudinal stability, and predictions of elementary school students’ task interest, success expectancy, and performance in mathematics. Learning and Instruction, 56 , 73–83. https://doi.org/10.1016/j.learninstruc.2018.04.003 .

Nye, B. D., Karumbaiah, S., Tokel, S. T., Core, M. G., Stratou, G., Auerbach, D., & Georgila, K. (2018). Engaging with the scenario: Affect and facial patterns from a scenario-based intelligent tutoring system. In C. P. Rosé, R. Martínez-Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, B. McLaren, & B. du Boulay (Eds.), Artificial Intelligence in Education (10947th ed., pp. 352–366). Springer International Publishing. https://doi.org/10.1007/978-3-319-93843-1_26 .

OECD. (2016). Netherlands 2016: Foundations for the future, Reviews of National Policies for Education . OECD Publishing Paris. https://doi.org/10.1787/9789264257658-en .

Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18 (4), 315–341. https://doi.org/10.1007/s10648-006-9029-9 .

Pekrun, R., Vogl, E., Muis, K. R., & Sinatra, G. M. (2017). Measuring emotions during epistemic activities: The epistemically-related emotion scales. Cognition and Emotion, 31 (6), 1268–1276. https://doi.org/10.1080/02699931.2016.1204989 .

Pinxten, M., Marsh, H. W., De Fraine, B., Van Den Noortgate, W., & Van Damme, J. (2014). Enjoying mathematics or feeling competent in mathematics? Reciprocal effects on mathematics achievement and perceived math effort expenditure. British Journal of Educational Psychology, 84 (1), 152–174. https://doi.org/10.1111/bjep.12028 .

Plant, E. A., Ericsson, K. A., Hill, L., & Asberg, K. (2005). Why study time does not predict grade point average across college students: Implications of deliberate practice for academic performance. Contemporary Educational Psychology, 30 (1), 96–116. https://doi.org/10.1016/j.cedpsych.2004.06.001 .

Pollet, T. V., & Saxton, T. K. (2019). How diverse are the samples used in the journals ‘evolution & human behavior’ and ‘evolutionary psychology’? Evolutionary Psychological Science, 5 (3), 357–368. https://doi.org/10.1007/s40806-019-00192-2 .

Putwain, D. W., Becker, S., Symes, W., & Pekrun, R. (2018). Reciprocal relations between students’ academic enjoyment, boredom, and achievement over time. Learning and Instruction, 54 , 73–81. https://doi.org/10.1016/j.learninstruc.2017.08.004 .

Rao, N., & Sachs, J. (1999). Confirmatory factor analysis of the chinese version of the motivated strategies for learning questionnaire. Educational and Psychological Measurement, 59 (6), 1016–1029. https://doi.org/10.1177/00131649921970206 .

Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46 (3), 168–184. https://doi.org/10.1080/00461520.2011.587723 .

Retelsdorf, J., Köller, O., & Möller, J. (2014). Reading achievement and reading self-concept – Testing the reciprocal effects model. Learning and Instruction, 29 , 21–30. https://doi.org/10.1016/j.learninstruc.2013.07.004 .

Robbins, S. B., Lauver, K., Le, H., Davis, D., Langley, R., & Carlstrom, A. (2004). Do psychosocial and study skill factors predict college outcomes? A meta-analysis. Psychological Bulletin, 130 (2), 261–288. https://doi.org/10.1037/0033-2909.130.2.261 .

Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychological Medicine, 50 (3), 353–366. https://doi.org/10.1017/S0033291719003404 .

Rudolph, K. D., Lambert, S. F., Clark, A. G., & Kurlakowsky, K. D. (2001). Negotiating the transition to middle school: The role of self-regulatory processes. Child Development, 72 (3), 929–946. https://doi.org/10.1111/1467-8624.00325 .

Sachisthal, M. S. M., Jansen, B. R. J., Peetsma, T. T. D., Dalege, J., van der Maas, H., & Raijmakers, M. E. J. (2019). Introducing a science interest network model to reveal country differences. Journal of Educational Psychology, 111 (6), 1063–1080. https://doi.org/10.1037/edu0000327 .

Sachisthal, M. S. M., Jansen, B. R. J., Dalege, J., & Raijmakers, M. E. J. (2020). Relating teenagers’ science interest network characteristics to later science course enrolment: An analysis of Australian PISA 2006 and Longitudinal Surveys of Australian Youth data. Australian Journal of Education, 64 (3), 264–281. https://doi.org/10.1177/0004944120957477 .

Savi, A. O., Ruijs, N. M., Maris, G. K. J., & van der Maas, H. L. J. (2018). Delaying access to a problem-skipping option increases effortful practice: Application of an A/B test in large-scale online learning. Computers & Education, 119 , 84–94. https://doi.org/10.1016/j.compedu.2017.12.008 .

Scharmer, A. L. (2020). The Reciprocal relation of motivation and academic achievement in typically developing elementary and high-school students: A systematic review and meta-analysis of longitudinal studies [Master thesis].[masked for double blind review].

Scheiter, K., Ackerman, R., & Hoogerheide, V. (2020). Looking at mental effort appraisals through a metacognitive lens: Are they biased? Educational Psychology Review, 32 (4), 1003–1027. https://doi.org/10.1007/s10648-020-09555-9 .

Scherbaum, C. A., Cohen-Charash, Y., & Kern, M. J. (2006). Measuring general self-efficacy: A comparison of three measures using item response theory. Educational and Psychological Measurement, 66 (6), 1047–1063. https://doi.org/10.1177/0013164406288171 .

Scherrer, V., & Preckel, F. (2019). Development of motivational variables and self-esteem during the school career: A meta-analysis of longitudinal studies. Review of Educational Research, 89 (2), 211–258. https://doi.org/10.3102/0034654318819127 .

Scherrer, V., Preckel, F., Schmidt, I., & Elliot, A. J. (2020). Development of achievement goals and their relation to academic interest and achievement in adolescence: A review of the literature and two longitudinal studies. Developmental Psychology, 56 (4), 795–814. https://doi.org/10.1037/dev0000898 .

Schiefele, U. (1999). Interest and Learning From Text. Scientific Studies of Reading, 3 (3), 257–279. https://doi.org/10.1207/s1532799xssr0303_4 .

Schöber, C., Schütte, K., Köller, O., McElvany, N., & Gebauer, M. M. (2018). Reciprocal effects between self-efficacy and achievement in mathematics and reading. Learning and Individual Differences, 63 , 1–11. https://doi.org/10.1016/j.lindif.2018.01.008 .

Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive theory. Contemporary Educational Psychology, 60 , 101832. https://doi.org/10.1016/j.cedpsych.2019.101832 .

Scott Rigby, C., Deci, E. L., Patrick, B. C., & Ryan, R. M. (1992). Beyond the intrinsic-extrinsic dichotomy: Self-determination in motivation and learning. Motivation and Emotion, 16 (3), 165–185. https://doi.org/10.1007/BF00991650 .

Seaton, M., Parker, P., Marsh, H. W., Craven, R. G., & Yeung, A. S. (2014). The reciprocal relations between self-concept, motivation and achievement: Juxtaposing academic self-concept and achievement goal orientations for mathematics success. Educational Psychology, 34 (1), 49–72. https://doi.org/10.1080/01443410.2013.825232 .

Sewasew, D., & Koester, L. S. (2019). The developmental dynamics of students’ reading self-concept and reading competence: Examining reciprocal relations and ethnic-background patterns. Learning and Individual Differences, 73 , 102–111. https://doi.org/10.1016/j.lindif.2019.05.010 .

Sewasew, D., & Schroeders, U. (2019). The developmental interplay of academic self-concept and achievement within and across domains among primary school students. Contemporary Educational Psychology, 58 , 204–212. https://doi.org/10.1016/j.cedpsych.2019.03.009 .

Shavelson, R. J., Hubner, J. J., & Stanton, G. C. (1976). Self-concept: Validation of construct interpretations. Review of Educational Research, 46 (3), 407–441. https://doi.org/10.3102/00346543046003407 .

Sisk, V. F., Burgoyne, A. P., Sun, J., Butler, J. L., & Macnamara, B. N. (2018). To what extent and under which circumstances are growth mind-sets important to academic achievement? Two meta-analyses. Psychological Science, 29 (4), 549–571. https://doi.org/10.1177/0956797617739704 .

Skinner, E. (1995). Perceived control, motivation, & coping (8th ed.). SAGE Publications, Inc. https://doi.org/10.4135/9781483327198 .

Skinner, E., Wellborn, J. G., & Connell, J. P. (1990). What It takes to do well in school and whether I’ve got it: A process model of perceived control and children’s engagement and achievement in school. Journal of Educational Psychology, 82 (1), 22–32. https://doi.org/10.1037/0022-0663.82.1.22 .

Spangler, D. P., & Friedman, B. H. (2015). Effortful control and resiliency exhibit different patterns of cardiac autonomic control. International Journal of Psychophysiology, 96 (2), 95–103. https://doi.org/10.1016/j.ijpsycho.2015.03.002 .

Taras, V., Kirkman, B., & Steel, P. (2010). Examining the impact of culture’s consequences: A three-decade, multilevel, meta-analytic review of Hofstede’s cultural value dimensions. The Journal of Applied Psychology, 95 (3), 405–439. https://doi.org/10.1037/a0018938 .

Tavakolian, K. (2016). Systolic time intervals and new measurement methods. Cardiovascular Engineering and Technology, 7 (2), 118–125. https://doi.org/10.1007/s13239-016-0262-1 .

Trautwein, U., Lüdtke, O., Marsh, H. W., & Nagy, G. (2009). Within-school social comparison: How students perceive the standing of their class predicts academic self-concept. Journal of Educational Psychology, 101 (4), 853–866. https://doi.org/10.1037/a0016306 .

Trigwell, K., Ashwin, P., & Millan, E. S. (2013). Evoked prior learning experience and approach to learning as predictors of academic achievement: Predictors of academic achievement . British Journal of Educational Psychology, 83 (3), 363–378. https://doi.org/10.1111/j.2044-8279.2012.02066.x .

Undorf, M., & Ackerman, R. (2017). The puzzle of study time allocation for the most challenging items. Psychonomic Bulletin & Review, 24 (6), 2003–2011. https://doi.org/10.3758/s13423-017-1261-4 .

Usami, S., Murayama, K., & Hamaker, E. L. (2019). A unified framework of longitudinal models to examine reciprocal relations. Psychological Methods, 24 (5), 637–657. https://doi.org/10.1037/met0000210 .

Valentine, J. C., & Dubois, D. L. (2005). Effects of self-beliefs on academic achievement and vice versa. In H. W. Marsh, R. G. Craven, & D. M. McInerney (Eds.), International advances in self research: New frontiers for self research (2nd ed., pp. 53–78). Information Age.

Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The relation between self-beliefs and academic achievement: A meta-analytic review. Educational Psychologist, 39 (2), 111–133. https://doi.org/10.1207/s15326985ep3902_3 .

van Amelsvoort, M., & Krahmer, E. J. (2009). Appraisal of children’s facial expressions while performing mathematics problems. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 1698–1703). Cognitive Science Society https://escholarship.org/uc/item/6cs1f9t5 . Accessed 10 July 2020.

van der Maas, H., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113 (4), 842–861. https://doi.org/10.1037/0033-295X.113.4.842 .

van der Maas, H., Kan, K.-J., Marsman, M., & Stevenson, C. E. (2017). Network models for cognitive development and intelligence. Journal of Intelligence, 5 (2), 16. https://doi.org/10.3390/jintelligence5020016 .

Vansteenkiste, M., Simons, J., Lens, W., Sheldon, K. M., & Deci, E. L. (2004). Motivating learning, performance, and persistence: The synergistic effects of intrinsic goal contents and autonomy-supportive contexts. Journal of Personality and Social Psychology, 87 (2), 246–260. https://doi.org/10.1037/0022-3514.87.2.246 .

Vignoles, V. L., Owe, E., Becker, M., Smith, P. B., Easterbrook, M. J., Brown, R., González, R., Didier, N., Carrasco, D., Cadena, M. P., Lay, S., Schwartz, S. J., Des Rosiers, S. E., Villamar, J. A., Gavreliuc, A., Zinkeng, M., Kreuzbauer, R., Baguma, P., Martin, M., et al. (2016). Beyond the “east-west” dichotomy: Global variation in cultural models of selfhood. Journal of Experimental Psychology. General, 145 (8), 966–1000. https://doi.org/10.1037/xge0000175 .

Viljaranta, J., Tolvanen, A., Aunola, K., & Nurmi, J.-E. (2014). The developmental dynamics between interest, self-concept of ability, and academic performance. Scandinavian Journal of Educational Research, 58 (6), 734–756. https://doi.org/10.1080/00313831.2014.904419 .

Vu, T.-V., Finkenauer, C., Huizinga, M., Novin, S., & Krabbendam, L. (2017). Do individualism and collectivism on three levels (country, individual, and situation) influence theory-of-mind efficiency? A cross-country study. PLoS One, 12 (8), e0183011. https://doi.org/10.1371/journal.pone.0183011 .

Walgermo, B. R., Foldnes, N., Uppstad, P. H., & Solheim, O. J. (2018). Developmental dynamics of early reading skill, literacy interest and readers’ self-concept within the first year of formal schooling. Reading and Writing, 31 (6), 1379–1399. https://doi.org/10.1007/s11145-018-9843-8 .

Watt, H. M. G. (2004). Development of adolescents’ self-perceptions, values, and task perceptions according to gender and domain in 7th- through 11th-grade Australian students. Child Development, 75 (5), 1556–1574. https://doi.org/10.1111/j.1467-8624.2004.00757.x .

Weiner, B. (2010). The development of an attribution-based theory of motivation: A history of ideas. Educational Psychologist, 45 (1), 28–36. https://doi.org/10.1080/00461520903433596 .

Wigfield, A., & Koenka, A. C. (2020). Where do we go from here in academic motivation theory and research? Some reflections and recommendations for future work. Contemporary Educational Psychology, 61 , 101872. https://doi.org/10.1016/j.cedpsych.2020.101872 .

Wigfield, A., Eccles, J. S., & Rodriguez, D. (1998). The development of children’s motivation in school contexts. Review of Research in Education, 23 , 73–118. JSTOR. https://doi.org/10.2307/1167288 .

Wigfield, A., Turci, L., Cambria, J., & Eccles, J. S. (2019). Motivation in education. In R. M. Ryan (Ed.), The Oxford Handbook of Human Motivation (2nd ed.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190666453.013.24 .

Yeager, D. S., & Walton, G. M. (2011). Social-psychological interventions in education: They’re not magic. Review of Educational Research, 81 (2), 267–301. https://doi.org/10.3102/0034654311405999 .

Yeager, D. S., Purdie-Vaughns, V., Garcia, J., Apfel, N., Brzustoski, P., Master, A., Hessert, W. T., Williams, M. E., & Cohen, G. L. (2014). Breaking the cycle of mistrust: Wise interventions to provide critical feedback across the racial divide. Journal of Experimental Psychology: General, 143 (2), 804–824. https://doi.org/10.1037/a0033906 .

Yeager, D. S., Hanselman, P., Walton, G. M., Murray, J. S., Crosnoe, R., Muller, C., Tipton, E., Schneider, B., Hulleman, C. S., Hinojosa, C. P., Paunesku, D., Romero, C., Flint, K., Roberts, A., Trott, J., Iachan, R., Buontempo, J., Yang, S. M., Carvalho, C. M., et al. (2019). A national experiment reveals where a growth mindset improves achievement. Nature, 573 (7774), 364–369. https://doi.org/10.1038/s41586-019-1466-y .

Yu, S., & Levesque-Bristol, C. (2020). A cross-classified path analysis of the self-determination theory model on the situational, individual and classroom levels in college education. Contemporary Educational Psychology, 61 , 101857. https://doi.org/10.1016/j.cedpsych.2020.101857 .

Zwicker, M. V., Nohlen, H. U., Dalege, J., Gruter, G.-J. M., & van Harreveld, F. (2020). Applying an attitude network approach to consumer behaviour towards plastic. Journal of Environmental Psychology, 69 , 101433. https://doi.org/10.1016/j.jenvp.2020.101433 .

Download references

Acknowledgements

We would like to thank Sibel Altikulaç, Abe Hofman, and Simone Plak who participated in our Expert Workshop in Motivation-Performance Cycle in Math Learning in Amsterdam in June 2019 where we discussed ideas for this paper. We would like to thank Milene Bonte, Wouter van den Bos, Camila Bosano, and Bruce McCandliss who are members of the advisory board for the Jacobs Foundation project of which the subproject to write this manuscript is a part. We also want to thank Asmar Isilak who helped with the first database search for empirical studies on the motivation-achievement cycles in learning .

This work was supported by the Jacobs Foundation Science of Learning pilot grant to Nienke van Atteveldt and Brenda R. J. Jansen [project number 2019 1329 00]. Nienke van Atteveldt was also supported by a Starting Grant from the European Research Council (ERC, grant #716736). The funders had no role in study design, decision to publish, or preparation of the manuscript.

Author information

Authors and affiliations.

Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

TuongVan Vu, Nienke van Atteveldt, Tieme W. P. Janssen, Nikki C. Lee, Maartje E. J. Raijmakers & Martijn Meeter

Research Institute LEARN!, Amsterdam, the Netherlands

Institute of Human Development, University of California, Berkeley, Berkeley, CA, 94720-1690, USA

Lucía Magis-Weinberg

University of Amsterdam, Amsterdam, the Netherlands

Brenda R. J. Jansen, Han L. J. van der Maas & Maien S. M. Sachisthal

You can also search for this author in PubMed   Google Scholar

Contributions

Apart from the first four authors and the last author, the rest of the authors is listed in alphabetical order.

Corresponding author

Correspondence to TuongVan Vu .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Vu, T., Magis-Weinberg, L., Jansen, B.R.J. et al. Motivation-Achievement Cycles in Learning: a Literature Review and Research Agenda. Educ Psychol Rev 34 , 39–71 (2022). https://doi.org/10.1007/s10648-021-09616-7

Download citation

Accepted : 02 April 2021

Published : 05 May 2021

Issue Date : March 2022

DOI : https://doi.org/10.1007/s10648-021-09616-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Academic achievement
  • Find a journal
  • Publish with us
  • Track your research
  • Open access
  • Published: 01 May 2024

Low-cost otolaryngology simulation models for early-stage trainees: a scoping review

  • Joselyne Nzisabira 1 , 2   na1 ,
  • Sarah Nuss 1 , 3   na1 ,
  • Estephanía Candelo 1 , 4 , 5 ,
  • Ernest Aben Oumo 1 , 2 ,
  • Keshav V. Shah 1 , 6 ,
  • Eric K. Kim 1 , 7 ,
  • Joshua Wiedermann 1 , 8 ,
  • Ornella Masimbi 2 ,
  • Natnael Shimelash 2 &
  • Mary Jue Xu 1 , 7 , 9  

BMC Medical Education volume  24 , Article number:  483 ( 2024 ) Cite this article

150 Accesses

Metrics details

Medical simulation is essential for surgical training yet is often too expensive and inaccessible in low- and middle-income countries (LMICs). Furthermore, in otolaryngology-head and neck surgery (OHNS), while simulation training is often focused on senior residents and specialists, there is a critical need to target general practitioners who carry a significant load of OHNS care in countries with limited OHNS providers. This scoping review aims to describe affordable, effective OHNS simulation models for early-stage trainees and non-OHNS specialists in resource-limited settings and discuss gaps in the literature.

This scoping review followed the five stages of Arksey and O’Malley’s Scoping Review Methodology. Seven databases were used to search for articles. Included articles discussed physical models of the ear, nose, or throat described as “low-cost,” “cost-effective,” or defined as <$150 if explicitly stated; related to the management of common and emergent OHNS conditions; and geared towards undergraduate students, medical, dental, or nursing students, and/or early-level residents.

Of the 1706 studies screened, 17 met inclusion criteria. Most studies were conducted in HICs. Most models were low-fidelity (less anatomically realistic) models. The most common simulated skills were peritonsillar abscess aspiration and cricothyrotomy. Information on cost was limited, and locally sourced materials were infrequently mentioned. Simulations were evaluated using questionnaires and direct observation.

Low-cost simulation models can be beneficial for early medical trainees and students in LMICs, addressing resource constraints and improving skill acquisition. However, there is a notable lack of contextually relevant, locally developed, and cost-effective models. This study summarizes existing low-cost OHNS simulation models for early-stage trainees and highlights the need for additional locally sourced models. Further research is needed to assess the effectiveness and sustainability of these models.

Question: What is the current landscape of low-cost otolaryngology-head and neck surgery simulation for early medical trainees and students?

Finding: In this scoping review we identified 17 studies that met inclusion criteria. Most studies were developed in high-income countries, and most models were not locally sourced.

Meaning: There is a notable lack of low-cost OHNS simulation models that are relevant for early medical trainees and students.

Peer Review reports

Introduction

Medical simulation is a valuable component of training [ 1 ]. Historically, simulation usage has been predominantly centered in high-income countries (HICs). Consequently, there exists an opportunity to expand access to simulation education in low- and middle-income countries (LMICs) [ 2 , 3 ]. While low-cost simulation models have been explored in HICs, the specific models used in these settings may not be applicable to LMICs due to lacking the same resources. Studies have demonstrated that using locally sourced materials and readily available devices is cost-effective [ 4 ]. Furthermore, low-fidelity, or less anatomically realistic, simulation may confer similar benefits compared to high-fidelity, or highly anatomically realistic, simulation though with lower costs [ 5 , 6 ]. Despite the potential benefits of simulation in LMICs, there is limited literature, particularly for surgical specialties where workforce shortages, ethical considerations, and financial constraints limit opportunities for practice [ 7 ].

In otolaryngology-head and neck surgery (OHNS), simulation training has an opportunity to address the burden of disease centered in LMICs through training of general practitioners (GPs) and primary care providers in regions where subspecialists are limited. The burden of OHNS disease is high, with 1.5 billion people worldwide experiencing hearing loss, primarily in LMICs [ 8 ]. Paradoxically, low-income countries have 50 times fewer OHNS providers than high income countries [ 9 ]. Given the burden of OHNS disease far outweighs the current number of providers, it is imperative to train primary healthcare provider to help increase access to essential OHNS care. Simulation is a central component of many HIC OHNS training programs [ 10 , 11 , 12 , 13 ], [ 14 ], ; however, many models are largely directed at the skill set of senior residents and physicians. Given that primary care providers such as GPs in LMICs may be the first or only providers available in rural or first-level hospitals, the opportunity to develop skills that are critical for managing OHNS emergencies and common conditions is essential to developing confidence and preventing morbidity and mortality.

To address the gap in simulation models for primary care practitioners in common and emergent OHNS conditions, this scoping review aims to describe and evaluate available low-cost OHNS simulation models geared toward early-stage medical trainees or GPs.

Study design

Given limited and heterogenous literature, a scoping review was selected and conducted in February 2023 in accordance with Arksey and O’Malley’s Scoping Review Methodology and following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Extension for Scoping Reviews Guidelines [ 15 , 16 ]. The search strategy aimed to address the research question regarding the outcomes of using low-cost OHNS simulation models for early-stage trainees in education.

Literature search

A search strategy was developed to capture the maximal results, which included the main search concepts of “simulation,” “otolaryngology,” “education,” and “low cost.” These terms were combined using Boolean operators OR (within critical constructed concepts) and AND (between key concepts). The specific search strategy was adapted to each data base. The search was conducted in the following databases: PubMed, MEDLINE, EBSCO, Scopus, Science Direct, CINAHL, EMBASE, and Web of Science (Supplemental Table 1 ).

Inclusion criteria included studies of any language that discussed the development or implementation of a physical model of the ear, nose, or throat that were explicitly described as “low-cost,” “cost-effective,” or defined as <$150 if explicitly stated related to the care or management of OHNS conditions (operative or non-operative). Models were only considered if they were applicable for training of undergraduate students, medical, dental, or nursing students, and/or early-level residents, and we excluded simulations that would not be applicable to a GP (i.e., advanced OHNS resident level skills). Original research of any study type was included. Letters to the editor, abstracts, systematic reviews, virtual reality simulations, electronic simulations, and studies that utilized mannequin models were not included.

The study team completed a primary title and abstract screening using a Covidence database (Veritas Health Innovation Ltd, Melbourne) based on the search criteria. Two reviewers each independently screened the titles and abstracts of all identified articles for relevance to the research question. A third independent reviewer resolved disagreements over article eligibility. In the full-text review, data was extracted and recorded following the Arksey and O’Malley’s “descriptive-analytical” approach for data extraction, and the information was summarized from selected articles on an Excel spreadsheet [ 15 ]. At least two authors reviewed extracted data from the included articles. A third reviewer resoled any remaining conflicts. Snowball sampling was used to identify gray literature from study reference lists.

Statistical analysis

Outcomes included study characteristics (authors, year, language, journal of publication, study design), context (study country, target population) simulation details (specialty of simulation model, cost, fidelity of model, materials used, local sourcing of materials, condition being simulated), and model evaluation (evaluation of surgical skill and efficacy of model). Summary statistics were performed using Microsoft Excel. Categorical variables were presented as counts and percentages n(%). There were no continuous data.

The initial search returned 3355 studies. After 1649 duplicates were removed, 1706 studies underwent title and abstract screening. Of these, 1607 were excluded. Ninety studies were screened for full text review based on inclusion and exclusion criteria. Seventy-four studies met inclusion criteria (Fig.  1 ). Table  1 provides an overview of the included low-cost simulation models for essential OHNS conditions.

figure 1

PRISMA Flow diagram of data analysis procedure

Characteristics of studies

Of the studies examined, 82% ( n  = 14) of studies were conducted in HICs, and the majority were conducted in the United States or in the United Kingdom (Fig.  2 ). 94% ( n  = 16) of the studies utilized a cross-sectional study design. Most articles targeted general OHNS care ( n  = 8, 47%). 35% ( n  = 6) of the models were low-fidelity models (less anatomically realistic). The characteristics of the studies are summarized in Table  2 . Simulation fidelity was assessed using the Simulation Fidelity (SiFi) scale, a validated 6-point scale to describe simulation fidelity across five domains, with scores of 0–1 meaning low-fidelity, 2–3 meaning medium fidelity, and 4–5 meaning high fidelity (Table  3 ) [ 17 ].

figure 2

Global distribution of Low-Cost ENT Simulation Model Studies

Reflexivity Statement

This scoping review emerged from collaborative work within the Global OHNS Initiative involving LMIC and HIC researchers. This piece was written to promote more accessible and equitable avenues to education and training for LMIC researchers. Our authorship group consists of five LMIC authors and five HIC authors. Five of the ten authors are women. All authors contributed substantially to the conception, drafting, and revision of this piece. All authors approved the final version. Everyone has agreed to be accountable for all aspects of the work, aligning with ICJME Authorship Criteria

The most common simulated skills were peritonsillar abscess aspiration ( n  = 6, 35%), cricothyrotomy ( n  = 4, 24%), myringotomy with tube placement ( n  = 2, 12%), and other ear models (2, 12%). Nasal packing ( n  = 1, 6%), auricular hematoma ( n  = 1, 6%), and tracheostomy care ( n  = 1, 6%) were also included.

One (6%) study was geared towards medical students, eight (47%) towards residents, two (12%) towards both medical students and residents, one (6%) towards nurses, one towards anesthesia students, and one (6%) towards paramedics. Out of the eight resident-focused models, three were geared towards emergency medicine residents. Two (12%) models were geared towards attendings or consultants, and both models were included given the models’ transferability to simulate other more basic skills.

Eleven (65%) models reported a dollar value associated with their model. The average price per model was $52.00 USD (range: $10 - $150). Prices were all converted directly to USD and were standardized to a 2024 estimated cost. The remaining models were described as “low-cost” by authors without specific information about the cost of the materials. Fifteen (88%) studies reported using locally sourced materials. Model reusability is reported in Table  1 .

Simulation evaluation

Sixteen (94%) studies assessed model efficacy. Models were evaluated using both questionnaires ( n  = 8, 47%), direct observation of skills ( n  = 4, 24%), or both ( n  = 4, 24%). Three of the eight studies that included direct observation (38%) used video monitoring to evaluate clinical skill. Participant questionnaires included a variety of themes such as participants’ comfort with the skill, model realism, ease of use, and participant confidence performing the skill.

Given the substantial burden of OHNS disease worldwide and current limited OHNS workforce, simulation training tools tailored for primary care providers are critical in developing OHNS knowledge and skills to increase access to OHNS care globally [ 8 , 9 ]. Existing low-cost OHNS simulations primarily target residents and consultants and can often overlook the essential skill set required by GPs [ 18 , 19 ]. These skills encompass emergent and common OHNS conditions such as epistaxis, emergent surgical airway, and ear and nose foreign body removal. Equipping medical students and early-trainees with basic OHNS care skills is vital. This type of task shifting can alleviate delays in care, transportation challenges, and alleviate the burden on tertiary centers.

This is the first study to evaluate low-cost OHNS simulations tailored to GPs and early-trainee education, emphasizing locally sourced models. The low number of studies identified in this review highlights that simulations addressing the skill set of early trainees and primary care providers is an area for future educational research depending on regional needs and resource availability. Our findings describe the available low-cost simulations in OHNS and highlights insufficient availability of such models. Future work should focus on developing additional low-cost, contextually appropriate models to bridge gaps in healthcare training and delivery in resource-constrained settings.

A variety of approaches have been employed to develop low-cost OHNS simulation models. For instance, studies such as those by Chudek et al. (2021, UK) and Taylor et al. (2014, USA) utilized inexpensive materials like latex gloves, custard, and latex moulage for simulating peritonsillar abscess aspiration [ 1 , 2 ]. These models offer a cost-effective solution for training primary care providers in essential procedures.

Conversely, studies such as Bright et al. (2021, India) and Bhalla et al. (2021, UK) employed thermoplastic ray cast and cork as materials for nasopharyngeal swabbing and peritonsillar abscess aspiration simulations, respectively [ 3 , 4 ]. While these models may have slightly higher initial costs, their reusable components contribute to long-term cost-effectiveness and sustainability.

Moreover, innovative approaches were seen in studies like Botto et al. (2019, Italy) and Ozkaya Senuren et al. (2020, Turkey), where wooden tablets and sheep trachea were utilized for cricothyrotomy simulations [ 5 , 6 ]. These models demonstrate adaptability to local resources and highlight the potential for contextually appropriate simulation solutions.

In terms of dissemination and implementation, workshops, online resources, and collaborative initiatives with local healthcare organizations could facilitate the adoption of these low-cost simulation models. By sharing detailed instructions and training materials, such as those provided by Molin et al. (2020, USA), the reach and impact of these models can be expanded to benefit primary care providers in diverse settings [ 7 ].

Simulated medical models have proven highly effective in imparting essential OHNS procedure skills and can provide an important avenue to improve surgical training in resource constrained environments. However, our data show that most low-cost simulation models ( n  = 14, 82%) are developed and utilized in HIC, which aligns with prior studies that report a lack of locally developed low-cost simulations in LMIC contexts [ 7 ]. Furthermore, many “low-cost” simulation models rely on high-cost materials such as 3D printers or specialized mannequins, which may not be available in LMICs. When considering model sustainability and applicability of these models in LMICs, it is important to recognize the limitations of certain high-fidelity models in such resource-constrained environments. Prior studies demonstrate that low fidelity simulation models do not necessarily lead to worse skill outcomes, which emphasizes the potential of low-cost, less intricate models as valuable tools for skill acquisition [ 5 , 20 ].

A previous systematic review of low-cost simulations in OHNS identified 18 studies on low-cost ENT simulations [ 14 ]. However, only five of these simulations were relevant to GPs as shown in Table  4 . In contrast, our study included 17 simulations directly applicable to GPs. There is potential for expanding the range, reach, and applications of existing models. Most of the models in our study focused on peritonsillar abscess simulations, which may not always fall within a GP’s scope of practice. Future efforts should focus on exploring simulation models that use locally sourced materials and align with the skill requirements of primary care providers in LMICs. Specifically, investigations into simple yet effective simulation approaches, such as task trainers or hybrid models incorporating both physical and virtual elements, could be prioritized to address the diverse educational needs and resource constraints in these settings. Specifically, more models focusing on skills like epistaxis management and nasal/ear foreign body removal are essential to address common conditions encountered by primary care providers in LMICs.

Additionally, several of the existing models could be adapted for a broader set of GP-level skills, such as using ear models for foreign body removal and cerumen management, in addition to myringotomy. There is also a clear need for alternatives to animal models, which can be harder to procure or reuse, leading to higher operation and maintenance costs. Additionally, most models in this study did not explore the use of locally sourced materials. Collaborating with LMICs to adapt models to utilize locally available materials is an essential next step to enhance accessibility and effectiveness. Finally, our study identified heterogeneity in evaluations of the efficacy of these simulations in augmenting the knowledge, skills, and confidence of GPs. This suggests that future research should incorporate standardized metrics that evaluate educational utility of low-cost OHNS simulations.

Our study has several limitations. Not all the studies we included provided exact cost information for the simulations, which, if available, could have contributed to our understanding of the cost-effectiveness of these models. Reusability of the models was reported, however not incorporated into the cost calculation. We also did not independently evaluate fidelity and instead relied on fidelity assessments as reported by the authors for the scope of this study. Furthermore, excluding studies involving 3D printing or mannequins might have resulted in overlooking potentially useful insights regarding the development and components of these models. As 3D printing technology becomes more affordable, cost and access may not be a barrier in the future, opening exciting possibilities for its integration into future research studies and innovations across various fields. Additionally, a notable portion of the studies reviewed did not compare efficacy directly to high-fidelity models, highlighting the need for further research regarding the effectiveness of these simulations.

Low-cost, locally sourced OHNS simulations for GPs, early trainees, and students hold immense promise in LMICs. This tailored simulation-based training not only addresses the financial constraints faced by educational institutions but also considers local factors, including the local burden of OHNS diseases, available resources, hospital infrastructure, and the distinct roles and responsibilities of GPs in these settings. By conducting country-specific studies, these simulations could offer a practical and sustainable solution to enhance OHNS knowledge and skills among primary care providers, ultimately improving healthcare delivery and patient outcomes. Our scoping identified a range of potential simulation models that hold promise for replication in LMICs, along with crucial gaps that warrant exploration for the development of contextually relevant, low-cost models.

Data availability

The papers used to extract data for this manuscript are all publicly available on one of the following platforms: PubMed, MEDLINE, EBSCO, Scopus, Science Direct, CINAHL, EMBASE, and Web of Science.

Akhtar KSN, Chen A, Standfield NJ, Gupte CM. The role of simulation in developing surgical skills. Curr Rev Musculoskelet Med. 2014;7(2):155–60. https://doi.org/10.1007/s12178-014-9209-z .

Article   Google Scholar  

Smith A, Siassakos D, Crofts J, Draycott T, Simulation. Improving patient outcomes. Semin Perinatol. 2013;37(3):151–6. https://doi.org/10.1053/j.semperi.2013.02.005 .

McGaghie WC, Draycott TJ, Dunn WF, Lopez CM, Stefanidis D. Evaluating the impact of Simulation on Translational Patient outcomes. Simul Healthc J Soc Simul Healthc. 2011;6(Suppl):S42–7. https://doi.org/10.1097/SIH.0b013e318222fde9 .

Gheza F, Oginni FO, Crivellaro S, Masrur MA, Adisa AO. Affordable laparoscopic camera system (ALCS) designed for low- and Middle-Income countries: a feasibility study. World J Surg. 2018;42(11):3501–7. https://doi.org/10.1007/s00268-018-4657-z .

Massoth C, Röder H, Ohlenburg H, et al. High-fidelity is not superior to low-fidelity simulation but leads to overconfidence in medical students. BMC Med Educ. 2019;19:29. https://doi.org/10.1186/s12909-019-1464-7 .

Nimbalkar A, Patel D, Kungwani A, Phatak A, Vasa R, Nimbalkar S. Randomized control trial of high fidelity vs low fidelity simulation for training undergraduate students in neonatal resuscitation. BMC Res Notes. 2015;8(1):636. https://doi.org/10.1186/s13104-015-1623-9 .

The Use of Simulation for Undergraduate Surgical Education in Sub-Saharan Africa: A Scoping Review | Research Square. Accessed September 5. 2023. https://www.researchsquare.com/article/rs-2242593/v1 .

World Report on Hearing - Executive Summary. Accessed March 21. 2021. https://www.who.int/publications/m/item/WHO-UCN-NCD-SDR-20.22 .

The Global Otolaryngology. –Head and Neck Surgery Workforce | Oncology | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network. Accessed September 27, 2023. https://jamanetwork.com/journals/jamaotolaryngology/fullarticle/2808978 .

Malekzadeh S, Pfisterer MJ, Wilson B, Na H, Steehler MK. A novel low-cost sinus surgery task trainer. Otolaryngol–Head Neck Surg off J Am Acad Otolaryngol-Head Neck Surg. 2011;145(4):530–3. https://doi.org/10.1177/0194599811413373 .

Javia L, Deutsch ES. A systematic review of simulators in otolaryngology. Otolaryngol–Head Neck Surg off J Am Acad Otolaryngol-Head Neck Surg. 2012;147(6):999–1011. https://doi.org/10.1177/0194599812462007 .

Steyer TE. Peritonsillar abscess: diagnosis and treatment. Am Fam Physician. 2002;65(1):93–6.

Google Scholar  

Construct validity of a simulator for myringotomy with ventilation tube insertion - PubMed. Accessed September 5. 2023. https://pubmed.ncbi.nlm.nih.gov/19861198/ .

Pankhania R, Pelly T, Bowyer H, Shanmugathas N, Wali A. A systematic review of low-cost simulators in ENT surgery. J Laryngol Otol. 2021;135(6):486–91. https://doi.org/10.1017/S0022215121000839 .

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32. https://doi.org/10.1080/1364557032000119616 .

Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for scoping reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467–73. https://doi.org/10.7326/M18-0850 .

Bush D, Lamb C, Braun A. Interrater reliability of the Simulation Fidelity (SiFi) Scale. Proc Hum Factors Ergon Soc Annu Meet. 2022;66(1):1982–6. https://doi.org/10.1177/1071181322661073 .

Wasson J, Pearce L, Alun-Jones T. Improving correspondence to general practitioners regarding patients attending the ENT emergency clinic: a regional general practitioner survey and audit. J Laryngol Otol. 2007;121(12):1189–93. https://doi.org/10.1017/S0022215107000746 .

Addison AB, Watts S, Fleming J. Effective communication between ENT and primary care - a survey of outpatient correspondence. Clin Otolaryngol off J ENT-UK off J Neth Soc Oto-Rhino-Laryngol Cervico-Facial Surg. 2015;40(3):191–6. https://doi.org/10.1111/coa.12343 .

Feinstein AH, Cannon HM. Fidelity, Verifiability, and Validity of Simulation: Constructs for Evaluation. Dev Bus Simul Exp Learn Proc Annu ABSEL Conf . 2001;28. Accessed September 5, 2023. https://absel-ojs-ttu.tdl.org/absel/article/view/801 .

Download references

Acknowledgements

The authors would like to thank the Global Otolaryngology-Head and Neck Initiative for facilitating this collaboration. We would like to thank Chris Wen, John Bukuru, Patrick Balungwe, Nabin Lageju, and Tianzeng Chen for their contributions to reviewing the manuscript.

SRN is supported by the Fogarty International Center and National Institute of Mental Health, of the National Institutes of Health under Award Number D43 TW010543. This study is a part the study funded by NIH grant number NIH/FIC- 5R21HD103052-02. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Joselyne Nzisabira and Sarah Nuss contributed equally to this work.

Authors and Affiliations

Global Otolaryngology-Head and Neck Surgery (OHNS) Initiative, Durham, NC, USA

Joselyne Nzisabira, Sarah Nuss, Estephanía Candelo, Ernest Aben Oumo, Keshav V. Shah, Eric K. Kim, Joshua Wiedermann & Mary Jue Xu

School of Medicine, University of Global Health Equity, Butaro, Rwanda

Joselyne Nzisabira, Ernest Aben Oumo, Ornella Masimbi & Natnael Shimelash

Brown University Warren Alpert Medical School, Providence, RI, USA

Fundación Valle del Lili, Cali, Colombia

Estephanía Candelo

Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic Florida, Jacksonville, FL, USA

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Keshav V. Shah

Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, USA

Eric K. Kim & Mary Jue Xu

Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic , Rochester, USA

Joshua Wiedermann

National Clinician Scholars Program, University of California, San Francisco, USA

Mary Jue Xu

You can also search for this author in PubMed   Google Scholar

Contributions

JN contributed to the study design, team management, data extraction, data analysis, manuscript writing, and final manuscript review SN contributed to the study design, team management, data extraction, data analysis, manuscript writing, and final manuscript review EC contributed to the data extraction, data analysis, manuscript revisions, and final manuscript review EAO contributed to the data extraction, data analysis, manuscript revisions, and final manuscript reviewKVS contributed to the data extraction, data analysis, manuscript revisions, and final manuscript reviewEKK contributed to the data extraction, data analysis, manuscript revisions, and final manuscript reviewJW contributed to the project oversight, data interpretation, manuscript revisions, and final manuscript reviewOM contributed to the study conception, study design, project oversight, data interpretation, manuscript revisions, and final manuscript review NS contributed to the study conception, study design, project oversight, data extraction, data interpretation, manuscript revisions, and final manuscript reviewMJX contributed to the study conception, study design, project oversight, data interpretation, manuscript revisions, and final manuscript review.

Corresponding author

Correspondence to Joselyne Nzisabira .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests, additional information, publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Nzisabira, J., Nuss, S., Candelo, E. et al. Low-cost otolaryngology simulation models for early-stage trainees: a scoping review. BMC Med Educ 24 , 483 (2024). https://doi.org/10.1186/s12909-024-05466-3

Download citation

Received : 27 November 2023

Accepted : 24 April 2024

Published : 01 May 2024

DOI : https://doi.org/10.1186/s12909-024-05466-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Otolaryngology
  • Low- and middle-income country
  • Task trainer
  • Medical student

BMC Medical Education

ISSN: 1472-6920

review of related literature about lack of education

COMMENTS

  1. Challenges Facing Learning at Rural Schools: A Review of Related Literature

    The lack of proper infrastructure required for improving education tends to affect the reading and writing of learners in rural-based schools in South Africa (Du Plessis & Mestry 2019; Msila 2010

  2. PDF Poverty in Education

    Presented in this chapter of the review of the related literature will be: (a) description of poverty and the role of education, (b) effects of poverty on student behavior, (c) effects of poverty on student performance, (d) pedagogical implications for teachers of students in poverty, and (e) summary.

  3. How can education systems improve? A systematic literature review

    Understanding what contributes to improving a system will help us tackle the problems in education systems that usually fail disproportionately in providing quality education for all, especially for the most disadvantage sectors of the population. This paper presents the results of a qualitative systematic literature review aimed at providing a comprehensive overview of what education research ...

  4. A systematic literature review of barriers and supports: initiating

    The purpose of this systematic literature review of empirical studies was to analyse the results of 20 years of research, related to education reform, to identify factors that support or hinder change efforts. An electronic search identified a total of 160 relevant primary studies published between 2000 and 2020 that were included in the review.

  5. Urban poverty and education. A systematic literature review

    This systematic literature review seeks to provide information on the limitations and opportunities faced by the urban poor in leveraging the potential benefits of education. The review covers the period 1995-2017 and includes 66 articles. The analysis addresses: a) the educational achievement of the urban poor and b) the conditions under ...

  6. The School Discipline Dilemma: A Comprehensive Review of Disparities

    The vast majority of studies included in this interdisciplinary literature review are from scholarly, peer-reviewed academic journals, and most of the included studies document and explain discipline disparities. ... (2014) found that a higher proportion of FRPL students in schools was not significantly related to OSS and predicted lower rates ...

  7. A Review of the Literature on Socioeconomic Status and ...

    The foundations of socioeconomic inequities and the educational outcomes of efforts to reduce gaps in socioeconomic status are of great interest to researchers around the world, and narrowing the achievement gap is a common goal for most education systems. This review of the literature focuses on socioeconomic status (SES) and its related ...

  8. Determining factors of access and equity in higher education: A

    This literature review study aims to provide an overview of influencing factors of access to and equity in higher education. ... Previous studies related to equity education lead to economic and statistical terms. ... Lack of money Student negative view about HE Lack of motivation Insufficient information about HE pathways Low-SES family First ...

  9. PDF Challenges Facing Learning at Rural Schools: A Review of Related Literature

    Abstract: - The standard of education at most rural schools worldwide has been reported as low, owing to the geography of the rural areas and the rural-based dynamics which conflicted with learning endeavours.The purpose of this study was to review literatures related to the challenges and difficulties that faced learning at rural schools, and ...

  10. Impacts of digital technologies on education and factors influencing

    The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g ...

  11. Challenges Facing Learning at Rural Schools: A Review of Related Literature

    The lack of quality education in rural schools influenced parents' reluctance to allow their children to attend after-school education programmes as such programmes were not necessarily successful in producing the desired results in terms of improved learner performance. ... The review of related literature revealed that the major challenges ...

  12. A Literature Review on Impact of COVID-19 Pandemic on Teaching and

    The education system and the educators have adopted "Education in Emergency" through various online platforms and are compelled to adopt a system that they are not prepared for. E-learning tools have played a crucial role during this pandemic, helping schools and universities facilitate student learning during the closure of universities ...

  13. (PDF) A Review of the Literature on Socioeconomic Status and

    Chapter 2. A Review of the Literature. on Socioeconomic Status and Educational. Achievement. Abstract The foundations of socioeconomic inequities and the educational. outcomes of efforts to reduce ...

  14. (PDF) Inclusive Education: A Literature Review on Definitions

    Inclusive Education: A Literature Review on Definitions, Attitudes and Pedagogical Challenges. April 2021. International Journal of Research and Innovation in Social Science V (III):358-365. DOI ...

  15. Challenges Facing Learning at Rural Schools: A Review of Related Literature

    The standard of education at most rural schools worldwide has been reported as low, owing to the geography of the rural areas and the ... A Review of Related Literature. Elock Emvula Shikalepo ... & Odden, 2009; Wallin, 2009). In Canada, there is a relative lack of research within rural educational contexts (Wallin, 2009). In the United States ...

  16. Full article: Factors affecting the attitudes of students towards

    Self-efficacy, self-esteem, risk taking and lack of anxiety are traits of self-confidence that also related to second or foreign language learning. Ehrman ( Citation 1996 , p. 137) mentions self-efficacy as an element in learning because it reflects the degree to which the learner thinks s/he can cope and succeed in the learning situation.

  17. PDF ICT in Education: A Critical Literature Review and Its Implications

    Improve teaching and learning quality. As Lowther et al. (2008) have stated that there are three important characteristics are needed to develop good quality teaching and learning with ICT: autonomy, capability, and creativity. Autonomy means that students take control of their learning through their use of ICT.

  18. Full article: A systematic literature review exploring the facilitators

    The searches were limited to literature published from March 2014 (post education reforms) to October 2020, with abstracts written in the English language. The search was not restricted to peer reviewed literature given the review's use of quality assurance measures. This process identified 945 records.

  19. A Literature Review of Barriers and Opportunities Presented by

    Results. Of the 602 articles identified through the database screening, 29 were included in the current review. Potential challenges posed by technologically supported practical skill teaching identified were i) Inaccessibility and Inequity of Online Learning (ii) Digital illiteracy Among Staff (iii) Technological Challenges (iv) Lack of Engagement with Preparatory Material Hinders Practical ...

  20. Motivation-Achievement Cycles in Learning: a Literature Review and

    Representation of three types of study designs that can investigate the relationships between motivation and academic achievement. (1) The gray box shows that to establish that motivation causes academic achievement (top) or vice versa (bottom), experimental manipulation is needed, intervening on the predictor at time point 1, which influences the outcome at time point 2 and so on.

  21. Review of Education

    Review of Education is an official BERA journal publishing educational research from throughout the world, ... , a systematic literature review can describe what is known and not yet known in a particular area of study. Our review started from Indigenous parents' understanding of their roles in supporting their children, followed by the factors ...

  22. PDF Issues and Challenges in Special Education: a Qualitative Analysis From

    Education Development Plan" (PEDP), that ensures education for all, the overall quality of primary education in Ilagan, City Philippines remains generally poor particularly in schools for children with learning disability. Purpose of the Study The general purpose of this study is to determine the issues and challenges of SPED teachers

  23. Challenges Facing Teaching at Rural Schools: A Review of Related Literature

    Abstract :-Traditionally, it has been difficult attracting and. retaining teachers and other professionals to teach at school. located in rural areas. Consequently, teaching at rural schools ...

  24. PDF Literature Review

    However, those youth who do achieve higher levels of education while in the juvenile justice system are more likely to experience positive outcomes in the community once released (Blomberg et al., 2011; Cavendish, 2014). This literature review will discuss the intersection of the educational and the juvenile justice systems.

  25. Low-cost otolaryngology simulation models for early-stage trainees: a

    This scoping review aims to describe affordable, effective OHNS simulation models for early-stage trainees and non-OHNS specialists in resource-limited settings and discuss gaps in the literature. This scoping review followed the five stages of Arksey and O'Malley's Scoping Review Methodology. Seven databases were used to search for articles.